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AbstratThis entry gives statements of the Tarski �xed point theorem and themain versions of the topologial �xed point priniple that have been appliedin eonomi theory. Pointers are given to literature onerned with proofs ofBrouwer's theorem, and with algorithms for omputing approximate �xedpoints. The topologial results are all onsequenes of a slightly weakenedversion of the Eilenberg-Montgomery (1946) �xed point theorem. The ax-iomati haraterization of the Leray-Shauder �xed point index (whih iseven more powerful) is also stated, and its appliation to issues onerningrobustness of sets of equilibria is explained.



�xed point theoremsThe Brouwer (1910) �xed point theorem and its desendants are key math-ematial results underlying the foundations of eonomi theory.Let f : X ! X be a funtion from a spae to itself. A �xed point of fis a point x� 2 X that is mapped to itself by f : f(x�) = x�. A �xed pointtheorem is a result asserting that, under some hypotheses, the set of �xedpoints of f is nonempty. A simple example with many appliations is:Theorem 1 (Contration Mapping Theorem). If the metri spae (X; d)is omplete (reall that this means that every Cauhy sequene is onvergent)and there is a number  2 (0; 1) suh that d(f(x); f(x0)) � d(x; x0) for allx; x0 2 X, then f has a unique �xed point.Another example illustrating the importane of the general notion ofompleteness, but otherwise based on quite di�erent priniples, is:Theorem 2 (Tarski's Fixed Point Theorem). Let (X;�) be a ompletelattie: � is a partial ordering of X and every subset of X has a greatestlower bound and a least upper bound. If f : X ! X is monotone|that is,f(x) � f(x0) whenever x � x0|then there are �xed points u; u 2 X suhthat u � x whenever x � f(x) and x � u whenever f(x) � x.This result is foundational for the theory of strategi omplementarities (e.g.,Milgrom and Shannon (1994), Ehenique (2005)) and has been applied togrowth theory by Hopenhayn and Presott (1992).The rest of our disussion is devoted to results related to Brouwer's�xed point theorem. A topologial spae has the �xed point property ifevery ontinuous map from the spae to itself has a �xed point. Brouwer'stheorem states that a nonempty ompat onvex subset of a Eulidean spaehas the �xed point property. This elebrated result underlies many of theadvaned results of topology, and was a pivotal event in the developmentof algebrai topology, whih has inuened many areas of mathematis. Inthe half entury following Brouwer's paper the theory of �xed points wasextended in various diretions, yielding several generalizations of Brouwer'sresult that are themselves famous theorems. Early in the postwar period�xed point theorems were used by Arrow and Debreu (1954), MKenzie(1959), Nash (1950, 1951), and Debreu (1952) to prove the fundamentalequilibrium existene results of theoretial eonomis: every eonomy with�nitely many goods and agents has a ompetitive equilibrium; every �nitenormal form game has a Nash equilibrium. Fixed point theory ontinues to1



play an important role in the extensive body of researh that grew out ofthese fundamental disoveries.Useful books devoted to �xed point theory inlude Border (1985), whihemphasizes results used in eonomi theory, Brown (1971), whih developsthe theory of the �xed point index using the methods of algebrai topology,and Dugundji and Granas (2003), whih omprehensively surveys the topifrom the point of view of appliations to analysis and topology. The latterbook features extensive historial information onerning the development,and the developers, of the subjet.Proofs and AlgorithmsSine Brouwer's theorem is a breakthrough result, one should expetproofs to reveal deep mathematial priniples, and in fat Brouwer's workwas a major stimulus to the development of the subjet that is now knownas algebrai topology. Eventually Sperner (1928) distilled a relatively simpleombinatori argument out of the topologial ferment of that era. Althoughthis argument is the most popular in graduate eduation in eonomis, inthe author's opinion the exposition in Milnor (1965) of an argument dueto Hirsh is worth whatever additional e�ort it entails, beause the studentalso learns Sard's theorem, whih is another fundamental result of the lastentury with important appliations in eonomi theory. Although the sub-stane of the argument in Milnor (1978) appears to be less useful, its brevityand