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Abstra
tThis entry gives statements of the Tarski �xed point theorem and themain versions of the topologi
al �xed point prin
iple that have been appliedin e
onomi
 theory. Pointers are given to literature 
on
erned with proofs ofBrouwer's theorem, and with algorithms for 
omputing approximate �xedpoints. The topologi
al results are all 
onsequen
es of a slightly weakenedversion of the Eilenberg-Montgomery (1946) �xed point theorem. The ax-iomati
 
hara
terization of the Leray-S
hauder �xed point index (whi
h iseven more powerful) is also stated, and its appli
ation to issues 
on
erningrobustness of sets of equilibria is explained.



�xed point theoremsThe Brouwer (1910) �xed point theorem and its des
endants are key math-emati
al results underlying the foundations of e
onomi
 theory.Let f : X ! X be a fun
tion from a spa
e to itself. A �xed point of fis a point x� 2 X that is mapped to itself by f : f(x�) = x�. A �xed pointtheorem is a result asserting that, under some hypotheses, the set of �xedpoints of f is nonempty. A simple example with many appli
ations is:Theorem 1 (Contra
tion Mapping Theorem). If the metri
 spa
e (X; d)is 
omplete (re
all that this means that every Cau
hy sequen
e is 
onvergent)and there is a number 
 2 (0; 1) su
h that d(f(x); f(x0)) � 
d(x; x0) for allx; x0 2 X, then f has a unique �xed point.Another example illustrating the importan
e of the general notion of
ompleteness, but otherwise based on quite di�erent prin
iples, is:Theorem 2 (Tarski's Fixed Point Theorem). Let (X;�) be a 
ompletelatti
e: � is a partial ordering of X and every subset of X has a greatestlower bound and a least upper bound. If f : X ! X is monotone|that is,f(x) � f(x0) whenever x � x0|then there are �xed points u; u 2 X su
hthat u � x whenever x � f(x) and x � u whenever f(x) � x.This result is foundational for the theory of strategi
 
omplementarities (e.g.,Milgrom and Shannon (1994), E
henique (2005)) and has been applied togrowth theory by Hopenhayn and Pres
ott (1992).The rest of our dis
ussion is devoted to results related to Brouwer's�xed point theorem. A topologi
al spa
e has the �xed point property ifevery 
ontinuous map from the spa
e to itself has a �xed point. Brouwer'stheorem states that a nonempty 
ompa
t 
onvex subset of a Eu
lidean spa
ehas the �xed point property. This 
elebrated result underlies many of theadvan
ed results of topology, and was a pivotal event in the developmentof algebrai
 topology, whi
h has in
uen
ed many areas of mathemati
s. Inthe half 
entury following Brouwer's paper the theory of �xed points wasextended in various dire
tions, yielding several generalizations of Brouwer'sresult that are themselves famous theorems. Early in the postwar period�xed point theorems were used by Arrow and Debreu (1954), M
Kenzie(1959), Nash (1950, 1951), and Debreu (1952) to prove the fundamentalequilibrium existen
e results of theoreti
al e
onomi
s: every e
onomy with�nitely many goods and agents has a 
ompetitive equilibrium; every �nitenormal form game has a Nash equilibrium. Fixed point theory 
ontinues to1



