Fixed Point Theorems

Andrew McLennan

Department of Economics
University of Minnesota
271 19th Avenue South
Minneapolis, MN 55455

and

Discipline of Economics
H-04 Merewether Building
University of Sydney
NSW 2006 Australia

mclennan@atlas.socsci.umn.edu

[ATEXed May 1, 2006
Preliminary: Do Not Cite



Abstract

This entry gives statements of the Tarski fixed point theorem and the
main versions of the topological fixed point principle that have been applied
in economic theory. Pointers are given to literature concerned with proofs of
Brouwer’s theorem, and with algorithms for computing approximate fixed
points. The topological results are all consequences of a slightly weakened
version of the Eilenberg-Montgomery (1946) fixed point theorem. The ax-
iomatic characterization of the Leray-Schauder fixed point index (which is
even more powerful) is also stated, and its application to issues concerning
robustness of sets of equilibria is explained.



fixed point theorems

The Brouwer (1910) fixed point theorem and its descendants are key math-
ematical results underlying the foundations of economic theory.

Let f : X — X be a function from a space to itself. A fixed point of f
is a point z* € X that is mapped to itself by f: f(z*) = z*. A fixed point
theorem is a result asserting that, under some hypotheses, the set of fixed
points of f is nonempty. A simple example with many applications is:

Theorem 1 (Contraction Mapping Theorem). If the metric space (X, d)
is complete (recall that this means that every Cauchy sequence is convergent)
and there is a number ¢ € (0,1) such that d(f(x), f(z")) < cd(z,z") for all
z,2' € X, then f has a unique fized point.

Another example illustrating the importance of the general notion of
completeness, but otherwise based on quite different principles, is:

Theorem 2 (Tarski’s Fixed Point Theorem). Let (X, <) be a complete
lattice: < is a partial ordering of X and every subset of X has a greatest
lower bound and a least upper bound. If f : X — X is monotone—that is,
f(z) < f(2') whenever x < z' then there are fized points u,uw € X such
that u < x whenever x < f(z) and x <@ whenever f(z) < x.

This result is foundational for the theory of strategic complementarities (e.g.,
Milgrom and Shannon (1994), Echenique (2005)) and has been applied to
growth theory by Hopenhayn and Prescott (1992).

The rest of our discussion is devoted to results related to Brouwer’s
fixed point theorem. A topological space has the fixed point property if
every continuous map from the space to itself has a fixed point. Brouwer’s
theorem states that a nonempty compact convex subset of a Euclidean space
has the fixed point property. This celebrated result underlies many of the
advanced results of topology, and was a pivotal event in the development
of algebraic topology, which has influenced many areas of mathematics. In
the half century following Brouwer’s paper the theory of fixed points was
extended in various directions, yielding several generalizations of Brouwer’s
result that are themselves famous theorems. Early in the postwar period
fixed point theorems were used by Arrow and Debreu (1954), McKenzie
(1959), Nash (1950, 1951), and Debreu (1952) to prove the fundamental
equilibrium existence results of theoretical economics: every economy with
finitely many goods and agents has a competitive equilibrium; every finite
normal form game has a Nash equilibrium. Fixed point theory continues to



play an important role in the extensive body of research that grew out of
these fundamental discoveries.

Useful books devoted to fixed point theory include Border (1985), which
emphasizes results used in economic theory, Brown (1971), which develops
the theory of the fixed point index using the methods of algebraic topology,
and Dugundji and Granas (2003), which comprehensively surveys the topic
from the point of view of applications to analysis and topology. The latter
book features extensive historical information concerning the development,
and the developers, of the subject.

Proofs and Algorithms

Since Brouwer’s theorem is a breakthrough result, one should expect
proofs to reveal deep mathematical principles, and in fact Brouwer’s work
was a major stimulus to the development of the subject that is now known
as algebraic topology. Eventually Sperner (1928) distilled a relatively simple
combinatoric argument out of the topological ferment of that era. Although
this argument is the most popular in graduate education in economics, in
the author’s opinion the exposition in Milnor (1965) of an argument due
to Hirsch is worth whatever additional effort it entails, because the student
also learns Sard’s theorem, which is another fundamental result of the last
century with important applications in economic theory. Although the sub-
stance of the argument in Milnor (1978) appears to be less useful, its brevity
and elementary character are stunning. The proof of McLennan and Tourky
(2005) is also relatively simple, and displays how Kakutani’s theorem fol-
lows easily from the existence of Nash equilibrium for a special class of two
person games, which is one of the simplest manifestations of the fixed point
principle.