elementary harater are stunning. The proof of MLennan and Tourky(2005) is also relatively simple, and displays how Kakutani's theorem fol-lows easily from the existene of Nash equilibrium for a speial lass of twoperson games, whih is one of the simplest manifestations of the �xed pointpriniple.Computation of approximate �xed points has many appliations in eo-nomis and other �elds, and is an important topi of researh. Iteration of afuntion is only guaranteed to work when the the funtion is a ontration,as in Theorem 1, but this method is often pratial for funtions that do notsatisfy this ondition. Other methods are derived from proofs of Brouwer'stheorem. The method pioneered by Sarf (Sarf (1973), Doup (1988)) is amethod of moving through the simplies of a simpliial subdivision of thesimplex. It is justi�ed by a re�nement of the proof of Sperner's lemma. Theproof derived from Sard's theorem points toward homotopy methods, whihhave a huge literature (Gar��a and Zangwill (1981), Algower and Georg(1990)). The proof in MLennan and Tourky (2005) also points toward al-gorithms in whih the equilibria of ertain two person games give rise toapproximate �xed points. 2



VariantsWe will give statements of the main forms in whih the �xed point prin-iple is applied in eonomi theory. Let X and Y be metri spaes. Aorrespondene F : X ! Y assigns a nonempty F (x) � Y to eah x 2 X.When Y = X, a point x� is said to be a �xed point if x� 2 F (x�). If P isany property of sets, then F is P valued if eah image F (x) has propertyP . It is upper semiontinuous (u.s..) if it is ompat valued and, foreah x 2 X and eah neighborhood V of F (x), there is a neighborhood Uof x suh that F (x0) � V for all x0 2 U . It is not hard to show that if Y isompat, then F is u.s.. if and only if its graphGr(F ) = f (x; y) 2 X � Y : y 2 F (x) gis losed. We think of a funtion as a singleton-valued orrespondene, inwhih ase upper semiontinuity oinides with the usual notion of ontinu-ity. Eonomi models frequently give rise to sets of optimal individual hoiesthat are onvex, but may have more than one element. For this reason themost prominent �xed point theorem in eonomi appliations is:Theorem 3 (Kakutani (1941)). If X is a nonempty ompat onvex sub-set of a Eulidean spae and F : X ! X is an u.s.. onvex valued orre-spondene, then F has a �xed point.The following variant is tailored for appliations in general equilibriumtheory, where one is searhing for a prie vetor that equates supply anddemand in all markets.Theorem 4 (Debreu-Gale-Kuhn-Nikaido Lemma). Let� := f p 2 Rn+ : nXj=1 pi = 1 gbe the n� 1 dimensional simplex. If Z : �! Rn is an u.s...v. orrespon-dene satisfying p � z = 0 for all p 2 � and all z 2 Z(p), then there is ap� 2 � and z� 2 Z(p�) suh that z� � 0.The following result of Shapley (1973b,a) (see also Herings (1997) andreferenes ited therein) generalizes the famous K-K-M theorem of Knasteret al. (1929). It has important appliations to the theory of the ore andother aspets of ooperative game theory and general equilibrium theory.3



Theorem 5 (K-K-M-S-Theorem). Let N = 2f1;::: ;ng n ;, and for S 2 Nlet �S := fx 2 � : xi = 0 for all i =2 S g. If fCSgS2N is a olletion oflosed sets suh that �T � SS�T CS for all T 2 N , then there is B � Nand numbers �S � 0 for S 2 B suh that Pi2S2B �S = 1 for all i = 1; : : : ; n(suh a B is alled a balaned olletion) and TS2B CS 6= ;.The original K-K-M theorem is the speial ase in whih CS = ; when-ever S has more than one element. That is, C1 \ � � � \ Cn 6= ; wheneverC1; : : : ; Cn � � are losed sets satisfying �T � Si2T Ci for all T 2 N .GeneralizationsDuring the �rst half of the last entury there emerged a sequene ofinreasingly general versions of Brouwer's theorem. Let X and X 0 be metrispaes, and let ' : X ! X 0 be a homeomorphism. A point x� 2 X is a �xedpoint of a ontinuous funtion f : X ! X if and only if '(x�) is a �xed pointof 'Æf Æ'�1, so the �xed point property is invariant under homeomorphism.Compatness and ontinuity are invariant properties, but the assumptionsof onvexity and �nite dimensionality in Brouwer's theorem seem too strong,as does the assumption of onvex valuedness in Kakutani's theorem. One isled to searh for weaker, topologial assumptions that imply the �xed pointproperty.Let Y be another metri spae. A ontinuous funtionh : X � [0; 1℄ ! Yis alled a homotopy. For eah 0 � t � 1 let ht = h(�; t) : X ! Y . We thinkof \ontinuously deforming" h0 