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Abstract

We give conditions under which the smoothness properties of the value and pol-

icy functions of a dynamic program at discount factor zero extend to small positive

discount factors. We apply this to a model of Bayesian learning by a decision maker

who does not know which of several parameters is true. In each period she chooses

an action from an open subset of a Euclidean space, observes one of finitely many

possible outcomes, and updates her beliefs. There is an action that is uninforma-

tive in the sense that when it is chosen, all parameters give the same distribution

over outcomes, and consequently beliefs do not change. We give conditions under

which a policy specifying an action as a function of the current belief results in a

positive probability that the sequence of beliefs converges to a belief at which the

uninformative action is chosen, so that learning is asymptotically incomplete. Our

dynamic programming results imply that when myopically optimal behavior leads

with positive probability to asymptotically incomplete learning, such a “learning

trap” also exists when the discount factor is positive (so that optimal behavior

takes the value of experimentation into account) but sufficiently small.
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1 Introduction

This paper studies stationary discounted discrete time stochastic dynamic programs.

In particular, we study programs in which the set of states is the set of possible beliefs

about an underlying parameter that the decision maker is learning about from experience.

There are two main contributions.

Consider a dynamic program in which the sets of states and actions are compact

subsets of smooth manifolds, and the per period reward function is smooth (in senses to

be specified later). For such a problem the value function is the unique fixed point of

the Bellman operator, and the optimal actions for any state are those that maximize the

sum of the current reward and the discounted expectation of the value of the state in

the next period. When the discount factor is zero, the optimal actions are the solutions

of the optimization problem given by the per period reward function, so there is a

smooth optimal policy function if the per period reward function satisfies the relevant

second order conditions strictly, and (in part by virtue of the envelope theorem) the

value function inherits smoothness properties from the per period reward function. Our

first main contribution is to give conditions under which the smoothness properties of

the value and policy functions at discount factor zero also hold for the value and policy

functions of small positive discount factors, and these functions vary continuously (in an

appropriate topology) with the discount factor.

Now consider a model in which an agent learns about an underlying parameter with

finitely many possible values. In each period the agent begins with a belief about the

parameter, chooses an action, and observes an outcome. The parameter governs the

statistical relationship between the action and the outcome, so at the end of each period

the agent revises her beliefs via Bayes’ rule. The per period reward is a function of the

parameter and the action, so its expectation is a function of the action and the current

belief. The agent’s goal is to maximize the expectation of the discounted sum of rewards,

so her problem is a discrete time stochastic dynamic program in which the state space

is the simplex of possible beliefs about the parameter, and there is a trade off between

current reward and the value of learning via experimentation. Our conceptual concern

is whether the agent necessarily learns the value of the parameter asymptotically.
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An action is uninformative if, when that action is chosen, the distribution over out-

comes does not depend on the parameter, so that Bayesian updating after choosing this

action does not revise the belief. A belief is critical if the unique action maximizing

expected current reward for that belief is uninformative. That is, a belief is critical if

the unique optimal action for that belief when the discount factor is zero is uninforma-

tive. Our second main contribution is to give conditions under which the uninformative

action is optimal for the critical belief for some range of positive discount factors, and

to show that when the initial belief is close to the critical belief there can be a positive

probability that the sequence of beliefs generated by optimal behavior converges to the

critical belief, so that optimal behavior does not lead to complete learning in the limit.

We describe this phenomenon by saying that there is a learning trap at the critical belief.

In brief, the general results for dynamic programs imply that the optimal policy function

for a sufficiently small positive discount factor is close (in an appropriate topology) to

the optimal policy when the discount factor is zero, and the desired conclusions follow

from this if certain conditions are satisfied.

We now describe each of these contributions in somewhat more detail.

1.1 The Dynamic Programming Results

In our dynamic program the spaces of states and actions are compact subsets of smooth

(actually, “smooth enough”) manifolds that are the closures of their interiors. There is a

stochastic transition that assigns a probability distribution over states tomorrow to each

state-action pair today. For a given discount factor 1 δ ∈ (−1, 1) and a given initial state

the problem is to choose a sequence of actions, conditional on available information, that

maximizes the expectation of the usual sum of discounted rewards.

For the given δ there is a value function that maps each state to the optimized value

of the program for δ and that initial state. This value function is the unique fixed point

of an updating operator mapping a “candidate value function” to the function computing

the maximized expectation, for each state, of the sum of the current period reward and

the candidate value function’s discounted valuation of the next period’s state. Usually

we think of this operator as a contraction with respect to the sup norm, but, in order to

show that derivatives of the value function vary continuously as δ varies, we need to show

that this operator is a contraction with respect to a norm that metrizes a finer topology

that is sensitive to these derivatives. In a nutshell, our method for showing that the

value function is “nice” is to construct a set of “nice” candidate value functions and a

1Our presentation points out that the mathematics does not depend on the discount factor being
positive, but we do not claim to have economically interesting applications of negative discount factors.
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“nice” norm such that the set of candidate value functions is complete with respect to

this norm, the set is mapped to itself by the updating operator, and the restriction of the

updating operator to this set is a contraction with respect to the metric. The contraction

mapping theorem implies that the operator has a fixed point in the set, which is of course

the value function. A parameterized version of the contraction mapping theorem will

show that the value function varies continuously (with respect to our metric) as δ and

other parameters vary. Possibly this program can be carried out in various ways. Our

method constructs a set of candidate value functions that are Cr, and whose rth order

partial derivatives satisfy certain Lipschitz bounds. By virtue of reasoning recalling the

Arzela-Ascoli theorem, this set of candidate value functions is complete with respect to

an appropriate Cr metric.

Two technical assumptions are required by this method. First, we assume that for

each state there is a unique action maximizing the reward function at which the second

order conditions hold strictly. As the discount factor varies near zero, the sum of the

reward function and the expectation of the value function at the next period state varies

continuously, in the appropriate Cr topology, and consequently for discount factors in

a range around zero this sum has a unique maximizing action for each state, at which

the second order conditions hold strictly. For discount factors in this range the implicit

function theorem implies that the optimal policy function is Cr−1, and that the optimal

policy function varies continuously in the appropriate Cr−1 topology. Even though the

optimal policy is only Cr−1, the envelope theorem implies that the value of the problem

as a function of the state is a Cr function that varies continuously, in the appropriate

Cr topology, as the discount factor varies.

Second we need the transition mapping a state-action pair today to the distribution

of tomorrow’s state to be suitably smooth. This will be expressed indirectly. There is an

operator mapping a candidate value function to the function computing the expectation

of tomorrow’s value, as a function of today’s state-action pair. We require that this

operator maps sets of Cr functions satisfying Lipschitz bounds on the top derivative to

sets of Cr functions satisfying similar bounds. Since there are many possible models, it

would be difficult to present useful conditions on primitives under which this condition

holds, and we do not attempt to do so. Instead this condition must be verified “by hand”

in each application.

1.2 The Learning Model

In our learning model there is a finite set of possible parameters, the set of actions is an

open subset of a Euclidean space, and there is a finite set of outcomes. There is a C1
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function that maps each parameter-action pair to an interior probability distribution on

the set of outcomes. In each period the decision maker chooses an action, observes an

outcome, and updates her beliefs concerning the parameter using Bayes’ rule.

We study a given C1 policy function mapping beliefs to actions that is stationary, in

the sense of being applied in every period. (The initial phase of our analysis does not

depend on whether this is in any sense optimal.) This structure gives rise to a Markov

process in which the state space is the set of possible beliefs, i.e., the set of probability

distributions on the set of possible parameters. Basic properties of Bayesian updating

imply that this process is a martingale: conditional on any belief today, the expectation

of tomorrow’s belief is today’s belief.

An action is uninformative if, when that action is chosen, the distribution over out-

comes does not depend on the parameter. A belief is critical if the policy maps it to

an uninformative action. A critical belief is a stationary point of the dynamic process.

We assume that the probabilities of the various outcomes, conditional on the various

parameters, are C1 functions of the action. Together with the fact that the policy is C1,

this implies that, for beliefs close to the critical belief, the learning process is accurately

approximated by a process given by the derivatives of the policy and outcome probability

functions.

Suppose that the derivative of the policy function at the critical belief is nonzero,

but quite small. Then the action the policy function prescribes at a given prior belief

near the critical belief is quite close to being uninformative, so the distribution of the

posterior has a finite support (because there are finitely many outcomes) that is close

to the prior. Roughly, if the posterior is closer to the critical belief than the prior, then

there is less experimentation in the next period, so that the process slows down, and if

the posterior is farther away, then the process speeds up. For example, if the difference

between the posterior and the critical belief is one half of the difference between the prior

and the critical belief, then the process going forward from the posterior is roughly the

process going forward from the prior rescaled by a factor of one half. Similarly, if the

difference between the posterior and the critical belief is three halves of the difference

between the prior and the critical belief, then the process going forward from the posterior

is approximately the process going forward from the prior rescaled by a factor of three

halves. As this example suggests, moving closer by a certain distance has a more powerful

effect than moving away by that distance, and this can create a “stochastic ratchet effect”

that can (with high probability) draw the sequence of posteriors closer and closer to the

critical belief.

One must also consider the extent to which learning moves beliefs in directions that
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are orthogonal to the difference between the prior and the critical belief. In the extreme

case where all learning is of this sort, convergence to the critical belief is impossible. We

consider the limiting learning process given by the derivatives of the policy and outcome

functions at the sum of the critical belief and a unit vector in the space of vectors

tangent to the simplex of possible beliefs. We will show that if, for each unit vector,

the expectation of the logarithm of the distance from the posterior to the critical belief

is negative (which is to say, less than the logarithm of the distance between the prior

and the critical belief) then the sequence of logarithms of distances between the current

belief and the critical belief is a supermartingale. When this is the case a version of the

law of large numbers will imply that when the initial belief is near to the critical belief,

there is a high probability that the sequence of posterior beliefs converges to the critical

belief.

Of course this will not happen if the derivative of the policy function is large. For

example, an extreme possibility is that for a prior close to the critical belief, every point

in the support of the distribution of the posterior belief is further from the critical belief

than the prior. More generally, if, for each unit vector, the expectation of the logarithm

of the distance from the posterior to the critical belief is positive, our version of the law

of large numbers will imply that the probability of convergence to the critical belief is

zero.