Computation of approximate fixed points has many applications in eco-
nomics and other fields, and is an important topic of research. Iteration of a
function is only guaranteed to work when the the function is a contraction,
as in Theorem 1, but this method is often practical for functions that do not
satisfy this condition. Other methods are derived from proofs of Brouwer’s
theorem. The method pioneered by Scarf (Scarf (1973), Doup (1988)) is a
method of moving through the simplices of a simplicial subdivision of the
simplex. It is justified by a refinement of the proof of Sperner’s lemma. The
proof derived from Sard’s theorem points toward homotopy methods, which
have a huge literature (Garcia and Zangwill (1981), Algower and Georg
(1990)). The proof in McLennan and Tourky (2005) also points toward al-
gorithms in which the equilibria of certain two person games give rise to
approximate fixed points.



Variants

We will give statements of the main forms in which the fixed point prin-
ciple is applied in economic theory. Let X and Y be metric spaces. A
correspondence F : X — Y assigns a nonempty F(z) C Y to each z € X.
When Y = X, a point z* is said to be a fixed point if z* € F(z*). If P is
any property of sets, then F'is P valued if each image F'(z) has property
P. Tt is upper semicontinuous (u.s.c.) if it is compact valued and, for
each z € X and each neighborhood V' of F(x), there is a neighborhood U
of z such that F(z') C V for all 2’ € U. It is not hard to show that if ¥ is
compact, then F' is u.s.c. if and only if its graph

Gr(F)={(z,y) e X xY :ye F(z)}

is closed. We think of a function as a singleton-valued correspondence, in
which case upper semicontinuity coincides with the usual notion of continu-
ity.

Economic models frequently give rise to sets of optimal individual choices
that are convex, but may have more than one element. For this reason the
most prominent fixed point theorem in economic applications is:

Theorem 3 (Kakutani (1941)). If X is a nonempty compact convez sub-
set of a Fuclidean space and F : X — X is an u.s.c. convex valued corre-
spondence, then F' has a fixed point.

The following variant is tailored for applications in general equilibrium
theory, where one is searching for a price vector that equates supply and
demand in all markets.

Theorem 4 (Debreu-Gale-Kuhn-Nikaido Lemma). Let

A::{pER’}r:Zpizl}
7=1

be the n — 1 dimensional simplex. If Z : A — R" is an u.s.c.c.v. correspon-
dence satisfying p-z = 0 for all p € A and all z € Z(p), then there is a
p* € A and z* € Z(p*) such that z* < 0.

The following result of Shapley (1973b,a) (see also Herings (1997) and
references cited therein) generalizes the famous K-K-M theorem of Knaster
et al. (1929). It has important applications to the theory of the core and
other aspects of cooperative game theory and general equilibrium theory.



Theorem 5 (K-K-M-S-Theorem). Let N = 211"\ 0 and for S € N
let AS ;= {x € A:x;=0forallig S}. If {C%Vsen is a collection of
closed sets such that AT C Uscr CS for all T € N, then there is B C N
and numbers Ag > 0 for S € B such that ) ,cgcgAs =1 foralli=1,... ,n
(such a B is called a balanced collection) and (\g.5 C° # 0.

The original K-K-M theorem is the special case in which C° = () when-
ever S has more than one element. That is, C; N--- N C,, # () whenever
Ci....,Cp C A are closed sets satisfying AT C ;. G for all T € N.

Generalizations

During the first half of the last century there emerged a sequence of
increasingly general versions of Brouwer’s theorem. Let X and X’ be metric
spaces, and let ¢ : X — X' be a homeomorphism. A point z* € X is a fixed
point of a continuous function f : X — X if and only if ¢(z*) is a fixed point
of o fop™!, so the fixed point property is invariant under homeomorphism.
Compactness and continuity are invariant properties, but the assumptions
of convexity and finite dimensionality in Brouwer’s theorem seem too strong,
as does the assumption of convex valuedness in Kakutani’s theorem. One is
led to search for weaker, topological assumptions that imply the fixed point
property.