play an important role in the extensive body of resear
h that grew out ofthese fundamental dis
overies.Useful books devoted to �xed point theory in
lude Border (1985), whi
hemphasizes results used in e
onomi
 theory, Brown (1971), whi
h developsthe theory of the �xed point index using the methods of algebrai
 topology,and Dugundji and Granas (2003), whi
h 
omprehensively surveys the topi
from the point of view of appli
ations to analysis and topology. The latterbook features extensive histori
al information 
on
erning the development,and the developers, of the subje
t.Proofs and AlgorithmsSin
e Brouwer's theorem is a breakthrough result, one should expe
tproofs to reveal deep mathemati
al prin
iples, and in fa
t Brouwer's workwas a major stimulus to the development of the subje
t that is now knownas algebrai
 topology. Eventually Sperner (1928) distilled a relatively simple
ombinatori
 argument out of the topologi
al ferment of that era. Althoughthis argument is the most popular in graduate edu
ation in e
onomi
s, inthe author's opinion the exposition in Milnor (1965) of an argument dueto Hirs
h is worth whatever additional e�ort it entails, be
ause the studentalso learns Sard's theorem, whi
h is another fundamental result of the last
entury with important appli
ations in e
onomi
 theory. Although the sub-stan
e of the argument in Milnor (1978) appears to be less useful, its brevityand elementary 
hara
ter are stunning. The proof of M
Lennan and Tourky(2005) is also relatively simple, and displays how Kakutani's theorem fol-lows easily from the existen
e of Nash equilibrium for a spe
ial 
lass of twoperson games, whi
h is one of the simplest manifestations of the �xed pointprin
iple.Computation of approximate �xed points has many appli
ations in e
o-nomi
s and other �elds, and is an important topi
 of resear
h. Iteration of afun
tion is only guaranteed to work when the the fun
tion is a 
ontra
tion,as in Theorem 1, but this method is often pra
ti
al for fun
tions that do notsatisfy this 
ondition. Other methods are derived from proofs of Brouwer'stheorem. The method pioneered by S
arf (S
arf (1973), Doup (1988)) is amethod of moving through the simpli
es of a simpli
ial subdivision of thesimplex. It is justi�ed by a re�nement of the proof of Sperner's lemma. Theproof derived from Sard's theorem points toward homotopy methods, whi
hhave a huge literature (Gar
��a and Zangwill (1981), Algower and Georg(1990)). The proof in M
Lennan and Tourky (2005) also points toward al-gorithms in whi
h the equilibria of 
ertain two person games give rise toapproximate �xed points. 2



VariantsWe will give statements of the main forms in whi
h the �xed point prin-
iple is applied in e
onomi
 theory. Let X and Y be metri
 spa
es. A
orresponden
e F : X ! Y assigns a nonempty F (x) � Y to ea
h x 2 X.When Y = X, a point x� is said to be a �xed point if x� 2 F (x�). If P isany property of sets, then F is P valued if ea
h image F (x) has propertyP . It is upper semi
ontinuous (u.s.
.) if it is 
ompa
t valued and, forea
h x 2 X and ea
h neighborhood V of F (x), there is a neighborhood Uof x su
h that F (x0) � V for all x0 2 U . It is not hard to show that if Y is
ompa
t, then F is u.s.
. if and only if its graphGr(F ) = f (x; y) 2 X � Y : y 2 F (x) gis 
losed. We think of a fun
tion as a singleton-valued 
orresponden
e, inwhi
h 
ase upper semi
ontinuity 
oin
ides with the usual notion of 
ontinu-ity. E
onomi
 models frequently give rise to sets of optimal individual 
hoi
esthat are 
onvex, but may have more than one element. For this reason themost prominent �xed point theorem in e
onomi
 appli
ations is:Theorem 3 (Kakutani (1941)). If X is a nonempty 
ompa
t 
onvex sub-set of a Eu
lidean spa
e and F : X ! X is an u.s.
. 
onvex valued 
orre-sponden
e, then F has a �xed point.The following variant is tailored for appli
ations in general equilibriumtheory, where one is sear
hing for a pri
e ve
tor that equates supply anddemand in all markets.Theorem 4 (Debreu-Gale-Kuhn-Nikaido Lemma). Let� := f p 2 Rn+ : nXj=1 pi = 1 gbe the n� 1 dimensional simplex. If Z : �! Rn is an u.s.
.
.v. 
orrespon-den
e satisfying p � z = 0 for all p 2 � and all z 2 Z(p), then there is ap� 2 � and z� 2 Z(p�) su
h that z� � 0.The following result of Shapley (1973b,a) (see also Herings (1997) andreferen
es 
ited therein) generalizes the famous K-K-M theorem of Knasteret al. (1929). It has important appli
ations to the theory of the 
ore andother aspe
ts of 
ooperative game theory and general equilibrium theory.3