Can there be a positive probability of convergence to the critical belief even when

the policy function is optimal for a positive discount factor, so that learning about the

parameter will be rewarded in the future? Suppose that the dimension of the space

of beliefs is at least as large as the dimension of the space of actions, there is a single

uninformative action, and the derivative of the policy function at each critical belief has

full rank. Then the regular value theorem (a “coordinate free” version of the implicit

function theorem) implies that the set of critical beliefs is a manifold. If, in addition,

there is uniform bound on the norms of the derivatives of the policy function at critical

beliefs, then a generalization of the argument described above implies that there is a

positive probability that the sequence of posterior beliefs converges to the set of critical

beliefs, so that learning is incomplete.

It is easy to construct examples of learning problems for which the optimal policy

function for discount factor zero has the qualitative properties described above. Our

dynamic programming result gives conditions under which the optimal policy for discount

factor δ varies continuously, as δ varies near 0, in a suitable C1 topology, so that these

properties are also satisfied by the optimal policy functions for positive discount factors

sufficiently close to zero. In this way we establish that learning traps are possible for
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positive discount factors.

1.3 Related Literature

Prior literature on smoothness of the value and policy functions seems to be quite sparse.

Benveniste and Scheinkman (1979) give conditions under which the value function is

differentiable at a point, and stronger conditions under which it is C1. Blume et al.

(1982) give various conditions under which the value function is Cr, and there is a unique

optimal policy which is stationary and Cr. However, they restrict attention to dynamic

programs for which there is a unique optimal policy for any discount factor (by virtue

of their Theorem 1.1(iv)). In learning problems it is generally suboptimal to choose an

action that is close to uninformative if the discount factor is close to one. In the example

from McLennan (1984) that we study in Section 3 this implies that the optimal policy

for a large discount factor must have a jump from one side of the uninformative action

to the other, so that for some belief two different actions are optimal. Thus the results

of Blume et al. (1982) are not applicable to our framework.

There is a much more extensive literature concerning learning and learning traps.

Of course learning and experimentation are omnipresent in economic life. Firms need

to design new products and hire new employees, consumers have to choose hairstylists

and restaurants, and politicians have to pick policies in an uncertain world. For the

central economic models (systems of markets, noncooperative games) the relevance of

equilibrium (market clearing, Nash equilibrium) is to a greater or lesser extent justified

by a presumption that we are now observing a steady state that emerged from a process

of learning and adjustment. Whether a decision maker will eventually learn, or fail to

learn, the underlying parameters, is a natural and relevant question.

Some of the oldest literature on learning traps concerns multiarmed bandits (Gittens

and Jones (1974), Berry and Fristedt (1985), and references therein). Rothschild (1974)

introduced this topic to economics, with subsequent contributions by McLennan (1984),

Kihlstrom et al. (1984), Easley and Kiefer (1988), Aghion et al. (1991), Moscarini and

Smith (2001), and many others. Bergemann and Välimäki (2008) provide a survey and

summary. There is also a now quite extensive literature studying Bayesian learning in

multiagent environments2.

2In a self-confirming equilibrium (Fudenberg and Levine (1993)) of an extensive form game the agents
may have incorrect beliefs concerning strategies at unreached information sets. The study of incomplete
learning resulting from “information cascades” was initiated by Banerjee (1992) and Bikhchandani et al.
(1992) and continued by Aoyagi (1998), Smith and Sørensen (2000), Keller et al. (2005), among many
others. In such models initial experimentation reduces uncertainty, and agents are not compensated for
the external benefits of experimentation. In contrast Bolton and Harris (1999, 2000) provide models
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From a mathematical point of view there are several reasons a single decision maker

might fail to experiment. If the space of possible actions is discrete, as in the bandit

literature (e.g., Gittens and Jones (1974), Rothschild (1974), and Banks and Sundaram

(1992)) and the literature on information cascades (Banerjee (1992) and Bikhchandani

et al. (1992)), there may be a positive lower bound on the costs of experimentation in a

single period. Warren and Wilkening (2012) present a model with a somewhat different

structure in which a regulator follows a static policy as a result of uncertainty resulting

from failure to experiment. In addition, there may be switching costs (e.g., Banks and

Sundaram (1994)) which loom large in many labor market applications. When the space

of actions has an uninformative action on its boundary, the expected loss in the current

period, and the amount of information acquired resulting from moving away from that

point, will typically be proportional to the distance moved (see Radner and Stiglitz

(1984) for one formalization of this notion) and in many setups it is easy to see that not

experimenting is optimal when the future is sufficiently heavily discounted.

Finally, there is the possibility that the relevant space of beliefs is (homeomorphic

to) an open subset of a Euclidean space, and that there is a positive probability that

optimal behavior will induce a sequence of beliefs that converges to a critical belief at

which the optimal action is uninformative. McLennan (1984) and Harrison et al. (2012)

consider the case in which the space of beliefs is one dimensional, because the unknown

parameter has two possible values. It is easy to construct examples in which there is

an action that is uninformative, in the sense that the distribution of outcomes does not

depend on the unknown parameter when it is chosen, and this action is chosen by the

myopically optimal policy in response to a certain critical belief. It can also easily happen

that the myopically optimal policy does not allow the sequence of beliefs to go from one

side of the critical belief to the other, because the amount of experimentation is never

sufficient. McLennan (1984) shows that the optimal policy can have this property even

when the discount factor is positive. That is, even when the decision maker cares about

in which the rewards of experimentation are enhanced by the presence of other experimenting agents.
Several papers (Gale and Kariv (2003), Çelen and Kariv (2004), Gale and Kariv (2008), Acemoglu
et al. (2014), Acemoglu et al. (2011), Arieli and Mueller-Frank (2014)) have explored environments
with incomplete information, often with information transmission facilitated by networks. Jung (2018)
analyzes a model in which concern about being found to be untruthful biases an expert sender toward
messages that promote preferred policies that are uninformative. Multiagent learning models have found
many applications, e.g., Li (2001) (status quo bias) Malueg and Tsutsui (1997) (R&D) Décamps and
Mariotti (2004) (investment) Bergemann and Välimäki (1996) and Harrison et al. (2012) (strategic pric-
ing) Callander (2011a) (product design) Callander (2011b) (policy experimentation) Strulovici (2010)
(learning in repeated elections) Laslier et al. (2003) and Berentsen et al. (2008) (regulation and taxation)
Piketty (1995) (social mobility and redistribution) Breen and Garcia-Penalosa (2002) (labor economics)
Ali (2011) (behavioral economics) and Baker and Mezzetti (2012) (law and economics). See Smith and
Sørensen (2011) for a survey and summary.
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the future, it can be optimal to behave in a way that sometimes results in the true value

of the parameter remaining unknown in the limit.

We will see that the framework presented here has the results of McLennan (1984) as

a special case, but the underlying mechanism presented in this paper is quite different.

Instead of there being a barrier that cannot be crossed, with the current belief on one

side and the truth on the other, here the critical belief is an attractor in a probabilistic

sense. Our results are not limited to a 1-dimensional space of beliefs: we are able

to produce concrete examples with any finite number of parameters. On the other

hand, as we explain in Section 3, there is some reason to expect that the existence of

an uninformative action will not be generic unless the space of observations in each

period is binary (‘yes’ or ‘no,’ ‘success’ or ‘failure,’ etc.) but of course this case arises

in many models. In addition, if an action is played repeatedly (perhaps because it is

legally mandated) before it becomes possible to vary it, it may become approximately

uninformative.

1.4 Organization of the Remainder

Section 2 states Theorem 1, which is a version of the dynamic programming result that

is sufficient to support the analysis of the learning examples. In this result the spaces of

states and actions are compact subsets of Euclidean spaces and are the closures of their

interiors, and the value and optimal policy function are shown to be Lipschitz (relative

to a norm that is sensitive to partial derivatives up to order r) functions of the discount

factor in some interval around zero. This result is proved in Appendix A, and the reader

may proceed directly to there from the end of Section 2.

Theorem B1 in Appendix B is more general than Theorem 1 in two ways. First, it

allows the spaces of states and actions to be subsets of smooth manifolds. This is more

“principled” insofar as our mode of analysis certainly depends on differential calculus,

but the particular geometry of Euclidean space should be irrelevant. Second, it shows

that optimal value and policy functions are jointly Lipschitz (relative to a suitable norm)

functions of the reward function and the discount factor. Thus we establish Lipschitz

continuity with respect to almost any parameterization of the problem. The analysis

depends on results established in Appendix A, which is a prerequisite, but it is possible

for the reader to proceed to Appendix B after completing Section 2 and Appendix A.

Section 3 presents the general model of learning as a Markov process and describes the

example studied in McLennan (1984), illustrating how learning may be asymptotically

incomplete. Section 4 provides conditions (in the statement of Theorem 2) on the policy

function under which there is a positive probability that the sequence of beliefs converges
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to the critical belief, and conditions (in the statement of Theorem 3) under which the

probability of convergence to the critical belief is zero. It also states and proves the

version of the law of large numbers that is used to prove Theorems 2 and 3.

Sections 5 and 6 develop concrete examples illustrating Theorem 2. The conditions

given by Theorems 2 and 3 involve the logarithm function, and are not immediately

tractable, so Section 5 derives more easily verified sufficient conditions for the conditions

identified in Theorem 2 to hold in parameterized problems. Section 6 lays out concrete

examples in which the conditions identified in Theorem 2 are actually satisfied by the

myopically optimal policy. These examples allow any finite number of possible values of

the unknown parameter, which is to say any dimension of the space of beliefs.

Section 7 discusses ways in which various assumptions might be relaxed, and other

possible directions of generalization and extension, thereby concluding the paper.

2 Euclidean Dynamic Programming

After providing technical prerequisites, this section provides a statement of a “basic”

version of the dynamic programming result, that has spaces of states and actions that

are compact subsets of Euclidean spaces that are the closures of their interiors. This

result suffices for the applications to the learning problem studied in the next several

sections. The statement of Theorem 1 requires the introduction of several concepts that

may serve to give a good conceptual picture of how the argument works. At the same

time many technicalities related to manifolds are avoided.

2.1 Notation and Conventions for Probability

For any measurable space S, let ∆(S) be the set of probability measures on S. For s ∈ S

let δs be the Dirac measure of s, i.e., the element of ∆(S) that assigns all probability to

s. If σ ∈ ∆(S), E ⊂ S is measurable, and f : S → R is an integrable function, then

Pσ(E) = σ(E) and Eσ(f) =
∫

S
f dσ. We usually write P(E) and E(f) in place of Pσ(E)

and Eσ(f) if σ should be clear from context. If S is finite, an element of ∆(S) is treated

notationally as a [0, 1]-valued function on S, so that σ(s) is the probability of s.