Let Y be another metric space. A continuous function

h:X x[0,1] =Y

is called a homotopy. Foreach 0 <t <1let hy = h(-,t) : X — Y. We think
of “continuously deforming” hg into h1, with the variable ¢ representing time,
and we say that hg and h; are homotopic. The space X is contractible
if the identity function on X is homotopic to a constant function. If X is
convex, then for any zg € X the function

h(z,t) = zo+ (1 — t)(z — z0)

is such a homotopy, so convex sets are contractible. It was conjectured
that nonempty compact contractible sets have the fixed point property, but
eventually counterexamples were discovered by Kinoshita (1953) and others.

A retraction of X onto a subset A is a continuous function r : X — A
whose set of fixed points is A, so that r(a) = a for all @ € A. In this
circumstance we say that A is a retract of X. One point of interest is that
if X has the fixed point property, then so does A: if g : A — A is continuous,



then gor : X — A C X has a fixed point z*, and z* = g(r(z*)) = g(z*)
because z* must be in A.

The subspace A is a neighborhood retract if there is an open U D A
and a retraction r : U — A. A continuous function e : X — Y is an
embedding if it is injective and e~ ! : ¢(X) — X is continuous, i.e., e
is a homeomorphism onto its image. A metric space X is an absolute
neighborhood retract (ANR) if e(X) is a neighborhood retract whenever
e: X — Y is an embedding of X in a metric space Y. The class of ANR’s
is large, encompassing many important types of spaces such as manifolds,
simplicial complexes, and convex sets, and there is an extensive theory (e.g.,
Borsuk (1967)) that cannot be described here. One may think of an ANR as
a space that has bounded complexity, in a certain sense, in a neighborhood
of each of its points'.

Eilenberg and Montgomery (1946) gave a fully satisfactory generaliza-
tion of Brouwer’s theorem: F has a fixed point whenever X is a nonempty
compact acyclic ANR and F : X — X is an us.c. acyclic valued corre-
spondence. Acyclicity is a concept from algebraic topology that cannot be
defined here; the important point for us is that contractible sets are acyclic,
and that the loss of generality in passing from acyclicity to contractibility is
of slight concern in economic theory.

Contractible valued correspondences that are not convex valued appear
in McLennan (1989a) and Reny (2005). There are many applications in
economics of the special case of the Eilenberg-Montgomery theorem in which
X is convex (but possibly infinite dimensional) and F' is convex valued, for
which relatively simple and direct proofs were given by Fan (1952) and
Glicksberg (1952). In turn this result is more general than both Kakutani’s
theorem and the well known Schauder (1930) fixed point theorem.

The Leray-Schauder Fized Point Index

Consider the fixed points of the function from [0, 1] to itself shown in
Figure 1. The points A and C are qualitatively similar, and qualitatively
different from B. In the one dimensional setting one can easily see that if
the function is differentiable, and its graph is not tangent to the diagonal at
any of its fixed points, then the number of fixed points of the first type must

! An example of a space that is not an ANR is the union X of the unit circle centered at
the origin in R? and the set { (1 —87')(cosf,sinf) : 1 < # < oco}. If X was an ANR, then
there would exist a retraction of a neighborhood U C R? onto X, and the retraction would
take small connected neighborhoods of (1,0) in U to small connected neighborhoods of
(1,0) in X, but small neighborhoods of (1,0) in X are disconnected.



Figure 1

be one greater than the number of fixed points of the second type. In par-
ticular, the number of fixed points must be odd. These properties extend to
smooth functions f : C — C, where C is an n-dimensional convex set, that
intersect the diagonal in the “expected” manner: the Jacobian of Idg — f
is nonsingular. Debreu (1970) used Sard’s theorem (e.g., Milnor (1965)) to
show that for an exchange economy with fixed preferences, the excess de-
mand function generated by a “generic” endowment vector has well behaved
equilibria, and Dierker (1972) showed that the qualitative conclusions de-
scribed above hold in this circumstance. Mas-Colell (1985) summarizes the
extensive literature descended from these seminal contributions.

The Leray-Schauder fixed point index generalizes these aspects of
the theory to correspondences, to sets of fixed points that are not singletons,
and to general ANR’s. Suppose X is a nonempty compact ANR, U C X is
open and U is its closure. A correspondence F : U — X is index admissi-
ble if it is u.s.c. and does not have any fixed points in its boundary U \ U.
Let Zx be the set of index admissible contractible valued correspondences
F :U — X where U C X is open. A homotopy h: U x [0,1] — X is index
admissible if each h; is index admissible.