into h1, with the variable t representing time,and we say that h0 and h1 are homotopi. The spae X is ontratibleif the identity funtion on X is homotopi to a onstant funtion. If X isonvex, then for any x0 2 X the funtionh(x; t) = x0 + (1� t)(x� x0)is suh a homotopy, so onvex sets are ontratible. It was onjeturedthat nonempty ompat ontratible sets have the �xed point property, buteventually ounterexamples were disovered by Kinoshita (1953) and others.A retration of X onto a subset A is a ontinuous funtion r : X ! Awhose set of �xed points is A, so that r(a) = a for all a 2 A. In thisirumstane we say that A is a retrat of X. One point of interest is thatif X has the �xed point property, then so does A: if g : A! A is ontinuous,4



then g Æ r : X ! A � X has a �xed point x�, and x� = g(r(x�)) = g(x�)beause x� must be in A.The subspae A is a neighborhood retrat if there is an open U � Aand a retration r : U ! A. A ontinuous funtion e : X ! Y is anembedding if it is injetive and e�1 : e(X) ! X is ontinuous, i.e., eis a homeomorphism onto its image. A metri spae X is an absoluteneighborhood retrat (ANR) if e(X) is a neighborhood retrat whenevere : X ! Y is an embedding of X in a metri spae Y . The lass of ANR'sis large, enompassing many important types of spaes suh as manifolds,simpliial omplexes, and onvex sets, and there is an extensive theory (e.g.,Borsuk (1967)) that annot be desribed here. One may think of an ANR asa spae that has bounded omplexity, in a ertain sense, in a neighborhoodof eah of its points1.Eilenberg and Montgomery (1946) gave a fully satisfatory generaliza-tion of Brouwer's theorem: F has a �xed point whenever X is a nonemptyompat ayli ANR and F : X ! X is an u.s.. ayli valued orre-spondene. Ayliity is a onept from algebrai topology that annot bede�ned here; the important point for us is that ontratible sets are ayli,and that the loss of generality in passing from ayliity to ontratibility isof slight onern in eonomi theory.Contratible valued orrespondenes that are not onvex valued appearin MLennan (1989a) and Reny (2005). There are many appliations ineonomis of the speial ase of the Eilenberg-Montgomery theorem in whihX is onvex (but possibly in�nite dimensional) and F is onvex valued, forwhih relatively simple and diret proofs were given by Fan (1952) andGliksberg (1952). In turn this result is more general than both Kakutani'stheorem and the well known Shauder (1930) �xed point theorem.The Leray-Shauder Fixed Point IndexConsider the �xed points of the funtion from [0; 1℄ to itself shown inFigure 1. The points A and C are qualitatively similar, and qualitativelydi�erent from B. In the one dimensional setting one an easily see that ifthe funtion is di�erentiable, and its graph is not tangent to the diagonal atany of its �xed points, then the number of �xed points of the �rst type must1An example of a spae that is not an ANR is the union X of the unit irle entered atthe origin in R2 and the set f (1� ��1)(os �; sin �) : 1 � � <1g. If X was an ANR, thenthere would exist a retration of a neighborhood U � R2 onto X, and the retration wouldtake small onneted neighborhoods of (1; 0) in U to small onneted neighborhoods of(1; 0) in X, but small neighborhoods of (1; 0) in X are disonneted.5
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Figure 1be one greater than the number of �xed points of the seond type. In par-tiular, the number of �xed points must be odd. These properties extend tosmooth funtions f : C ! C, where C is an n-dimensional onvex set, thatinterset the diagonal in the \expeted" manner: the Jaobian of IdC � fis nonsingular. Debreu (1970) used Sard's theorem (e.g., Milnor (1965)) toshow that for an exhange eonomy with �xed preferenes, the exess de-mand funtion generated by a \generi" endowment vetor has well behavedequilibria, and Dierker (1972) showed that the qualitative onlusions de-sribed above hold in this irumstane. Mas-Colell (1985) summarizes theextensive literature desended from these seminal ontributions.The Leray-Shauder �xed point index generalizes these aspets ofthe theory to orrespondenes, to sets of �xed points that are not singletons,and to general ANR's. Suppose X is a nonempty ompat ANR, U � X isopen and U is its losure. A orrespondene F : U ! X is index admissi-ble if it is u.s.. and does not have any �xed points in its boundary U n U .Let IX be the set of index admissible ontratible valued orrespondenesF : U ! X where U � X is open. A homotopy h : U � [0; 1℄ ! X is indexadmissible if eah ht is index admissible.The next result gives an axiomati haraterization of a number �X(F ).When there are �nitely many �xed points the Additivity axiom allows us tothink of �X(F ) as the sum of their indies. When X � Rn , f : U ! X is asmooth funtion, and x is a �xed point in the interior ofX with IdRn�Df(x)nonsingular, the index of x is +1 or �1 aording to whether the determinantof IdRn �Df(x) is positive or negative.Theorem 6. There is a unique funtion �X : IX ! Z satisfying:6