Whenever S is a topological space, it has the Borel σ-algebra, and ∆(S) is endowed

with the weak∗ topology; recall that this is the weakest topology such that σ 7→
∫

S
f dσ

is a continuous function from ∆(S) to R whenever f : S → R is continuous and bounded.

If S is finite, elements of ∆(S) are denoted as functions from S to [0,1], or as vectors

indexed by the elements of S, and ∆◦(S) is the set of measures with full support, that

is, the set of σ ∈ ∆(S) such that σ(s) > 0 for all s.
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2.2 Lipschitz Concepts

Most metrics are denoted by d, with the space to be inferred from context. Suppose

that X and Y are metric spaces. With certain obvious exceptions (e.g., a Euclidean

space viewed as a cartesian product of copies of R) X × Y is endowed with the metric

d((x, y), (x′, y′)) = max{d(x, x′), d(y, y′)}. When X is compact the space C(X, Y ) of

continuous functions from X to Y is endowed with the metric

d(f, f ′) = max
x

d(f(x), f ′(x)).

Note that C(X, Y ) is complete if and only if Y is complete.

Recall that a function f : X → Y is Lipschitz with Lipschitz constant Λ, or simply

Λ-Lipschitz, if d(f(x), f(x′)) ≤ Λd(x, x′) for all x, x′ ∈ X . Of course such a function is

continuous. We say that f is strictly Λ-Lipschitz if it is Λ′-Lipschitz for some Λ′ < Λ. It

is Lipschitz if it is Λ-Lipschitz for some Λ, and it is locally Lipschitz if each x ∈ X has

a neighborhood U such that f |U is Lipschitz. It is obvious that a composition of two

(locally) Lipschitz functions is (locally) Lipschitz, and that the restriction of a (locally)

Lipschitz function to a subset of the domain is (locally) Lipschitz.

Lemma 2.1. If X is compact, then a function f : X → Y is Lipschitz if and only if it

is locally Lipschitz.

Proof. Suppose that f is locally Lipschitz. There is a finite cover of X by open sets

U1, . . . , Uk such that each f |Ui
is Λi-Lipschitz for some Λi. The Lebesgue number lemma

implies that there is some ε > 0 such that for all x, x′ ∈ X , if d(x, x′) ≤ ε, then there is

some i such that x, x′ ∈ Ui. Let M = maxx,x′∈X d(f(x), f(x
′)) be the diameter of f(X).

Then f is max{Λ1, . . . ,Λk,M/ε}-Lipschitz.

The following variant of the contraction mapping theorem expresses one of the main

ideas of the proof of Theorem 1.

Lemma 2.2. If α ∈ (0, 1), Λ > 0, X is complete, c : X × Y → X is Λ-Lipschitz, and

for each y ∈ Y , c(·, y) is α-Lipschitz, then for each y there is a unique fixed point x∗y of

c(·, y), and the function y 7→ x∗y is Λ
1−α

-Lipschitz.

Proof. The existence of a unique fixed point x∗y for each y is the assertion of the contrac-

tion mapping theorem. For y, y′ ∈ Y , let x0 = x∗y, and define x1, x2, . . . inductively by

setting xi = c(xi−1, y
′). Then

d(x0, x1) = d(c(x0, y), c(x0, y
′)) ≤ Λd(y, y′),

d(xi, xi+1) ≤ αd(xi−1, xi) for all i = 1, 2, . . ., and xi → x∗y′ , so d(x
∗
y, x

∗
y′) ≤ Λd(y, y′)/(1−

α).
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The following definitions introduce two key concepts. Let X , X ′, Y , and Y ′ be metric

spaces with X and X ′ compact.

Definition 2.1. A set T ⊂ C(X, Y ) is Lipschitz bounded if there is a compact K ⊂ Y

and a constant Λ > 0 such that for every f ∈ T , f(X) ⊂ K and f is Λ-Lipschitz.

Definition 2.2. If S ⊂ C(X, Y ) and γ : S → C(X ′, Y ′) is an operator, we say that

a set W ⊂ S is γ-compliant if, for every Lipschitz bounded T ⊂ W , γ(T ) is Lipschitz

bounded and γ|T is Lipschitz. We say that γ is tame if it is continuous and every f ∈ S

has a γ-compliant neighborhood U ⊂ S.

As is well known, and described below, dynamic programming considers fixed points

of operators. In our analysis these operators are viewed as recombinations of more basic

operators. Subsection A1 provides the numerous results we need concerning how various

methods of recombining tame operators give rise to new tame operators.

2.3 Basics of Dynamic Programming

Later in this subsection the space of states Ω and the space of actions A will be subsets

of Euclidean spaces, but for the first part of the discussion they can be general compact

metric spaces. Let Q : Ω×A → ∆(Ω) be a measurable transition function. A (stationary,

deterministic) policy is a measurable function π : Ω → A. For a given initial state ω0 ∈ Ω,

a policy π and the transition function Q induce a probability measure on the space

of infinite histories (ω0, a0), (ω1, a1), . . . in which the distribution of ωt conditional on

(ω0, a0), . . . , (ωt−1, at−1) is Q(ωt−1, at−1) and at = π(ωt) almost surely. Fix a continuous

reward function u0 : Ω × A → R. For a discount factor δ ∈ (−1, 1) the expectation

of
∑∞

t=0 δ
tu0(ω̃t, ãt) relative to the induced distribution on histories is well defined and

finite.

We now introduce the key operators:

(a) For u ∈ C(Ω× A) let J(u) : Ω → R be the function

J(u)(ω) = max
a∈A

u(ω, a).

Since A is compact, J(u) ∈ C(Ω), and it is straightforward to show that J : C(Ω×A) →

C(Ω) is 1-Lipschitz.

(b) For V ∈ C(Ω) let KQ(V ) : Ω×A→ R be the function

KQ(V )(ω, a) =

∫

Ω

V (ω′)Q(ω, a; dω′).
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If Q is continuous, then KQ(V ) ∈ C(Ω× A), and the operator KQ : C(Ω) → C(Ω × A)

is evidently 1-Lipschitz.

(c) For δ ∈ (−1, 1) and u ∈ C(Ω× A) let Iδ(u) = u0 + δKQ(J(u)).

Ma and Stachurski (2018) call Iδ the refactored Bellman operator, and they systemat-

ically study this and similar reformulations of the toolkit of dynamic programming. Since

J and KQ are 1-Lipschitz, Iδ is |δ|-Lipschitz, so the contraction mapping theorem implies

that it has a unique fixed point uδ, which Ma and Stachurski call the refactored value func-

tion. An optimal policy is a function πδ : Ω → A such that uδ(ω, πδ(ω)) = maxa uδ(ω, a)

for all ω.

The value function is Vδ = J(uδ). The Bellman operator for δ is Lδ : C(Ω) → C(Ω)

given by

Lδ(V ) = J(u0 + δ ·KQ(V )).

Evidently Lδ is |δ|-Lipschitz, so it has a unique fixed point. If uδ is a fixed point of Iδ

and Vδ = J(uδ), then Vδ is a fixed point of Lδ:

Vδ = J(uδ) = J(Iδ(uδ)) = J(u0 + δKQ(J(uδ))) = J(u0 + δKQ(Vδ)) = Lδ(Vδ).

Conversely, if Vδ is a fixed point of Lδ and uδ = u0 + δKQ(Vδ), then uδ is a fixed point

of Iδ:

uδ = u0 + δKQ(Vδ) = u0 + δKQ(Lδ(Vδ)) = u0 + δKQ(J(u0 + δKQ(Vδ)))

= u0 + δKQ(J(uδ)) = Iδ(uδ).

2.4 Multivariate Calculus

We are accustomed to using partial derivatives to describe differential phenomena for

functions between Euclidean spaces, but we also understand that the derivative of a C1

function at a point is a linear function. It seems that, in principle, the second derivative

should be a linear function mapping into a space of linear functions, but it is also possible

to regard it as a bilinear function that (thanks to the equality of cross partials) is sym-

metric. Similarly, the third derivative can be regarded as a symmetric trilinear function,

and so forth. Developing this perspective formally will allow a principled and canonical

treatment of higher order derivatives and Lipschitz conditions imposed on them.

Let V and W be finite dimensional vector spaces. For i = 1, 2, . . . a function λ :

V i → W is multilinear if

λ(v1, . . . , vj−1, · , vj+1, . . . , vi) : V → W
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is linear for all j = 1, . . . , i and all v1, . . . , vj−1, vj+1, . . . , vi ∈ V . Let Multi(V,W ) be the

space of such functions. Let Mult0(V,W ) = W .

Let Σi be the set of permutations of the indices 1, . . . , i. We say that λ ∈ Multi(V,W )

is symmetric if λ(vσ(1), . . . , vσ(i)) = λ(v1, . . . , vi) for all σ ∈ Σi and v1, . . . , vi. Let

Symi(V,W ) be the space of symmetric elements of Multi(V,W ). Fix a finite degree

of continuous differentiability r ≥ 1. There is the direct sum

Jr(V,W ) =
r

⊕

i=0

Symi(V,W ).

When W = R we omit this argument from our notation, writing Multi(V ), Symi(V ),

and Jr(V ) in place of Multi(V,R), Symi(V,R), and Jr(V,R).

Suppose that U ⊂ V is open, and that f : U → W is a function. We say that f is

Cr if there are continuous functions Di : U → Symi(V,W ) for i = 0, . . . , r such that

lim
h→0

|f(a+ h)−
∑r

i=0D
if(a)(h, . . . , h)|

|h|r
= 0

for all a ∈ U . If f is Cr we e define ∆rf ∈ C(U, Jr(V,W )) by setting3

∆rf(a) = (D0f(a), . . . , Drf(a)).

No Revisions Below

Remove the below if it is not needed.

Let Hom(V,W ) is the set of linear transformations from V toW . We define Homi(V,W )

inductively by setting Hom0(V,W ) = W and Homi(V,W ) = Hom(V,Homi−1(V,W )).

Define ξi : Homi(V,W ) → Multi(V,W ) inductively by letting ξ0 be the identity function

and setting

ξi(κ)(v1, . . . , vi) = ξi−1(κ(v1, ·))(v2, . . . , vi)

for i ≥ 1. It is easy to show that ξi is a linear isomorphism.

Suppose that U ⊂ V is open, and that f : U → W is a function. The derivative

Df(a) ∈ Hom(V,W ) at a point a ∈ U is defined as usual. We say that f is C0 if it is

continuous. We define C i functions and order i derivatives D̃if : U → Homi(V,W ) and

Dif : U → Multi(V,W ) inductively as follows. Let D̃0f = f . For i ≥ 1 we say that f

is C i if it is C i−1, D(D̃i−1f)(x) is defined at every x ∈ U , and D(D̃i−1f) is continuous.