The next result gives an axiomatic characterization of a number A y (F).
When there are finitely many fixed points the Additivity axiom allows us to
think of Ax(F) as the sum of their indices. When X CR", f: U — X is a
smooth function, and z is a fixed point in the interior of X with Idg» — D f(z)
nonsingular, the index of z is +1 or —1 according to whether the determinant
of Idgn — D f(z) is positive or negative.

Theorem 6. There is a unique function Ax : Ixy — 7 satisfying:



(I1) (Normalization) If ¢ : X — X is a constant function, then Ax(c) = 1.

(12) (Additivity) If F : U — X is in Ix, Uy,... U, are disjoint open
subsets of U, and F has no fized points in U \ (U1 U...UU,), then

Ax(F) = S Ax(Flg,).
=1

(I3) (Homotopy) If h : U x [0,1] — X is an index admissible homotopy,
then Ax(ho) = Ax(hl)

(I4) (Continuity) For each F : U — X in Ix there is a neighborhood
W CU x X of Gr(F) such that Ax(F') = Ax(F) for all F' : U — X
with F' € Tx and Gr{(F') C W.

The index is closed related to the Brouwer degree of a function between
manifolds of the same dimension. These ideas evolved from the time of
Brouwer’s work until O’Neill (1953) achieved the axiomatic expression of
the concept (for functions) given above.

Theorem 1 has many important consequences. To begin with note that
if F' € Tx has no fixed points, then Additivity implies that

Ax(F) = Ax(Flg) = Ax(Fly) + Ax(Fly) = 0.

Therefore F' must have a fixed point whenever Ax(F) # 0. If f: X - X
is a continuous function, then Ax(f) is called the Lefschetz number of
f- The famous Lefschetz (1923) fixed point theorem states that f has a
fixed point if its Lefschetz number is nonzero, and provides connections to
algebraic topology that give tools for computing the Lefschetz number.

We now use the following approximation result to recover the weak ver-
sion of the Eilenberg-Montgomery theorem stated above, thereby showing
that Theorem 6 embodies the fixed point principle. This result generalizes
Kakutani’s method of passing from Brouwer’s theorem to his result, and it
plays an important role in one method of proving Theorem 6.

Theorem 7 (Mas-Colell (1974), McLennan (1989b)). If X is a com-
pact ANR, U,V C X are open with V C U, F : U — X is an u.s.c. con-
tractible valued correspondence, and W C U x X is a neighborhood of Gr(F),
then there is a continuous function f:V — X with Gr(f) C W.

Suppose that F' : X — X is an u.s.c. contractible valued correspondence.
Applying the last result with U =V = X and W as in (I4), we find that



there is a continuous function f : X — X with Ax(f) = Ax(F). If X is
contractible, so that there is a homotopy h : X x [0,1] — X with ho = Idx
and h; a constant function, then j(z,t) = f(h(z,t)) is a homotopy with
jo = f and j; a constant function, so Homotopy and Normalization imply
that Ax(f) = 1. We conclude that Ax(F) = 1, and that F' necessarily has
a fixed point.

Recall that a subset C of a metric space Y is connected if there do not
exist open sets V1, Vo CY with ViNVo=0and ViNC #A0 #AVonNC. A
subset of Y is a connected component if it is the union of all connected
sets containing some point y. Each connected component is connected, and
the connected components partition Y.

Suppose that X is a compact contractible ANR, that F : X — X is
in Zx, and that the set of fixed points of F' has finitely many connected
components C1, ... ,C,. Additivity implies that each component C; has a
well defined index A; that depends on the restriction of F' to an arbitrarily
small neighborhood of C;. Suppose that it is possible to show that \; = 1
for each 7. Since additivity implies that ). A\; = Ax(F) = 1, it follows that
r = 1. This style of proof of uniqueness is applicable to many economic
settings, but usually more elementary methods are available. At present
no alternative to its application in Eraslan and McLennan (2005) is known.
It is more common to use the index to prove nonuniqueness: it suffices to
display a connected component whose index is different from one.

The fixed point index has two other important properties.