Theorem 5 (K-K-M-S-Theorem). Let N = 2f1;::: ;ng n ;, and for S 2 Nlet �S := fx 2 � : xi = 0 for all i =2 S g. If fCSgS2N is a 
olle
tion of
losed sets su
h that �T � SS�T CS for all T 2 N , then there is B � Nand numbers �S � 0 for S 2 B su
h that Pi2S2B �S = 1 for all i = 1; : : : ; n(su
h a B is 
alled a balan
ed 
olle
tion) and TS2B CS 6= ;.The original K-K-M theorem is the spe
ial 
ase in whi
h CS = ; when-ever S has more than one element. That is, C1 \ � � � \ Cn 6= ; wheneverC1; : : : ; Cn � � are 
losed sets satisfying �T � Si2T Ci for all T 2 N .GeneralizationsDuring the �rst half of the last 
entury there emerged a sequen
e ofin
reasingly general versions of Brouwer's theorem. Let X and X 0 be metri
spa
es, and let ' : X ! X 0 be a homeomorphism. A point x� 2 X is a �xedpoint of a 
ontinuous fun
tion f : X ! X if and only if '(x�) is a �xed pointof 'Æf Æ'�1, so the �xed point property is invariant under homeomorphism.Compa
tness and 
ontinuity are invariant properties, but the assumptionsof 
onvexity and �nite dimensionality in Brouwer's theorem seem too strong,as does the assumption of 
onvex valuedness in Kakutani's theorem. One isled to sear
h for weaker, topologi
al assumptions that imply the �xed pointproperty.Let Y be another metri
 spa
e. A 
ontinuous fun
tionh : X � [0; 1℄ ! Yis 
alled a homotopy. For ea
h 0 � t � 1 let ht = h(�; t) : X ! Y . We thinkof \
ontinuously deforming" h0 into h1, with the variable t representing time,and we say that h0 and h1 are homotopi
. The spa
e X is 
ontra
tibleif the identity fun
tion on X is homotopi
 to a 
onstant fun
tion. If X is
onvex, then for any x0 2 X the fun
tionh(x; t) = x0 + (1� t)(x� x0)is su
h a homotopy, so 
onvex sets are 
ontra
tible. It was 
onje
turedthat nonempty 
ompa
t 
ontra
tible sets have the �xed point property, buteventually 
ounterexamples were dis
overed by Kinoshita (1953) and others.A retra
tion of X onto a subset A is a 
ontinuous fun
tion r : X ! Awhose set of �xed points is A, so that r(a) = a for all a 2 A. In this
ir
umstan
e we say that A is a retra
t of X. One point of interest is thatif X has the �xed point property, then so does A: if g : A! A is 
ontinuous,4