If this is the case we set D̃if = D(D̃i−1f) and Dif = ξi ◦ D̃if . Let C i(U,W ) be the

space of C i functions from U to W . A consequence of the equality of cross partials is

3It will always be clear from context whether ∆ refers to differentiation or to probability.
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that the image of Dif is contained in Symi(V,W ). Fix a finite degree of continuous

differentiability r ≥ 1, and suppose that f ∈ Cr. We define ∆rf ∈ C(U, Jr(V,W )) by

setting4

∆rf(a) = (D0f(a), . . . , Drf(a)).

Suppose that e1, . . . , em and f1, . . . , fn are bases of V and W . We can write f(x) =
∑

j fj(a)fj . If v1, . . . , vm are the linear coordinates of v ∈ V with respect to the basis

e1, . . . , em (that is, v = v1e1 + · · ·+ vmem) induction on i gives the formula

Difj(x)(v
1, . . . , vi) =

∑

1≤j1,...,ji≤m

∂ifj
∂aj1 · · ·∂aji

(x)v1j1 · · · v
i
ji
.

We now have

Dif(x)(v1, . . . , vi) =
∑

j

Difj(x)(v
1, . . . , vi)fj ,

so Dif(x) ∈ Multi(V,W ). In addition the symmetry of cross partials gives the proof

that Dif(x) ∈ Symi(V,W ). Thus we have expressed Dif(x) ∈ Symi(V,W ) as a linear

function of the order i partials of f . Conversely, the equation

∂ifj
∂aj1 · · ·∂aji

(x) = Difj(x)(ej1 , . . . , eji)

expresses the order i partials of f as linear functions of Dif(a).

No Revisions Below

Now suppose that V and W are inner product spaces, and that e1, . . . , em and

f1, . . . , fn are orthonormal bases. We define derived inner products for some of the spaces

defined above. For each h1, . . . , hi with 1 ≤ hj ≤ m for all j and each k = 1, . . . , n there

is a eh1 ⊗ · · · ⊗ ehi ⊗ fk ∈ Multi(V,W ) given by

eh1 ⊗ · · · ⊗ ehi ⊗ fk(eg1 , . . . , egi) =

{

fk, g1 = h1, . . . , gi = hi,

0, otherwise.

Clearly the eh1 ⊗ · · · ⊗ ehi ⊗ fk are a basis of Multi(V,W ). We define an inner product

〈·, ·〉i on this space by setting

〈e1h1 ⊗ · · · ⊗ eihi ⊗ fk, e1h′
1
⊗ · · · ⊗ eih′i ⊗ fk′〉i =

{

1, h1 = h′1, . . . , hi = h′i and k = k′,

0, otherwise.

Note that if i = 0, then 〈·, ·〉0 is just the inner product of W .

4It will always be clear from context whether ∆ refers to differentiation or to probability.
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Let O(V ) and O(W ) be the groups of orthogonal transformations (inner product

preserving linear automorphisms) of V and W respectively. There is an action5 of the

group O(V )i × O(W ) on Multi(V,W ) given by

((o1, . . . , oi, r)λ)(v1, . . . , vi) = r(λ(o1(v1), . . . , oi(vi)))

for o1, . . . , oi ∈ O(V ) and r ∈ O(W ). The inner product 〈·, ·〉i is invariant with re-

spect to the action O(V ) on any one of the copies of V because the inner product

〈
∑

g αgejg,
∑

g βgejg〉 =
∑

g αgβg is invariant with respect to the action of O(V ), and sim-

ilarly for the action ofO(W ), so it is invariant with respect to the action ofO(V )i×O(W ).

Thus it is invariant under the action of O(V )× O(W ) on Multi(V,W ) given by

((o, r)λ)(v1, . . . , vi) = r(λ(o(v1), . . . , o(vi)))

because this is the restriction of the action above to a subgroup. For us the important

point is that the inner product 〈·, ·〉i does not depend on our choices of orthonormal

bases. We endow Jr(V,W ) with the inner product

〈(µ0, . . . , µr), (µ
′
0, . . . , µ

′
r)〉 =

r
∑

i=0

〈µi, µ
′
i〉i,

which again does not depend on the choices of orthonormal bases.

Remark 2.1. As a matter of elementary calculus, ∆r is a linear operator: if f, f ′ ∈

Cr(U,W ) and α ∈ R, then ∆r(f + f ′) = ∆rf + ∆rf ′ and ∆r(αf) = α∆rf . Thus

∆rCr(U,W ) is a linear subspace of C(U, Jr(V,W )).

A difficulty is that while how the operator ∆r operates on sums and scalar multiples

is simple, this is not the case for compositions. Let X be a third vector space, let

U ′ ⊂ W be open, and let f : U → U ′ and g : U ′ → X be Cr. For any linear coordinate

systems for V , W , and X , the standard rules from elementary calculus imply that the

partial derivatives of g ◦ f up to order r are polynomial functions of the various partial

derivatives of f and g up to order r. Above we saw that there is a linear isomorphism

between Jr(V,W ) and the Euclidean space that contains all the partials of f up to

order r, and the same is true of Jr(V,W ) and Jr(V,W ). Without going into additional

detail (formally describing the Euclidean space containing the partials of f would be a

thankless chore) by taking the relevant compositions of the various maps described here

we obtain the following result.

5An action of a group G on a set X is a function (g, x) 7→ gx from G×X to X such that ex = x for
all x (where e is the identity of G) and (gh)x = g(hx) for all g, h ∈ G and x ∈ X . A function f : X → Y

is invariant under the action if f(gx) = f(x) for all g ∈ G and x ∈ X .
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Proposition 2.1. There is a C∞ function

τ rV,W,X : Jr(V,W )× Jr(W,X) → Jr(V,X)

(which we denote by τ r when ambiguity is impossible) such that if U ⊂ V and U ′ ⊂ W

are open, f : U → U ′ and g : U ′ → X are Cr, and x ∈ U , then

∆r(g ◦ f)(x) = τ r(∆rf(x),∆rg(f(x))).

Recall that for an arbitrary S ⊂ V , the standard definition of what it means for a

function f : S → W to be Cr is that there is an open U containing S and a Cr function

f̃ : U → W such that f̃ |S = f . Let C ⊂ V be a compact set that is the closure of its

interior, and let f : C → W be a function. We will say that f is weakly6 Cr if it is

continuous, the restriction f ◦ of f to the interior of C is Cr in the usual sense, and ∆rf ◦

has a continuous extension to all of C, in which case (abusing notation slightly) we let

∆rf denote this extension. For T ⊂ W let Cr
w(C, T ) be the set of weakly Cr functions

f : C → T . As before, we write Cr
w(C) in place of Cr

w(C,R).

We endow Jr(V,W ) with the norm derived from its inner product, and we endow

Cr
w(V,W ) with the sup norm:

‖f‖ = max
x∈C

‖∆rf(x)‖.

The next result implies that the metric derived from this norm is complete, so that

∆rCr
w(V,W ) is a Banach space.

Proposition 2.2. If {fi} is a sequence in Cr
w(C,W ), g ∈ C(C, Jr(V,W )), ∆rfi con-

verges uniformly to g, and f is the order 0 component of g, then f ∈ Cr
w(C,W ) and

∆rf = g.

Proof. Since f and g are limits of uniformly convergent sequences of continuous functions,

they are continuous. The proof of Theorem 4.3 (p. 61) of Hirsch (1976) demonstrates

that the restriction of f to the interior of C is Cr (so f ∈ Cr
w(C,W )) and that ∆r(f)

agrees with g on this domain, so (by continuity) ∆rf agrees with g on all of C.

6For an example of a function that is weakly C∞ but not C1 let C = [−1, 0] ∪
⋃∞

n=1
[ 1

2n
, 1

2n−1
],

and define f : C → R by setting f(t) = 0 if t ≤ 0 and f(t) = 1

2n
if t ∈ [ 1

2n
, 1

2n−1
]. The Whitney

(1934) extension theorem gives sufficient conditions for a function on a closed subset of V to have a Cr

extension to all of V , and the sharpened form of the Whitney extension theorem given by Fefferman
(2005) (applied with his set E equal to the interior of C) implies that a weakly Cr function on C with
Lipschitz rth order partial derivatives has an extension f̃ : V → W whose rth order partials are also
Lipschitz.
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Let V and W be finite dimensional inner product spaces, and let U ⊂ V be open. A

Cr function f : U →W is Cr,1 if the rth order partials of f are locally Lipschitz. (As we

explained earlier, for any choice of coordinate systems Drf is a related to these partials

by a linear isomorphism, so a Cr function f is Cr,1 if and only if ∆rf is locally Lipschitz.)

For an arbitrary S ⊂ V , a function f : S → W is Cr,1 if there is an open U containing

S and a Cr,1 function f̃ : U → W such that f̃ |S = f . For T ⊂ W let Cr,1(S,W ) be the

space of Cr,1 functions f : S → T . If C ⊂ V is compact, let Cr,1
w (C, T ) be the set of

f ∈ Cr
w(C, T ) such that ∆rf is Lipschitz. Insofar as the limit of a uniformly convergent

sequence of Lipschitz functions need not be Lipschitz, Cr,1
w (C,W ) is not a closed subspace

of Cr
w(C,W ). However, for any Λ, the uniform limit of a sequence of Λ-Lipschitz functions

is Λ-Lipschitz, so Proposition 2.2 implies that the set of f ∈ Cr
w(C,W ) such that ∆rf is

Λ-Lipschitz is a closed subset of Cr
w(C,W ).

We now establish two required technical results.

Lemma 2.3. If T ⊂ V and U ⊂ W are open and f ∈ Cr,1(T, U) and g ∈ Cr,1(U,X),

then g ◦ f ∈ Cr,1(T,X).

Proof. Of course basic facts concerning differentiation imply that g◦f ∈ Cr(T,X). Since

(Proposition 2.1) ∆r(g ◦ f)(x) = τ r ◦ (∆rf(x),∆rg(f(x))), the fact that compositions of

locally Lipschitz functions are locally Lipschitz implies that Dr(g◦f) is locally Lipschitz.

Lemma 2.4 (Cr,1 Inverse Function Theorem). If U ⊂ R
m is open, f : U → R

m is Cr,1,

x ∈ U and Df(x) is nonsingular, then there is an open V ⊂ U containing x such that

f |V is invertible and (f |V )
−1 is Cr,1.