Theorem 8. (Multiplication) If X and Y and compact ANR’s, U C X
and V. .C Y are open, F : U = X and G : V — Y are index admissible
contractible valued correspondences, and F x G : U x V. — X x Y is the
correspondence that takes (z,y) to F(xz) x G(y), then

Axxy(F X G) = Ax(F) . Ay(G)

Theorem 9. (Commutativity) If X andY are compact ANR’s and f : X —
Y and g: Y — X are continuous functions, then

Ax(gef) = Av(fog)

There is a more general version of Commutativity for functions defined
on subsets of X and Y, but its statement involves technical complications.
In view of the uniqueness asserted in Theorem 6, Multiplication and Com-
mutativity are, in principle, consequences of (I1)-(I4), but it is not known
how to prove them in this way. In practice these properties are treated



Figure 2

as axioms and shepherded up the ladder of generality, one rung at a time,
along with everything else. In fact Commutativity (which was introduced
by Browder (1948) for this purpose) plays a critical role at one stage of this
process.

Essential Sets of Fized Points

The two fixed points in Figure 2 are qualitatively different. Arbitrarily
small perturbations of the function have no fixed point near A, but this
is not the case for B. In the terminology introduced by Fort (1950) A is
inessential while B is essential. Let X be a compact contractible AN R,
let : X — X be an u.s.c. contractible valued correspondence, and let C
be the set of fixed points of F. Kinoshita (1952) extended Fort’s ideas to
correspondences, and to sets of fixed points, defining an essential set of
fixed points of F' to be a compact C' C C such that for any neighborhood
U of C' there is a neighborhood W of Gr(F) such that any continuous
function f: X — X with Gr(f) C W has a fixed point in U.

For any neighborhood U of C we can find a neighborhood W of Gr(F)
that cannot have any fixed points outside of U, so C' is essential. That is,
without some additional condition, essentiality does not distinguish some
fixed points from others. Following Kohlberg and Mertens (1986), one is
led to consider minimal essential sets, which exist by virtue of the following
argument. Let Bi, Bg,... be a listing of the open balls of rational radii
centered at points in some countable dense subset of X. Define a sequence
Ky, K1, Ky, ... inductively by setting Ky = C and, for j > 1, setting K; =
K, 1\ Bj if this set is essential and otherwise setting K; = K; ;. We
claim that Ko = ﬂj K; is a minimal essential set. Any neighborhood

9



U of K contains some K, (the accumulation points of a sequence {z;}
with z; € K; \ U must be outside U but also in each K, by compactness,
hence in K ) and each K is essential, so K is essential. If there was
a smaller essential set there would be some j such that K \ Bj # Ku
was essential, but then K;_; \ B; would also be essential, in which case
KooﬂBj CKjﬂBj = 0.

Kinoshita (1952) showed that minimal essential sets are connected when
X is convex and F' is convex valued. Otherwise one could find a minimal
essential set C1 U Cy, where C; and Cy are nonempty, compact, and disjoint.
Then C7 and C5 are inessential, so there is a perturbation of F' that has
no fixed points near C; and another such perturbation of F' has no fixed
points near Cy. The main idea of Kinoshita’s argument is that these can be
combined, using convex combination with locally varying weights, to give a
perturbation of F' that has no fixed point near C;UCY, thereby contradicting
the assumption that C7 U Cy is essential.

Kinoshita’s theorem is pertinent to the literature on refinements of Nash
equilibrium that began with the introduction in Selten (1975) of perfect equi-
librium. An important technique is to give a privileged status to those Nash
equilibria that can be approximated by fixed points of certain perturbations
of the given correspondence. In particular, it has important connections to
the notion of strategic stability of Kohlberg and Mertens (1986).

The fixed point index also has implications for essential sets. For the sake
of simplicity assume that C consists of finitely many connected components
Ci,...,Cy. (This condition holds in the application to Nash equilibrium.)
Any C; with nonzero index is essential, by Continuity. Since the sum of the
indices is one, some C; must have nonzero index, so a connected essential set
exists. Harder arguments, which apply the Hopf theorem (Milnor (1965))
to “transport” fixed points of perturbations to a desired location, and to
eliminate pairs of fixed points of opposite index, show that any proper subset
of a C}; is inessential, and that C; is inessential if its index is zero. Thus the
minimal essential sets are precisely those C; with nonzero index.
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