then g Æ r : X ! A � X has a �xed point x�, and x� = g(r(x�)) = g(x�)be
ause x� must be in A.The subspa
e A is a neighborhood retra
t if there is an open U � Aand a retra
tion r : U ! A. A 
ontinuous fun
tion e : X ! Y is anembedding if it is inje
tive and e�1 : e(X) ! X is 
ontinuous, i.e., eis a homeomorphism onto its image. A metri
 spa
e X is an absoluteneighborhood retra
t (ANR) if e(X) is a neighborhood retra
t whenevere : X ! Y is an embedding of X in a metri
 spa
e Y . The 
lass of ANR'sis large, en
ompassing many important types of spa
es su
h as manifolds,simpli
ial 
omplexes, and 
onvex sets, and there is an extensive theory (e.g.,Borsuk (1967)) that 
annot be des
ribed here. One may think of an ANR asa spa
e that has bounded 
omplexity, in a 
ertain sense, in a neighborhoodof ea
h of its points1.Eilenberg and Montgomery (1946) gave a fully satisfa
tory generaliza-tion of Brouwer's theorem: F has a �xed point whenever X is a nonempty
ompa
t a
y
li
 ANR and F : X ! X is an u.s.
. a
y
li
 valued 
orre-sponden
e. A
y
li
ity is a 
on
ept from algebrai
 topology that 
annot bede�ned here; the important point for us is that 
ontra
tible sets are a
y
li
,and that the loss of generality in passing from a
y
li
ity to 
ontra
tibility isof slight 
on
ern in e
onomi
 theory.Contra
tible valued 
orresponden
es that are not 
onvex valued appearin M
Lennan (1989a) and Reny (2005). There are many appli
ations ine
onomi
s of the spe
ial 
ase of the Eilenberg-Montgomery theorem in whi
hX is 
onvex (but possibly in�nite dimensional) and F is 
onvex valued, forwhi
h relatively simple and dire
t proofs were given by Fan (1952) andGli
ksberg (1952). In turn this result is more general than both Kakutani'stheorem and the well known S
hauder (1930) �xed point theorem.The Leray-S
hauder Fixed Point IndexConsider the �xed points of the fun
tion from [0; 1℄ to itself shown inFigure 1. The points A and C are qualitatively similar, and qualitativelydi�erent from B. In the one dimensional setting one 
an easily see that ifthe fun
tion is di�erentiable, and its graph is not tangent to the diagonal atany of its �xed points, then the number of �xed points of the �rst type must1An example of a spa
e that is not an ANR is the union X of the unit 
ir
le 
entered atthe origin in R2 and the set f (1� ��1)(
os �; sin �) : 1 � � <1g. If X was an ANR, thenthere would exist a retra
tion of a neighborhood U � R2 onto X, and the retra
tion wouldtake small 
onne
ted neighborhoods of (1; 0) in U to small 
onne
ted neighborhoods of(1; 0) in X, but small neighborhoods of (1; 0) in X are dis
onne
ted.5
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Figure 1be one greater than the number of �xed points of the se
ond type. In par-ti
ular, the number of �xed points must be odd. These properties extend tosmooth fun
tions f : C ! C, where C is an n-dimensional 
onvex set, thatinterse
t the diagonal in the \expe
ted" manner: the Ja
obian of IdC � fis nonsingular. Debreu (1970) used Sard's theorem (e.g., Milnor (1965)) toshow that for an ex
hange e
onomy with �xed preferen
es, the ex
ess de-mand fun
tion generated by a \generi
" endowment ve
tor has well behavedequilibria, and Dierker (1972) showed that the qualitative 
on
lusions de-s
ribed above hold in this 
ir
umstan
e. Mas-Colell (1985) summarizes theextensive literature des
ended from these seminal 
ontributions.The Leray-S
hauder �xed point index generalizes these aspe
ts ofthe theory to 
orresponden
es, to sets of �xed points that are not singletons,and to general ANR's. Suppose X is a nonempty 
ompa
t ANR, U � X isopen and U is its 
losure. A 
orresponden
e F : U ! X is index admissi-ble if it is u.s.
. and does not have any �xed points in its boundary U n U .Let IX be the set of index admissible 
ontra
tible valued 
orresponden
esF : U ! X where U � X is open. A homotopy h : U � [0; 1℄ ! X is indexadmissible if ea
h ht is index admissible.The next result gives an axiomati
 
hara
terization of a number �X(F ).When there are �nitely many �xed points the Additivity axiom allows us tothink of �X(F ) as the sum of their indi
es. When X � Rn , f : U ! X is asmooth fun
tion, and x is a �xed point in the interior ofX with IdRn�Df(x)nonsingular, the index of x is +1 or �1 a

ording to whether the determinantof IdRn �Df(x) is positive or negative.Theorem 6. There is a unique fun
tion �X : IX ! Z satisfying:6