Proof. The inverse function theorem for Cr functions gives an open V ⊂ U containing

x such that f |V is invertible and (f |V )
−1 is Cr. Since we can replace V with a smaller

neighborhood of x, we may assume that Df(x′) is nonsingular for all x′ ∈ V . Let

g = (f |V )
−1. Differentiating the equation g ◦ f = 1V gives Dg(y) = Df(g(y))−1 for all

y ∈ f(V ). Using Cramer’s rule, each ∂gi
∂yj

(y) can be expressed as a rational function7

of the partials of f at g(y). By repeatedly differentiating this formula (at each stage

substituting the previously computed values of the partials of g) each rth order partial

of g at y can be expressed as a rational function of the partials of f up to order r at

g(y). Since a rational function is locally Lipschitz on its domain of definition (that is,

where the denominator does not vanish) and compositions of locally Lipschitz functions

are locally Lipschitz, it follows that the rth order partials of g are locally Lipschitz.

7A rational function is a quotient of polynomial functions.
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2.5 Smooth Dynamic Programs

We now assume that Ω ⊂ V and A ⊂W are compact subsets of finite dimensional inner

product spaces V and W that are the closures of their interiors. Our results require

additional assumptions on Q and u0.

For a sufficiently differentiable u : Ω × A → R we write ∂au(ω, a) and ∂ωu(ω, a)

in place of D(u(ω, ·))(a) and D(u(·, a))(ω), ∂aau(ω, a) in place of D2(u(ω, ·))(a), and

so forth. We say that u0 ∈ C2
w(Ω × A) satisfies the standard conditions if, for each

ω ∈ Ω, there is a unique maximizer π0(ω) of u0(ω, ·), π0(ω) is in the interior of A, and

∂aau0(ω, π0(ω)) is negative definite.

Lemma 2.5. For r ≥ 2, if u0 ∈ Cr
w(Ω × A) satisfies the standard conditions and, for

each ω ∈ Ω, π0(ω) is the unique maximizer of u0(ω, ·), then π0 ∈ Cr−1
w (Ω, A).

Proof. If ω is in the interior of Ω, the inverse function theorem implies that π0 is Cr−1

in a neighborhood of ω and

Dπ0(ω) = −∂aau0(ω, π0(ω))
−1 ◦ ∂ωau0(ω, π0(ω)).

The right hand side is Cr−2, and repeated differentiation of it gives formulas for ∆r−1π0 =

(π0,∆
r−2Dπ0) that extend continuously to all of Ω.

If KQ(C
r
w(Ω)) ⊂ Cr

w(Ω× A) let KQ : ∆r(Cr
w(Ω)) → ∆r(Cr

w(Ω× A)) be the operator

given by

KQ(∆
rV ) = ∆r(KQ(V )). (2.1)

The transition function Q is said to be rth order smoothing if KQ(C
r
w(Ω)) ⊂ Cr

w(Ω×A)

and KQ is tame. This condition might hold for a variety of reasons, and must generally

be verified in the context of each application, so we do not give conditions that imply it.

As we will see later, it holds in our application of Theorem 1 because in that example

Q(ω, a) is a distribution with finite support, and the location and probability of each

support point is a C∞ function.

Theorem 1. If r ≥ 2, u0 ∈ Cr,1(Ω × A) satisfies the standard conditions, and Q is rth

order smoothing, then there is an ε > 0 such that:

(a) for each δ ∈ (−ε, ε) the discounted dynamic program with payoff u0 and discount

factor δ has value and refactored value functions Vδ ∈ Cr,1
w (Ω) and uδ ∈ Cr,1

w (Ω×A)

and a unique stationary optimal policy πδ ∈ Cr,1
w (Ω, A),

(b) uδ satisfies the standard conditions, and
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(c) ∆rVδ, ∆
ruδ, and ∆rπδ are Lipschitz functions of δ.

The proof of Theorem 1 is presented in Appendix A, and the interested reader may

proceed there immediately. At this point we can describe the nature of the argument

in very broad strokes. We would like to find a set N ⊂ Cr
w(Ω × A) containing u0 and

ε > 0 such that Lemma 2.2 can be applied to the map (u, δ) 7→ Iδ(u) from N × (−ε, ε)

to Cr
w(Ω × A). This requires that the operator KQ ◦ J |N is Lipschitz, relative to some

metric, and this condition must be derived from the properties of J |N and KQ|J(N).

Thus we want these operators to map weakly Cr functions to weakly Cr functions in a

Lipschitzian manner. Due to the nature of the computations that arise when we compute

the rth derivative of a composition of Cr functions, this requires that we restrict attention

to an N such that there is a Λ such that for all u ∈ N , ∆ru is Λ-Lipschitz.

3 The Learning Model

We now describe the model of repeated experimentation and belief revision. Let Θ be a

finite set of possible values of a parameter θ̃ that is chosen by nature at the outset and

does not change after that. The set of possible beliefs concerning θ̃ is Ω = ∆(Θ).

There is a space A of actions that is a compact subset of a Euclidean space that is

the closure of its interior. In each period t = 0, 1, 2, . . . the decision maker chooses an

action ãt from a set A, and observes an outcome ỹt that is an element of a finite set Y .

For each θ ∈ Θ there is a given function

qθ : A→ ∆◦(Y )

specifying the probability distribution qθ(a) over outcomes when θ is the parameter and

action a is chosen. Let qθ(y|a) denote the probability that y is observed when θ is the

parameter and a is chosen.

When ω ∈ Ω is the prior belief, action a is chosen, and outcome y is observed, the

Bayesian posterior belief is β(ω, a, y) ∈ Ω with components given by Bayes rule:

βθ(ω, a, y) = ωθqθ(y|a)/q(y|ω, a). (3.1)

For ω ∈ Ω let

q(y|ω, a) =
∑

θ

ωθqθ(y|a)

be the probability of observing y when ω is the belief and a is chosen, so q(ω, a) ∈ ∆(Y ).

The distribution of the posterior when the prior is ω and a is chosen is

Q(ω, a) =
∑

y

q(y|ω, a)δβ(ω,a,y) ∈ ∆(Ω).
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A general property of Bayesian updating is that the sequence of beliefs constitutes a

martingale, so the expectation of the posterior is the prior. Concretely, for all ω, a, and

θ we have
∑

y

q(y|ω, a)βθ(ω, a, y) =
∑

y

q(y|ω, a)
(

ωθqθ(y|a)/qω(y|ω, a)
)

= ωθ
∑

y

qθ(y|a) = ωθ.

The following will be proved in Appendix A, once the required technical results are

available.

Proposition 3.1. If r ≥ 1 and, for all y and θ, qθ(y|·) is Cr,1, then Q is rth order

smoothing.

We now assume that there is a policy function π : Ω → A that is stationary in the

sense that it governs the choice of action in every period. (Eventually we will be interested

in policy functions that are optimal for a dynamic program, but for the time being this

is irrelevant.) The policy function and an initial state or prior belief ω̃0 ∈ Ω determine

stochastic processes {ω̃t}, {ãt}, and {ỹt} that are defined by requiring that, for all t ≥ 0:

(i) ãt = π(ω̃t), (ii) conditional on ω̃t and ãt (and independent of ω̃0, . . . , ω̃t−1, ã0, . . . , ãt−1,

and ỹ0, . . . , ỹt−1) the distribution of ỹt is q(ω̃t, ãt), and (iii) ω̃t+1 = β(ω̃t, ãt, ỹt).

An action a∗ is uninformative if qθ(y|a
∗) = qθ′(y|a

∗) for all y ∈ Y and θ, θ′ ∈ Θ.

Let A∗ be the set of uninformative actions. If a∗ is uninformative, q(y|a∗) denotes the

common value of qθ(y|a
∗), and β(ω, a∗, y) = ω for all ω and y. A belief ω ∈ Ω is critical

(for π) if π(ω) is uninformative, so the set of critical beliefs is π−1(A∗). In particular,

if ω̃t is critical, then it is almost surely the case that, for all s ≥ t, π(ω̃s) = π(ω̃t) and

ω̃s+1 = ω̃s = ω̃t. Repeatedly choosing an uninformative action is a natural and “generic”

possibility in many settings, especially if A is finite, but it is not our main focus.

Lemma 3.1. If π and each qθ(y|·) : A→ (0, 1) are continuous, then almost surely {ω̃t}

converges to a point in π−1(A∗) ∪ { δθ : θ ∈ Θ }.

Proof. The continuity of qθ(y|·) implies that A∗ is closed, after which the continuity of

π implies that π−1(A∗) is closed. The martingale convergence theorem implies that {ω̃t}

converges with probability one. Consider a point ω ∈ Ω \ (π−1(A∗) ∪ { δθ : θ ∈ Θ }).

Since π(ω) is not uninformative it gives rise to a positive probability of an outcome that

results in a posterior that is different from ω, and continuity implies that there is an

ε > 0 and a neighborhood U of ω such that P(ω̃t+1 ∈ U |ω̃t = ω′) < 1− ε for all ω′ ∈ U .

Since A∗ is closed, countably many such U cover Ω \ (π−1(A∗) ∪ { δθ : θ ∈ Θ }), so if

the probability that the limit of {ω̃t} is not in π−1(A∗) ∪ { δθ : θ ∈ Θ } was positive, for

some such U the probability that {ω̃t} entered U and never subsequently exited would

be positive, which is not the case.
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We say that learning is asymptotically complete if
∑

θ∈Θ P(ω̃t → δθ|ω̃0 = ω0) = 1 for

all ω0, and otherwise learning is possibly asymptotically incomplete. Lemma 3.1 implies

that if ω̃t 6= π−1(A∗) for all t, then the only possibility for asymptotically incomplete

learning is a positive probability that {ω̃t} converges to some critical belief outside of

{ δθ : θ ∈ Θ }. We say that ω∗ ∈ π−1(A∗) \ { δθ : θ ∈ Θ } is a learning trap if there is

an initial belief ω0 6= ω∗ such that there is positive probability (conditional on ω̃0 = ω0)

that {ω̃t} converges to ω∗.

Remark: Uninformativeness may be thought of as a system of (|Θ| − 1)(|Y | − 1)

equations. When the functions qθ(y|·) are C1 and determined by independent ran-

dom processes, we would typically expect A∗ to be a submanifold of A of codimension

(|Θ| − 1)(|Y | − 1). We would also typically expect the image of π to have an empty

intersection with this submanifold unless

dimA ≤ dimA∗ + dimΩ = dimA− (|Θ| − 1)(|Y | − 1) + |Θ| − 1.