(I1) (Normalization) If  : X ! X is a onstant funtion, then �X() = 1.(I2) (Additivity) If F : U ! X is in IX, U1; : : : ; Ur are disjoint opensubsets of U , and F has no �xed points in U n (U1 [ : : : [ Ur), then�X(F ) = rXi=1 �X(F jU i):(I3) (Homotopy) If h : U � [0; 1℄ ! X is an index admissible homotopy,then �X(h0) = �X(h1).(I4) (Continuity) For eah F : U ! X in IX there is a neighborhoodW � U �X of Gr(F ) suh that �X(F 0) = �X(F ) for all F 0 : U ! Xwith F 0 2 IX and Gr(F 0) �W .The index is losed related to the Brouwer degree of a funtion betweenmanifolds of the same dimension. These ideas evolved from the time ofBrouwer's work until O'Neill (1953) ahieved the axiomati expression ofthe onept (for funtions) given above.Theorem 1 has many important onsequenes. To begin with note thatif F 2 IX has no �xed points, then Additivity implies that�X(F ) = �X(F j;) = �X(F j;) + �X(F j;) = 0:Therefore F must have a �xed point whenever �X(F ) 6= 0. If f : X ! Xis a ontinuous funtion, then �X(f) is alled the Lefshetz number off . The famous Lefshetz (1923) �xed point theorem states that f has a�xed point if its Lefshetz number is nonzero, and provides onnetions toalgebrai topology that give tools for omputing the Lefshetz number.We now use the following approximation result to reover the weak ver-sion of the Eilenberg-Montgomery theorem stated above, thereby showingthat Theorem 6 embodies the �xed point priniple. This result generalizesKakutani's method of passing from Brouwer's theorem to his result, and itplays an important role in one method of proving Theorem 6.Theorem 7 (Mas-Colell (1974), MLennan (1989b)). If X is a om-pat ANR, U; V � X are open with V � U , F : U ! X is an u.s.. on-tratible valued orrespondene, and W � U�X is a neighborhood of Gr(F ),then there is a ontinuous funtion f : V ! X with Gr(f) �W .Suppose that F : X ! X is an u.s.. ontratible valued orrespondene.Applying the last result with U = V = X and W as in (I4), we �nd that7



there is a ontinuous funtion f : X ! X with �X(f) = �X(F ). If X isontratible, so that there is a homotopy h : X � [0; 1℄ ! X with h0 = IdXand h1 a onstant funtion, then j(x; t) = f(h(x; t)) is a homotopy withj0 = f and j1 a onstant funtion, so Homotopy and Normalization implythat �X(f) = 1. We onlude that �X(F ) = 1, and that F neessarily hasa �xed point.Reall that a subset C of a metri spae Y is onneted if there do notexist open sets V1; V2 � Y with V1 \ V2 = ; and V1 \ C 6= ; 6= V2 \ C. Asubset of Y is a onneted omponent if it is the union of all onnetedsets ontaining some point y. Eah onneted omponent is onneted, andthe onneted omponents partition Y .Suppose that X is a ompat ontratible ANR, that F : X ! X isin IX , and that the set of �xed points of F has �nitely many onnetedomponents C1; : : : ; Cr. Additivity implies that eah omponent Ci has awell de�ned index �i that depends on the restrition of F to an arbitrarilysmall neighborhood of Ci. Suppose that it is possible to show that �i = 1for eah i. Sine additivity implies that Pi �i = �X(F ) = 1, it follows thatr = 1. This style of proof of uniqueness is appliable to many eonomisettings, but usually more elementary methods are available. At presentno alternative to its appliation in Eraslan and MLennan (2005) is known.It is more ommon to use the index to prove nonuniqueness: it suÆes todisplay a onneted omponent whose index is di�erent from one.The �xed point index has two other important properties.Theorem 8. (Multipliation) If X and Y and ompat ANR's, U � Xand V � Y are open, F : U ! X and G : V ! Y are index admissibleontratible valued orrespondenes, and F � G : U � V ! X � Y is theorrespondene that takes (x; y) to F (x)�G(y), then�X�Y (F �G) = �X(F ) � �Y (G):Theorem 9. (Commutativity) If X and Y are ompat ANR's and f : X !Y and g : Y ! X are ontinuous funtions, then�X(g Æ f) = �Y (f Æ g):There is a more general version of Commutativity for funtions de�nedon subsets of X and Y , but its statement involves tehnial ompliations.In view of the uniqueness asserted in Theorem 6, Multipliation and Com-mutativity are, in priniple, onsequenes of (I1)-(I4), but it is not knownhow to prove them in this way. In pratie these properties are treated8