(I1) (Normalization) If 
 : X ! X is a 
onstant fun
tion, then �X(
) = 1.(I2) (Additivity) If F : U ! X is in IX, U1; : : : ; Ur are disjoint opensubsets of U , and F has no �xed points in U n (U1 [ : : : [ Ur), then�X(F ) = rXi=1 �X(F jU i):(I3) (Homotopy) If h : U � [0; 1℄ ! X is an index admissible homotopy,then �X(h0) = �X(h1).(I4) (Continuity) For ea
h F : U ! X in IX there is a neighborhoodW � U �X of Gr(F ) su
h that �X(F 0) = �X(F ) for all F 0 : U ! Xwith F 0 2 IX and Gr(F 0) �W .The index is 
losed related to the Brouwer degree of a fun
tion betweenmanifolds of the same dimension. These ideas evolved from the time ofBrouwer's work until O'Neill (1953) a
hieved the axiomati
 expression ofthe 
on
ept (for fun
tions) given above.Theorem 1 has many important 
onsequen
es. To begin with note thatif F 2 IX has no �xed points, then Additivity implies that�X(F ) = �X(F j;) = �X(F j;) + �X(F j;) = 0:Therefore F must have a �xed point whenever �X(F ) 6= 0. If f : X ! Xis a 
ontinuous fun
tion, then �X(f) is 
alled the Lefs
hetz number off . The famous Lefs
hetz (1923) �xed point theorem states that f has a�xed point if its Lefs
hetz number is nonzero, and provides 
onne
tions toalgebrai
 topology that give tools for 
omputing the Lefs
hetz number.We now use the following approximation result to re
over the weak ver-sion of the Eilenberg-Montgomery theorem stated above, thereby showingthat Theorem 6 embodies the �xed point prin
iple. This result generalizesKakutani's method of passing from Brouwer's theorem to his result, and itplays an important role in one method of proving Theorem 6.Theorem 7 (Mas-Colell (1974), M
Lennan (1989b)). If X is a 
om-pa
t ANR, U; V � X are open with V � U , F : U ! X is an u.s.
. 
on-tra
tible valued 
orresponden
e, and W � U�X is a neighborhood of Gr(F ),then there is a 
ontinuous fun
tion f : V ! X with Gr(f) �W .Suppose that F : X ! X is an u.s.
. 
ontra
tible valued 
orresponden
e.Applying the last result with U = V = X and W as in (I4), we �nd that7



there is a 
ontinuous fun
tion f : X ! X with �X(f) = �X(F ). If X is
ontra
tible, so that there is a homotopy h : X � [0; 1℄ ! X with h0 = IdXand h1 a 
onstant fun
tion, then j(x; t) = f(h(x; t)) is a homotopy withj0 = f and j1 a 
onstant fun
tion, so Homotopy and Normalization implythat �X(f) = 1. We 
on
lude that �X(F ) = 1, and that F ne
essarily hasa �xed point.Re
all that a subset C of a metri
 spa
e Y is 
onne
ted if there do notexist open sets V1; V2 � Y with V1 \ V2 = ; and V1 \ C 6= ; 6= V2 \ C. Asubset of Y is a 
onne
ted 
omponent if it is the union of all 
onne
tedsets 
ontaining some point y. Ea
h 
onne
ted 
omponent is 
onne
ted, andthe 
onne
ted 
omponents partition Y .Suppose that X is a 
ompa
t 
ontra
tible ANR, that F : X ! X isin IX , and that the set of �xed points of F has �nitely many 
onne
ted
omponents C1; : : : ; Cr. Additivity implies that ea
h 
omponent Ci has awell de�ned index �i that depends on the restri
tion of F to an arbitrarilysmall neighborhood of Ci. Suppose that it is possible to show that �i = 1for ea
h i. Sin
e additivity implies that Pi �i = �X(F ) = 1, it follows thatr = 1. This style of proof of uniqueness is appli
able to many e
onomi
settings, but usually more elementary methods are available. At presentno alternative to its appli
ation in Eraslan and M
Lennan (2005) is known.It is more 
ommon to use the index to prove nonuniqueness: it suÆ
es todisplay a 
onne
ted 
omponent whose index is di�erent from one.The �xed point index has two other important properties.Theorem 8. (Multipli
ation) If X and Y and 
ompa
t ANR's, U � Xand V � Y are open, F : U ! X and G : V ! Y are index admissible
ontra
tible valued 
orresponden
es, and F � G : U � V ! X � Y is the
orresponden
e that takes (x; y) to F (x)�G(y), then�X�Y (F �G) = �X(F ) � �Y (G):Theorem 9. (Commutativity) If X and Y are 
ompa
t ANR's and f : X !Y and g : Y ! X are 
ontinuous fun
tions, then�X(g Æ f) = �Y (f Æ g):There is a more general version of Commutativity for fun
tions de�nedon subsets of X and Y , but its statement involves te
hni
al 
ompli
ations.In view of the uniqueness asserted in Theorem 6, Multipli
ation and Com-mutativity are, in prin
iple, 
onsequen
es of (I1)-(I4), but it is not knownhow to prove them in this way. In pra
ti
e these properties are treated8
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Figure 2as axioms and shepherded up the ladder of generality, one rung at a time,along with everything else. In fa
t Commutativity (whi
h was introdu
edby Browder (1948) for this purpose) plays a 
riti
al role at one stage of thispro
ess.Essential Sets of Fixed PointsThe two �xed points in Figure 2 are qualitatively di�erent. Arbitrarilysmall perturbations of the fun
tion have no �xed point near A, but thisis not the 
ase for B. In the terminology introdu
ed by Fort (1950) A isinessential while B is essential. Let X be a 
ompa
t 
ontra
tible ANR,let F : X ! X be an u.s.
. 
ontra
tible valued 
orresponden
e, and let Cbe the set of �xed points of F . Kinoshita (1952) extended Fort's ideas to
orresponden
es, and to sets of �xed points, de�ning an essential set of�xed points of F to be a 
ompa
t C 0 � C su
h that for any neighborhoodU of C 0 there is a neighborhood W of Gr(F ) su
h that any 
ontinuousfun
tion f : X ! X with Gr(f) �W has a �xed point in U .For any neighborhood U of C we 
an �nd a neighborhood W of Gr(F )that 
annot have any �xed points outside of U , so C is essential. That is,without some additional 
ondition, essentiality does not distinguish some�xed points from others. Following Kohlberg and Mertens (1986), one isled to 
onsider minimal essential sets, whi
h exist by virtue of the followingargument. Let B1; B2; : : : be a listing of the open balls of rational radii
entered at points in some 
ountable dense subset of X. De�ne a sequen
eK0;K1;K2; : : : indu
tively by setting K0 = C and, for j � 1, setting Kj =Kj�1 n Bj if this set is essential and otherwise setting Kj = Kj�1. We
laim that K1 = TjKj is a minimal essential set. Any neighborhood9