In this sense the phenomenon studied here is “generic” if |Y | = 2 and not otherwise, and

when |Y | = 2 the intersection of π(Ω) with A∗ will typically consist of isolated points.

There are economic settings in which the equations governing uninformativeness may

not be independent of each other. For example, suppose it becomes possible to vary a

after many periods during which a∗ was a status quo action, perhaps because a∗ was

legally mandated. At the time experimentation becomes possible the only parameters

that have not been ruled out by experience are those that give the historically observed

distribution of observations when a∗ is chosen.

To illustrate these concepts we briefly review the instance of this phenomenon that

was studied in McLennan (1984). In each period a customer enters a store, is quoted

a price, and either purchases one unit or leaves without buying anything. There are

two possible linear relationships between the price a and the probability of purchase,

so Θ = {θ1, θ2} has two elements, and for each θi there is a price ai that maximizes

expected revenue, as shown in Figure 1. (Asymptotically incomplete learning for myopi-

cally optimal behavior when the demand curves are nonlinear is studied in great detail

in Harrison et al. (2012).) There is a price a∗ ∈ (a1, a2) that is uninformative because

the two inverse demand curves give the same probability of purchase.
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b

a1 a∗ a2

θ1

θ2

Figure 1

Suppose that π0 is the myopically optimal policy. Elementary calculations show that

π0 is affine with π0(δθ1) = a1 and π0(δθ2) = a2, so there is a ω∗ such that π0(ω
∗) = a∗.

It is not hard to find parameters such that for all ω between δθ1 and ω∗, for either

observation after choosing π0(ω), the posterior is also in this interval. (Harrison et al.

(2012) stress that in somewhat more general settings this is also a frequent occurrence.)

If the sequence of beliefs is trapped in the interval between δθ1 and ω
∗, then the sequence

of beliefs will almost surely converge to either δθ1 or ω∗. Using the fact that {ω̃t} is a

martingale, one can easily compute the probabilities of these limits. Note that there is a

positive probability of converging to ω∗ even when θ1 is the true parameter. (Otherwise

observing convergence to ω∗ would lead one to believe that θ2 is the true parameter.)

The challenge in McLennan (1984) was to show that it is possible that for all δ in

some interval [0, δ), πδ is close (in the C1 sense) to π0 and therefore has the qualitative

features that imply that it is impossible to move between the two half intervals. This

was accomplished using ad hoc methods. The results studied in subsequent sections are

much more general and systematic.

The types of learning traps studied in this paper are possible for any finite number of

parameters. Even for this example, the mechanism leading to asymptotically incomplete

learning in this paper is more general and robust, since it does not depend on the sequence

of beliefs being unable to move from one region in the space of beliefs to another.
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4 Possibly Asymptotically Incomplete Learning

Fix ω∗ ∈ π−1(A∗) ∩ ∆◦(Θ), and let a∗ = π(ω∗). In this and the following two sections

we study the possibility that ω∗ is a learning trap. This is the case if and only if there

is a positive probability that ln ‖ω̃t − ω∗‖ → −∞ when ω̃0 6= ω∗, and our main intuition

is that the reasoning underlying the law of large numbers can be applied to the sum

ln ‖ω̃t − ω∗‖ − ln ‖ω̃0 − ω∗‖ =
t−1
∑

s=0

ln
‖ω̃s+1 − ω∗‖

‖ω̃s − ω∗‖
.

In particular, suppose that the expectation of ln ‖ω̃t+1−ω∗‖
‖ω̃t−ω∗‖

conditional on ω̃t is negative for

all ω̃t 6= ω∗ in some region around ω∗. (Note that this implies that ω∗ has a neighborhood

that contains no other point of π−1(A∗).) If ω̃t is quite close to ω
∗, then it is quite unlikely

that the process will ever escape this region, and when it does not it will necessarily be

drawn to ω∗. On the other hand, if the expectation of ln ‖ω̃t+1−ω∗‖
‖ω̃t−ω∗‖

conditional on ω̃t is

positive for all ω̃t in some region around ω∗, then the probability that ω̃t → ω∗ is zero.

From this point forward we assume that π and each qθ(y|·) : A→ (0, 1) are C1. Since

π is C1, π(ω̃t)−a
∗ is an approximately linear function of ω̃t−ω

∗, and since the functions

qθ(y|·) are C
1, the distribution of ω̃t+1−ω

∗ is an approximately linear function of ω̃t−ω
∗

and π(ω̃t) − a∗. This leads us to expect that if {ω̃t} and {ω̃′
0} are two versions of our

stochastic process and ω̃′
0 − ω∗ = α(ω̃0 − ω∗), then the process {ω̃′

t − ω∗} should be an

approximate rescaling of {ω̃t − ω∗}, and that in the limit as α→ 0 the processes can be

adequately characterized in terms of the derivatives of the functions π and qθ.

We now provide precise substantiation of this intuition. It will be convenient to work

with a system of polar coordinates. Let

H0 = { τ ∈ R
Θ :

∑

θ

τθ = 0 } and H1 = {ω ∈ R
Θ :

∑

θ

ωθ = 1 }.

That is, H1 is the hyperplane in R
Θ that contains Ω, and H0 is the parallel hyperplane

through the origin. The primary role of H0 is that it is the space of vectors tangent to

H1 at any of its points. The unit sphere in H0 is

S = { σ ∈ H0 : ‖σ‖ = 1 }.

For (r, σ) ∈ [0,∞)× S let

ω(r, σ) = ω∗ + rσ.

Of course any ω ∈ H1 \ {ω
∗} is ω(r, σ) for a unique (r, σ). In this coordinate system the

space of beliefs is

Ω̂ = { (r, σ) ∈ [0,∞)× S : ω(r, σ) ∈ Ω }.
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For each y ∈ Y let q̃(·, y) : Ω̂ → (0, 1) and β̃(·, y) : Ω̂ → Ω be the functions

q̃(r, σ, y) = q(ω(r, σ), π(ω(r, σ)), y) and β̃(r, σ, y) = β(ω(r, σ), π(ω(r, σ)), y). (4.1)

The rescaled (by 1/r) amount by which beliefs are adjusted when y is observed is

given by the function ν(·, y) : Ω̂ → H0 defined by setting

ν(r, σ, y) =

{

σ + 1
r
(β̃(r, σ, y)− ω(r, σ)), r > 0,

∂β̃
∂r
(0, σ, y), r = 0.

Lemma 4.1. For each y, ν(·, y) is continuous.

Proof. Evidently ν(·, y) is continuous at every (r, σ) with r > 0, and the restriction of

ν(·, y) to {0} × S is also continuous. If {(rn, σn)} is a sequence in { (r, σ) ∈ Ω̂ : r > 0 }

converging to (0, σ), the mean value theorem implies that for each n there is a r′n ∈ (0, rn)

such that β̃(rn, σn, y) = β̃(0, σn, y) + rn
∂β̃
∂r
(r′n, σn, y), so that

ν(rn, σn, y) = σn +
1
rn
(β̃(rn, σn, y)− ω∗ − rnσn) =

∂β̃

∂r
(r′n, σn, y).

Since β̃ is C1, ν(rn, σn, y) → ν(0, σ, y). Thus ν(·, y) is continuous at each (0, σ).

We now have

Q(ω(r, σ), π(ω(r, σ))) =
∑

y

q̃(r, σ, y)δβ̃(r,ω,y).

The guiding intuition is that when r is small, this distribution should be well approxi-

mated by
∑

y q(a
∗, y) · δω∗+rν(0,σ,y). Let G : Ω̂ → ∆(H0) be the function given by

G(r, σ) =
∑

y

q(y|ω(r, σ), π(ω(r, σ))) · δν(r,σ,y).

In particular, G(0, σ) assigns probability q(y|a∗) to each ν(0, σ, y) (recall that q(y|a∗) is

the common value of qθ(y|a
∗)) and because G is continuous, G(0, ·) is a good approxi-

mation of G(r, ·) for small r. Below ν̃(r,σ) denotes a random variable with distribution

given by G(r, σ).

We now arrive at two of our main results. Theorem 2 gives conditions under which

learning is possibly asymptotically incomplete because P(ω̃t → ω∗|ω̃0 = ω0) > 0 for all

ω0 6= ω∗ in some neighborhood of ω∗. Theorem 3 gives conditions under which {ω̃t}

certainly does not converge to ω∗.

Theorem 2. If, for all σ ∈ S,

EG(0,σ)(ln ‖ν̃(0,σ)‖) < 0, (4.2)
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then there are C,R > 0 and γ ∈ (0, 1) such that

P
(

‖ω̃t − ω∗‖ ≥ R for some t|ω̃0 = ω0

)

< Cγ− ln(‖ω0−ω∗‖/R)

for all ω0 6= ω∗ such that ‖ω0 − ω∗‖ < R

Theorem 3. If

EG(0,σ)(ln ‖ν̃(0,σ)‖) > 0, (4.3)

for all σ ∈ S, and ω0 6= ω∗, then P
(

ω̃t → ω∗
∣

∣ω̃0 = ω0) = 0.

These results give an important intuition concerning when asymptotically incomplete

learning is possible. If ν(0, σ, y) is orthogonal to σ for all σ and y, then ‖σ+ν(0, σ, y)‖ ≥

‖σ‖ = 1 and ln(‖σ + ν(0, σ, y)‖) > 0, so (4.3) holds and asymptotically incomplete

learning is impossible. On the other hand, if, for all σ and y, ν(0, σ, y) is σ multiplied

by a scalar in (−1,∞), then Jensen’s inequality implies that (4.2) holds.

Suppose that the hypotheses of Theorem 2 are satisfied. The continuity of ν(·, y) and

q̃(·, y), and the compactness of S, imply that for some µ′ > 0, EG(0,σ)(ln ‖ν̃(0,σ)‖) < −µ′

for all σ. The continuity of ν(·, y) and q̃(·, y), the compactness of S, and the finiteness

of Y , imply that there are a′, b′ > 0 such that ln ‖ν̃(0, σ, y)‖ ∈ [−a′, b′] for all σ and y.

Choose a > a′, b > b′, and µ ∈ (0, µ′). Continuity implies that there is an R > 0 such

that

EQ(ω(r,σ),π(ω(r,σ)))(ln(‖β̃(r, σ, y)− ω∗‖/r)) = EG(r,σ)(ln ‖ν̃(r,σ)‖) < −µ

for all r ∈ [0, R] and σ, and

ln(‖β̃(r, σ, y)− ω∗‖/r) = ln ‖ν(r, σ, y)‖ ∈ [−a, b]

for all r ∈ [0, R], σ, and y. Theorem 2 now follows from (a) of the following result (which

is our version of the law of large numbers) if, for ω 6= ω∗, we set ℓ(ω) = ln(‖ω− ω∗‖/R).