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Figure 2as axioms and shepherded up the ladder of generality, one rung at a time,along with everything else. In fat Commutativity (whih was introduedby Browder (1948) for this purpose) plays a ritial role at one stage of thisproess.Essential Sets of Fixed PointsThe two �xed points in Figure 2 are qualitatively di�erent. Arbitrarilysmall perturbations of the funtion have no �xed point near A, but thisis not the ase for B. In the terminology introdued by Fort (1950) A isinessential while B is essential. Let X be a ompat ontratible ANR,let F : X ! X be an u.s.. ontratible valued orrespondene, and let Cbe the set of �xed points of F . Kinoshita (1952) extended Fort's ideas toorrespondenes, and to sets of �xed points, de�ning an essential set of�xed points of F to be a ompat C 0 � C suh that for any neighborhoodU of C 0 there is a neighborhood W of Gr(F ) suh that any ontinuousfuntion f : X ! X with Gr(f) �W has a �xed point in U .For any neighborhood U of C we an �nd a neighborhood W of Gr(F )that annot have any �xed points outside of U , so C is essential. That is,without some additional ondition, essentiality does not distinguish some�xed points from others. Following Kohlberg and Mertens (1986), one isled to onsider minimal essential sets, whih exist by virtue of the followingargument. Let B1; B2; : : : be a listing of the open balls of rational radiientered at points in some ountable dense subset of X. De�ne a sequeneK0;K1;K2; : : : indutively by setting K0 = C and, for j � 1, setting Kj =Kj�1 n Bj if this set is essential and otherwise setting Kj = Kj�1. Welaim that K1 = TjKj is a minimal essential set. Any neighborhood9



U of K1 ontains some Kj (the aumulation points of a sequene fxjgwith xj 2 Kj n U must be outside U but also in eah Kj , by ompatness,hene in K1) and eah Kj is essential, so K1 is essential. If there wasa smaller essential set there would be some j suh that K1 n Bj 6= K1was essential, but then Kj�1 n Bj would also be essential, in whih aseK1 \Bj � Kj \Bj = ;.Kinoshita (1952) showed that minimal essential sets are onneted whenX is onvex and F is onvex valued. Otherwise one ould �nd a minimalessential set C1[C2, where C1 and C2 are nonempty, ompat, and disjoint.Then C1 and C2 are inessential, so there is a perturbation of F that hasno �xed points near C1 and another suh perturbation of F has no �xedpoints near C2. The main idea of Kinoshita's argument is that these an beombined, using onvex ombination with loally varying weights, to give aperturbation of F that has no �xed point near C1[C2, thereby ontraditingthe assumption that C1 [ C2 is essential.Kinoshita's theorem is pertinent to the literature on re�nements of Nashequilibrium that began with the introdution in Selten (1975) of perfet equi-librium. An important tehnique is to give a privileged status to those Nashequilibria that an be approximated by �xed points of ertain perturbationsof the given orrespondene. In partiular, it has important onnetions tothe notion of strategi stability of Kohlberg and Mertens (1986).The �xed point index also has impliations for essential sets. For the sakeof simpliity assume that C onsists of �nitely many onneted omponentsC1; : : : ; Cr. (This ondition holds in the appliation to Nash equilibrium.)Any Ci with nonzero index is essential, by Continuity. Sine the sum of theindies is one, some Ci must have nonzero index, so a onneted essential setexists. Harder arguments, whih apply the Hopf theorem (Milnor (1965))to \transport" �xed points of perturbations to a desired loation, and toeliminate pairs of �xed points of opposite index, show that any proper subsetof a Ci is inessential, and that Ci is inessential if its index is zero. Thus theminimal essential sets are preisely those Ci with nonzero index.ReferenesE. Algower and K. Georg. Numerial Continuation Methods. Springer Ver-lag, New York, 1990.K.J. Arrow and G. Debreu. Existene of an equilibrium for a ompetitiveeonomy. Eonometria, 22:265{290, 1954.10
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