U of K1 
ontains some Kj (the a

umulation points of a sequen
e fxjgwith xj 2 Kj n U must be outside U but also in ea
h Kj , by 
ompa
tness,hen
e in K1) and ea
h Kj is essential, so K1 is essential. If there wasa smaller essential set there would be some j su
h that K1 n Bj 6= K1was essential, but then Kj�1 n Bj would also be essential, in whi
h 
aseK1 \Bj � Kj \Bj = ;.Kinoshita (1952) showed that minimal essential sets are 
onne
ted whenX is 
onvex and F is 
onvex valued. Otherwise one 
ould �nd a minimalessential set C1[C2, where C1 and C2 are nonempty, 
ompa
t, and disjoint.Then C1 and C2 are inessential, so there is a perturbation of F that hasno �xed points near C1 and another su
h perturbation of F has no �xedpoints near C2. The main idea of Kinoshita's argument is that these 
an be
ombined, using 
onvex 
ombination with lo
ally varying weights, to give aperturbation of F that has no �xed point near C1[C2, thereby 
ontradi
tingthe assumption that C1 [ C2 is essential.Kinoshita's theorem is pertinent to the literature on re�nements of Nashequilibrium that began with the introdu
tion in Selten (1975) of perfe
t equi-librium. An important te
hnique is to give a privileged status to those Nashequilibria that 
an be approximated by �xed points of 
ertain perturbationsof the given 
orresponden
e. In parti
ular, it has important 
onne
tions tothe notion of strategi
 stability of Kohlberg and Mertens (1986).The �xed point index also has impli
ations for essential sets. For the sakeof simpli
ity assume that C 
onsists of �nitely many 
onne
ted 
omponentsC1; : : : ; Cr. (This 
ondition holds in the appli
ation to Nash equilibrium.)Any Ci with nonzero index is essential, by Continuity. Sin
e the sum of theindi
es is one, some Ci must have nonzero index, so a 
onne
ted essential setexists. Harder arguments, whi
h apply the Hopf theorem (Milnor (1965))to \transport" �xed points of perturbations to a desired lo
ation, and toeliminate pairs of �xed points of opposite index, show that any proper subsetof a Ci is inessential, and that Ci is inessential if its index is zero. Thus theminimal essential sets are pre
isely those Ci with nonzero index.Referen
esE. Algower and K. Georg. Numeri
al Continuation Methods. Springer Ver-lag, New York, 1990.K.J. Arrow and G. Debreu. Existen
e of an equilibrium for a 
ompetitivee
onomy. E
onometri
a, 22:265{290, 1954.10
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