The same argument (with obvious modifications) shows that Theorem 3 follows from (b)

of the result below.

Proposition 4.1. Let Ω be a measurable space, let Q : Ω → ∆(Ω) be a Markov kernel,

and let {ω̃t}
∞
t=0 be the Markov process generated by Q, conditional on ω̃0. Suppose that

a, b > 0 and ℓ : Ω → R is a measurable function such that

PQ(·|ω)

[

ℓ(ω)− a ≤ ℓ(ω′) ≤ ℓ(ω) + b
]

= 1

for all ω such that ℓ(ω) ≤ 0. Let p : Ω → [0, 1] be the function

p(ω0) = P
[

ℓ(ω̃t) ≥ 0 for some t|ω̃0 = ω0

]

.
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(a) If µ ∈ (0, a) and EQ(·|ω)

[

ℓ(ω′)
]

≤ ℓ(ω)− µ for all ω such that ℓ(ω) ≤ 0, then there

are numbers C > 0 and γ ∈ (0, 1) such that p(ω0) < Cγ−ℓ(ω0) for all ω0 such that

ℓ(ω0) < 0.

(b) If µ ∈ (0, b) and EQ(·|ω)

[

ℓ(ω′)
]

≥ ℓ(ω) + µ for all ω such that ℓ(ω) ≤ 0, then

p(ω0) = 1 for all ω0 such that ℓ(ω0) ≤ 0.

Proof. For each T = 0, 1, 2, . . . let pT : Ω → [0, 1] be the function

pT (ω0) = P
[

ℓ(ω̃t) ≥ 0 for some t = 0, . . . , T |ω̃0 = ω0

]

.

(a) We will prove, by induction, that pT (ω0) < Cγ−ℓ(ω0) for all T and all ω0 such that

ℓ(ω0) < 0, which of course implies the claim. Clearly p0(ω0) = 0 if ℓ(ω0) < 0, so we may

assume that the claim has already been proven with T − 1 in place of T .

Choose γ ∈ (0, 1) such that

b+ µ

a+ b
γa +

a− µ

a + b
γ−b < 1.

To see that this is possible observe that, by Taylor’s theorem applied to γa = ea lnγ and

γ−b = e−b lnγ , the left hand side is

=
b+ µ

a+ b
(1 + a ln γ +O((a ln γ)2) +

a− µ

a + b
(1− b ln γ +O((b ln γ)2)

= 1 + µ ln γ +O((a ln γ)2) +O((b ln γ)2).

Clearly we can choose C > 0 large enough that

a− µ

a− ℓ
+ C

(b+ µ

a+ b
γa +

a− µ

a + b
γ−b

)

γ−ℓ ≤ Cγ−ℓ

whenever 0 ≥ ℓ ≥ −b.

If −b ≤ ℓ(ω0) ≤ 0, then the probability distribution on [ℓ(ω0)− a, ℓ(ω0) + b] that has

mean at most ℓ(ω0)− µ and which maximizes the probability of a nonnegative number

is a sum of a mass point at 0 and a mass point at ℓ(ω0)− a. Thus

p1(ω0) = P
[

ℓ(ω̃1) ≤ 0|ω̃0 = ω0

]

≤
a− µ

a− ℓ(ω0)

if −b ≤ ℓ(ω0) ≤ 0, and of course p1(ω0) = 0 if ℓ(ω0) ≤ −b.

The induction assumption gives

E
[

pT−1(ω̃1)|ω̃0 = ω0

]

≤ E
[

Cγ−ℓ(ω̃1)|ω̃0 = ω0

]

.

Since γ−ℓ is a convex function of ℓ, the right hand side is increased by replacing the

distribution of ℓ(ω̃1) by a mean preserving spread, so it is maximized by the distribution



5 AN ALGEBRAIC SIMPLIFICATION 28

on possible values of ℓ that places all mass on the endpoints and has expectation ℓ(ω0)−µ.

Thus:

E
[

pT−1(ω̃1)|ω̃0 = ω0)
]

≤ C
(b+ µ

a+ b
γ−ℓ(ω0)+a +

a− µ

a + b
γ−ℓ(ω0)−b

)

= C
(b+ µ

a+ b
γa +

a− µ

a+ b
γ−b

)

γ−ℓ(ω0).

We have

pT (ω0) ≤ P
[

ℓ(ω1) <
µ
2
|ω0

]

+ E
[

pT−1(ω1)|ω0

]

.

If ℓ(ω0) ≤ −b, then p1(ω0) = 0 and the inequality above gives pT (ω0) < Cγ−ℓ(ω0). If

0 ≥ ℓ(ω0) ≥ −b, then

pT (ω0) ≤
a− µ

a− ℓ(ω0)
+ C

(b+ µ

a+ b
γa +

a− µ

a+ b
γ−b

)

γ−ℓ(ω0) < Cγ−ℓ(ω0).

(b) For t = 0, 1, . . . let ht : R → [0, 1] be the function

ht(ℓ) =











0, ℓ ≤ −µt,
ℓ+µt
b+µt

, −µt < ℓ < 0,

1, ℓ ≥ 0.

Since, for all ℓ, ht(ℓ) → 1 as t → ∞, it suffices so show that pt(ω0) ≥ ht(ℓ(ω0)) for all

t and ω0. Of course this is the case when t = 0, so may assume it has already been

established for t, and we will show that it holds with t + 1 in place of t. Of course the

claim is automatic if ℓ(ω0) ≥ 0, so assume that ℓ(ω0) < 0. Note that every point of the

graph of ht|(−∞,b] lies on or above the graph of the function ℓ 7→ ℓ+µt
b+µt

, so the expectation

of ht with respect to any distribution on [ℓ− a, ℓ+ b] whose mean is at least ℓ+ µ, is at

least ℓ+µ(t+1)
b+µt

. We now have

pt+1(ω0) = EQ(·|ω0)

[

pt(ω1)
]

≥ EQ(·|ω0)

[

ht(ℓ(ω1))
]

≥
ℓ(ω0) + µ(t+ 1)

b+ µt

≥
ℓ(ω0) + µ(t+ 1)

b+ µ(t+ 1)
= ht+1(ℓ(ω0)).

5 An Algebraic Simplification

Due to the relative intractability of the logarithm function, conditions (4.2) and (4.3)

are rather difficult to deal with. Our strategy in the next section is to study a class of

examples parameterized by a parameter α ≥ 0. We will show that examples with the

desired properties exist by showing that the derivatives of the relevant functions at α = 0

have properties that imply that the example is satisfactory when α > 0 is small enough.
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In this section we compute the relevant derivatives of the expressions in (4.2) and (4.3)

with respect to α, and in the next section we study the particular examples of interest.

In order to keep the notation compact we do not make α an explicit argument of

the functions that have already been defined. Specifically, henceforth α will be an im-

plicit argument of qθ(y|a), qω(y|a), βθ(ω, a, y), β̂(r, σ, y), ν(r, σ, y), and G(r, σ). For any

function f of α and other variables, ∂αf and ∂ααf denote the first and second partial

derivative of f with respect to α, evaluated at α = 0. We assume that for each θ and

y, qθ(y|a
∗) is a constant q(y|a∗) that does not depend on either θ or α, so that a∗ is

uninformative for all α. We also assume that each qθ(y|·) is jointly C
2 as a function of

a and α, and that all a ∈ A are uninformative when α = 0. Intuitively, decreasing α

corresponds to slowing down learning.

Our goal now is to develop algebraic versions of the tests provided by Theorems 2 and

3 by differentiating with respect to α at α = 0. All the preceeding results hold for each

α, and in addition
∑

y q(y|a
∗)ν(0, σ, y) = 0 holds by virtue of the martingale nature of

Bayesian updating and the continuity given by Lemma 4.1. Differentiating this equation

twice gives

∑

y

q(y|a∗)∂αν(0, σ, y) = 0 and
∑

y

q(y|a∗)∂ααν(0, σ, y) = 0. (5.1)

(The second differentiation is valid because the first equation holds for all α, and not

just when α = 0.)

The mean in (4.2) and (4.3) is

M(σ) = EG(σ,0)(ln ‖ν̃‖) =
∑

y∈Y

q(y|a∗) ln ‖ν(0, σ, y)‖.

We will need the following fact whose proof is a matter of elementary calculus, and is

omitted.

Lemma 5.1. If v is a vector in an inner product space, w is a C2 function from (−ε, ε)

to this space with w(0) = 0, and g : R → R is the function g(α) = ln ‖v + w(α)‖, then

g′(0) =
〈v, w′(0)〉

‖v‖2
and g′′(0) =

‖v‖2(‖w′(0)‖2 + 〈v, w′′(0)〉)− 2〈v, w′(0)〉2

‖v‖4
.

Using these results (with v = σ and w(α) = ν(σ, 0, y)− σ), the fact that ‖σ‖ = 1 if

σ ∈ S, and (5.1), we compute that

∂αM(σ) =
∑

y

q(y|a∗)〈σ, ∂αν(0, σ, y)〉 =
〈

σ,
∑

y

q(y|a∗)∂αν(0, σ, y)
〉

= 0
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and

∂ααM(σ) =
∑

y

q(y|a∗)
(

‖∂αν(0, σ, y)‖
2 − 2〈σ, ∂αν(0, σ, y)〉

2
)

. (5.2)

For small α we have M(σ) ≈ ∂ααM(σ)α2, by Taylor’s theorem. Combining this with the

continuity of ν(·, y) and the compactness of S gives:

Proposition 5.1. If ∂ααM(σ) <(>) 0 for all σ ∈ S, then

∑

y∈Y

q(y|a∗) ln ‖ν(0, σ, y)‖ <(>) 0

for all σ ∈ S when α is sufficiently small.

The formula for ∂ααM(σ) conforms to our intuition concerning the circumstances

under which incomplete learning is possible. Specifically, in order for M(σ) to be nega-

tive, it must be the case that learning predominantly moves beliefs in directions that are

parallel to σ. This is necessarily the case when Ω is 1-dimensional, and in this sense these

results provide insights that cannot be obtained from the models studied in McLennan

(1984) and Harrison et al. (2012).

6 A Class of Examples

Our goal in this section is to provide a class of concrete examples with possibly asymp-

totically incomplete learning. Let Θ = {θ1, . . . , θn}. The space of actions A is ∆(Θ)

(Thus A is, in a sense, “the same” as Ω, but this has no conceptual significance.) Let

a∗ = ( 1
n
, . . . , 1

n
) be the barycenter. The possible outcomes are success and failure, so

Y = {S,F}.

The examples are parameterized by a number α ≥ 0 and an n×n interior bistochastic

matrix8 ℓ = (ℓij). For i = 1, . . . , n let

qθi(S|a) =
1
2
+ α

(

1
n2 −

∑

j

ℓija
2
j

)

. (6.1)

We restrict attention to α that are small enough that 0 < qθi(S|a) < 1 for all i and a ∈ A.

Note that qθi(S|a
∗) = 1

2
for all i, so a∗ is indeed uninformative for all α. Similarly, every

action is uninformative when α = 0.

We assume that the reward for success is 1 while the reward for failure is 0, regardless

of the action. Thus the reward function u0 : Ω× A→ R is given by

u0(ω, a) =
∑

θ

ωθqθ(S|a) =
1
2
+ α

(

1
n2 −

∑

i

ωθi
∑

j

ℓija
2
j

)

.

8Recall that this means that ℓij > 0 for all i and j,
∑

j ℓij = 1 for all i, and
∑

i ℓij = 1 for all j.
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The analysis of myopically optimal behavior uses other functions which we introduce

now. Let L : R
n → R

n be the linear transformation whose matrix is ℓ, so L(y) =

(L1(y), . . . , Ln(y)) where Li(y) =
∑

j ℓijyj. Let λ : Rn → R
n be the linear transformation

whose matrix is the transpose of ℓ, so λ(y) = (λ1(y), . . . , λn(y)) where λj(y) =
∑

i ℓijyi.

Let Λ = L ◦ λ : Rn → R
n, so Λ(y) is the vector with ith component

Λi(y) =
∑

j

ℓijλj(y) =
∑

j

ℓij
∑

k

ℓkjyk =
∑

k

〈ℓi, ℓk〉yk (6.2)

where ℓi is the ith row of ℓ. Let λ0 = λ|H0
and L0 = L|H0

. Note that

∑

j

λj(y) =
∑

j

(
∑

i

ℓijyi) =
∑

i

yi =
∑

j

yj =
∑

i

(
∑

j

ℓijyj) =
∑

i

Li(y).

Therefore the images of λ0 and L0 are contained in H0, so Λ0 = L0 ◦ λ0 : H0 → H0 is a

well defined linear transformation.

For ω ∈ Ω let

ι(ω) =
(

∑

j

1
λj(ω)

)−1
.

Let π0 : Ω → A be the function

π0(ω) = ι(ω)
(

1
λ1(ω)

, . . . , 1
λn(ω)

)

. (6.3)

Let ω∗ = ( 1
n
, . . . , 1

n
), and note that λj(ω

∗) = 1
n
for all j and ι(ω∗) = 1

n2 , so π0(ω
∗) = a∗.

Lemma 6.1. π0 is the unique myopically optimal policy for u0, and u0 satisfies the

standard conditions.

Proof. The first order condition for optimality is that for all j and j′, increasing aj and

decreasing aj′ by the same amount does not have a first order effect, which means that
∑

i ωθiℓijaj =
∑

i ωθiℓij′aj′ , i.e., λj(ω)aj = λj′(ω)aj′. Therefore the unique point in A sat-

isfying the first order conditions is the positive scalar multiple of (1/λ1(ω), . . . , 1/λn(ω))

whose components sum to one, but the reward function is a strictly concave function

of a because the ℓij are positive, so this point is in fact the unique maximizer. It is

obvious that ∂aau0(ω, a) is negative definite for all ω and a, so u0 satisfies the standard

conditions.

In view of this and Proposition 3.1, Theorem 1 now implies that for each r there is

an εr > 0 such that for all δ ∈ (−εr, εr) the optimal policy πδ for discount factor δ is

Cr,1 and πδ is a Lipschitz (relative to the norm of ∆rCr(Ω, A)) function of δ. We hasten

to add that (because εr → 0 is possible) it does not follow that there is an ε∞ > 0 such

that πδ is C
∞ for all δ ∈ (−ε∞, ε∞), although we do suspect that this is the case.
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The remainder of this section computes a closed form expression for ∂ααM(σ), and

then shows that it has the desired properties. We begin with a technical result.

Lemma 6.2. ω∗ is a critical point of ι.

Proof. Applying standard rules of differentiation and λi(ω
∗) = 1/n, for σ ∈ H0 we have

Dι(ω∗)σ = −
(

∑

i

1

λi(ω∗)

)−2(∑

i

−
Dλi(ω

∗)σ

λi(ω∗)2

)

= n−2
∑

i

∑

j

ℓjiσj = n−2
∑

j

σj = 0.

Proposition 6.1. For all σ ∈ S,

∂ααM(σ) =
16

n4
·
(

‖Λ0(σ)‖2 − 2〈σ,Λ0(σ)〉2
)

.

Proof. We will show that

ν(0, σ,S) = σ + 4α
n2Λ

0(σ) and ν(0, σ,F) = σ − 4α
n2Λ

0(σ). (6.4)

The claim follows from this and equation (5.2). By definition ν(0, σ,S) = ∂rβ̃(0, σ,S)

and β̃(r, σ,S) = β(ω∗ + rσ, π0(ω
∗ + rσ),S). For ω ∈ Ω let f(ω) = β(ω, π0(ω),S). Then

ν(0, σ,S) = D(ω∗)σ.

Substituting the formula (6.3) for π0(ω) into (6.1) gives

qθi(S|π0(ω)) =
1
2
+ α

(

1
n2 − ι(ω)2

∑

j

ℓij
λj(ω)2

)

.

Multiplying this by ωθi and summing, then recognizing that
∑

i ℓijωθi = λj(ω), gives

qω(S|π0(ω)) =
1
2
+ α

(

1
n2 − ι(ω)2

∑

j

1
λj(ω)2

∑

i

ℓijωθi
)

= 1
2
+ α

(

1
n2 − ι(ω)

)

.

Substituting these equations into the formula (3.1) for the Bayesian posterior gives

βθi(ω, π0(ω),S) = fθi(ω) =
ωθi

(

1 + 2α
(

1
n2 − ι(ω)2

∑

j
ℓij

λj(ω)2

))

1 + 2α
(

1
n2 − ι(ω)

) .

Since ω∗ is a critical point of ι (Lemma 6.2) the derivative of fθi at ω
∗ is the derivative

of the numerator divided by the denominator evaluated at ω∗, which is one, so

Dfθi(ω
∗)σ =

[

σθi

(

1 + 2α
(

1
n2 − ι(ω)2

∑

j

ℓij
λj(ω)2

)

)

− ωθi2αD
[

ι(ω)2
∑

j

ℓij
λj(ω)2

]

σ
]∣

∣

∣

ω=ω∗

.
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Since ι(ω∗) = 1
n2 , λj(ω

∗) = 1
n
, and

∑

j ℓij = 1, the first of the two terms reduces to σθi .

Again taking advantage of the fact that ω∗ is a critical point of ι, we have

D
[

ι(ω)2
∑

j

ℓij
λj(ω)2

]

σ
∣

∣

∣

ω=ω∗

= −ι(ω∗)2
∑

j

2ℓijλj(σ)

λj(ω∗)3
= − 2

n

∑

j

ℓijλj(σ) = − 2
n
Λ0
i (σ).

Multiplying this equation by −ω∗
θi
2α = −2α/n, we arrive at

ν(0, σ,S) = Df(ω∗)σ = σ + 4α
n2Λ

0(σ).

A similar calculation (or the martingale property) gives the second equation in (6.4).

To produce an example for which (4.2) holds for all σ ∈ S it now suffices to give

an interior bistochastic matrix ℓ = (ℓij) such that Λ0 is a scalar multiple of IdH0
. For

example, for sufficiently small ε > 0 we can set

ℓij =

{

1− (n− 1)ε, i = j

ε, i 6= j.

We claim that Λ0 = (1− n(2ε− nε2))IdH0
. To see this first observe that

〈ℓi, ℓj〉 =

{

1− (n− 1)(2ε− nε2), i = j

2ε− nε2, i 6= j.

Now, using equation (6.2) and the fact that
∑

k σθk = 0, for σ ∈ S and each i we compute

that

Λ0
i (σ) =

∑

k

〈ℓi, ℓk〉σθk = (1− (n− 1)(2ε− nε2))σθi +
∑

j 6=i

(2ε− nε2)σθj

= (1− n(2ε− nε2))σθi .

We have now produced a concrete example for which ∂ααM(σ) < 0 for all σ ∈ S. By

Proposition 5.1, for small α (4.2) holds, so the myopically optimal policy gives a positive

probability of convergence to ω∗. As we explained at the end of Section 4, after we have

shown that the optimal policy varies continuously in the C1 topology, it follows that the

optimal policy for discount factor δ also gives a positive probability of convergence to ω∗

if |δ| is sufficiently small.

Since ∂ααM(σ) ≤ 0 when σ is an eigenvector, this class of examples does not admit

the possibility that (4.3) might hold for all σ. If the eigenvalues are quite different, then

(4.3) can hold for some σ. For example, let n = 3, and let

ℓ1 = (1, 0, 0), ℓ2 = (0, 1
2
+ δ, 1− δ), ℓ3 = (0, 1− δ, 1 + δ)
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where δ > 0 is small. (It will be obvious that perturbing slightly achieves ℓij > 0 for all

i and j without disturbing the relevant properties.) The matrix of L is





1 0 0
0 1

2
+ 2δ2 1

2
− 2δ2

0 1
2
− 2δ2 1

2
+ 2δ2



 .

The eigenvectors in H0 are (2,−1,−1) with corresponding eigenvalues 1, and (0, 1,−1)

with corresponding eigenvalue 4δ2. We have

(z21 + z22)(z
2
1 + 16δ4z22)− 2(z21 + 4δ2z22)

2 = z42(−(z1/z2)
4 + (1− 4δ2)(z1/z2)

2 − 16δ4).

If δ is small and z1/z2 ∼= 2δ, then this quantity is positive.

7 Concluding Remarks

We have provided an analysis of Bayesian learning traps that gives sufficient conditions

for them to occur, and we have shown that if myopically optimal policies allow them,

then so do the optimal policies of decision makers with small positive discount factors.

We have given concrete methods to compute whether the relevant conditions hold, and

have shown that for any finite space of possible parameters, there exist examples in which

these conditions actually hold.

Some interesting questions remain unresolved. For example, can the conditions of

Theorem 3 be satisfied by a myopically optimal policy? