
The ThreeDTricks Script∗

Andrew McLennan

a.mclennan@economics.uq.edu.au

August 31, 2011

Abstract

ThreeDTricks is a perl script that allows the user to define basic three
dimensional objects (dots, lines, polygons) using three dimensional coor-
dinates, in a format that is a slight extension of pstricks code. The script
passes from this to PSTricks code in which the three dimensional coor-
dinates have been projected onto a two dimensional surface. This allows
the user to achieve realistic perspective.

b

b

σ1

σ2

σ3

t1

t2

t3

b

b

τ1

τ2

τ3s1

s2

s3

A Path of the Lemke-Howson Algorithm

∗This is the documentation for version 1.0 of the package. This program is released under

LPPL.

1

Contents

1 Introduction 2

2 How to Use ThreeDTricks 3

2.1 Running ThreeDTricks and Viewing the Output 3
2.2 What Happened? . 5
2.3 Setting Parameters . 6

3 Technical Stuff 8

4 Bugs 8

5 Gallery 8

1 Introduction

ThreeDTricks is a tool that allows the user to efficiently use Timothy van
Zandt’s PSTricks package to create simple three dimensional illustrations with
accurate perspective. It is, at this point, quite primitive, supporting only a very
limited and basic range of objects, but since these are what appear in a large
fraction of three dimensional scientific and mathematical illustrations, it should
nonetheless prove quite useful. Its design has been guided by simplicity and
ease of use. Those in search of elaborate professional tools should probably look
elsewhere.

For simple scientific diagrams, “three dimensional graphics” really means the
projection of three dimensional objects onto two dimensions. The main difficulty
is that for the user, a three dimensional coordinate system is the most natural
setting in which to describe the objects, but PSTricks only understands the two
dimensional plane onto which they are projected. Since development of figures
almost always involves extensive trial, error, and tweaking, it is essential that
the computations be automated, and that there be a rapid edit-process-reassess
cycle.

ThreeDTricks is a perl script that provides a calculational engine for com-
puting the coordinates of the projected points. Briefly, the user edits a .tdi
(Three D In) file, which looks like pspicture code “with features.” Provided
this file is formatted correctly, ThreeDTricks inputs this file, and outputs a .tdo
(Three D Out) file, that is the code for a pspicture. In one scenario the user is
working with a LATEX file that includes the .tdo file, and can quickly run LATEX,
then use a previewer to look at the output.

2

2 How to Use ThreeDTricks

2.1 Running ThreeDTricks and Viewing the Output

Let’s begin by describing how to work with ThreeDTricks. You will be editing
a file with a .dti suffix, say cubegrid.tdi. It might look something like this:

\begin{pspicture}(-7,-5)(11,8)

PRJT_set_viewpoint(22,16,12)

PRJT_set_origin(0,0,0)

PRJT_set_vertical(0,0,2)

\psline[linewidth=2.2pt,arrowsize=3.0pt 3]{->}%<0,0,0>%%<7,0,0>%

\psline[linewidth=2.2pt,arrowsize=3.0pt 3]{->}%<0,0,0>%%<0,7,0>%

\psline[linewidth=2.2pt,arrowsize=3.0pt 3]{->}%<0,0,0>%%<0,0,7>%

\psline[linewidth=1.0pt]%<0,2,0>%%<6,2,0>%

\psline[linewidth=1.0pt]%<0,4,0>%%<6,4,0>%

\psline[linewidth=1.0pt]%<0,6,0>%%<6,6,0>%

.

.

.

\psline[linewidth=1.0pt]%<2,6,0>%%<2,6,6>%

\psline[linewidth=1.0pt]%<4,6,0>%%<4,6,6>%

\psline[linewidth=1.0pt]%<6,6,0>%%<6,6,6>%

\end{pspicture}

If you’re happy with it, or just want to see how things stand, you run the
command line

>> threedtricks.plx cubegrid

(Note that there is no suffix!) This generates a file cubegrid.dto which looks
like this:

\begin{pspicture}(-7,-5)(11,8)

\psline[linewidth=2.2pt,arrowsize=3.0pt 3]{->}(0.0000,0.0000)(-4.9858,-2.7669)

\psline[linewidth=2.2pt,arrowsize=3.0pt 3]{->}(0.0000,0.0000)(6.4825,-1.9028)

\psline[linewidth=2.2pt,arrowsize=3.0pt 3]{->}(0.0000,0.0000)(0.0000,7.0770)

\psline[linewidth=1.0pt](1.6782,-0.4926)(-2.3470,-2.9875)

\psline[linewidth=1.0pt](3.4874,-1.0237)(-0.3779,-3.7364)

\psline[linewidth=1.0pt](5.4436,-1.5979)(1.7833,-4.5585)

.

.

.

\psline[linewidth=1.0pt](4.3678,-2.4680)(4.8358,4.4890)

\psline[linewidth=1.0pt](3.1568,-3.4476)(3.5187,3.8846)

\psline[linewidth=1.0pt](1.7833,-4.5585)(2.0032,3.1891)

\end{pspicture}

3

Usually you will be working with a LATEX document which includes a line
like

\input{cubegrid.tdo}

Now you run LATEX and update your previewer, seeing something like Figure 1
below.

Figure 1

Since you’ll be going through this cycle again and again, if you are using
Unix you’ll probably want to create an alias that combines all these steps into
a single command. For example, after I had set up the file cubegrid.tdi and
gone through the entire cycle once or twice by hand, I would type the following
command lines

>> alias thr=’threedtricks.plx cubegrid’

>> alias ltx=’latex cubegrid.tex’

>> alias doall=’thr; ltx’

After this, when I wanted to see how things were going I could just save
cubegrid.tdi and run the command line

>> doall

4

2.2 What Happened?

In passing from cubegrid.tdi to cubegrid.tdo two things happened. First,
certain parameters were reset by the commands beginning with PRJT, and these
lines were removed. Second, each three dimensional point like %<0,0,0>% was
converted to a two dimensional point like (1.6782,-0.4926). The result is
a file that PSTricks can process. You should be warned that the parsing in
ThreeDTricks is very primitive, and is quite likely to give bad results (possibly
without any warning to the user!) if you try to do anything out of the ordinary.
In particular, it is assumed that each PRJT command has a line to itself, and
that a point like %<0,0,0>% is not split between two lines. There is no guarantee
of insensitivity to other sorts of white space. If you don’t like these restrictions,
or prefer delimiters other than %<·,·,·>%, you are certainly free to rewrite the
perl script to your taste.

Origin
Vertical

Viewpoint

Figure 2

b

b

b

b

The heart of the process is the conversion of a three dimensional point
%<x,y,z>% to a two dimensional point (s,t). The parameters include two
points in 3-space called the Viewpoint v and the Origin o. The projection plane

5

P is the plane containing o that is perpendicular to the vector v − o. The point
(x, y, z) is first projected onto the point f(x, y, z) = (x′, y′, z′) where the ray
emanating from vp and passing through (x, y, z) intersects P .

The next step is to convert the point (x′, y′, z′) to a point in the two dimen-
sional coordinate system that PSTricks understands. One of the parameters is
a vector ν = (ν1, ν2, ν3) that indicates the vertical direction. We set

V =
f(ν) − f(0, 0, 0)

‖f(ν) − f(0, 0, 0)‖
and H =

V × (v − o)

‖V × (v − o)‖
.

(Here × is the cross product.) Clearly V and H are orthogonal unit vectors
that are parallel to P . There are two more parameters, a scalar m called the
multiplication and a two dimensional vector τ called the translation. We convert
a point (x′, y′, z′) ∈ P to a point (s, t) in the plane by the formula

(s, t) = m ·
(

〈(x′, y′, z′), H〉, 〈(x′, y′, z′), V 〉
)

+ τ.

In sum, the passage from a three dimensional point to a point in the PSTricks

coordinate system is

(x, y, z) 7→ m ·
(

〈f(x, y, z), H〉, 〈f(x, y, z), V 〉
)

+ τ.

Figure 2 is worth a small remark. The coordinates of the two dimensional
image of the cube were computed by applying ThreeDTricks to a file with the
cube’s three dimensional coordinates, setting other parameters as shown in the
figure. The projected coordinates were then converted to three dimensional
points by adding the appropriate third coordinate, yielding the points that
appeared in the .tdi file used to prepare Figure 2.

2.3 Setting Parameters

The commands for setting parameters are quite straightforward. We enumerate
them for the sake of easy reference.

• PRJT set viewpoint(v1,v2,v3) sets the viewpoint to the indicated point.
There is a builtin default, but only because I didn’t want to bother with
programming error messages chastising users who do not set this param-
eter. You won’t like the builtin, so a warning would be superfluous.

• PRJT set origin(o1,o2,o3) sets the origin to the indicated point. The
default is (0, 0, 0).

• PRJT set vertical(ν1,ν2,ν3) sets the sample vertical vector to the in-
dicated point. The default is (0, 0, 1).

• PRJT set magnification(m) sets the magnification to the indicated num-
ber. The default is 1.

6

• PRJT set translation(τ1,τ2) sets the translation to the indicated point.
The default is (0, 0). It is important to realize that the translation is a
vector in the PSTricks coordinate system.

• PRJT set stepback(s) sets the “stepback” to the indicated number. The
default is 1. The idea is to move the viewpoint closer to or further from
the origin, thereby increasing or decreasing the “intensity” of the sense
of perspective. Mathematically this amounts to replacing the viewpoint
with o + s(v − o).

All of these parameters can change during the process of constructing a
figure. This allows for relatively easy handling of repeated elements. Gravity
being as pervasive and unfluctuating as it is, for “scientific” purposes there will
few occasions when changing the vertical direction is useful, but at least we
can have a little fun while illustrating how easy it is to create new effects by
replicating existing elements.

Figure 3

7

3 Technical Stuff

There is not too much to say here. The underlying perl script is, I hope, fairly
easy to understand, at least if you know a little about perl. (I learned most of
what I know about the language largely by looking things up as I wrote this,
so it is certainly not sophisticated.) Basically it does three things: a) parse;
b) compute; c) print the output file. The parsing is crude, and I have put no
effort into providing a systematic collection of error messages. The computation
is a simple piece of vector geometry. Printing is straightforward, modulo the
vagaries of perl’s print commands, which are largely adopted from C.

4 Bugs

There is no end of additional features and capablities one might desire. First
on my list would be the ability to place circles, ellipses, and arcs thereof, in
space, but unfortunately PSTricks does not support ellipses whose principal
axes are not horizontal and vertical. Much more ambitious would be some sort
of automated handling of lines that become thinner as they recede into the
distance, and more ambitious still would be automated control of shading in
certain circumstances. Probably you have your own wish list.

At this point the script is very simple and hopefully easy to understand,
which should at least make it relatively easy for the user to modify or enhance
it in various directions. In this sense all the bugs add up to one big feature!
Please contact me if your work yields an improvement that seems unambiguously
useful for a wide audience, and which does not greatly complicate the script or
its usage, but be forewarned that esoterica is disparaged.

5 Gallery

Just for fun, here are some of the figures from my latest paper.

8

b b b b bb b b b bb b b b bb b b b bb b b b b

b b b b bb b b b bb b b b bb b b b bb b b b b

b b b b bb b b b bb b b b bb b b b bb b b b b

b b b b bb b b b bb b b b bb b b b bb b b b b

b b b b bb b b b bb b b b bb b b b bb b b b b

9

x

y

z

10

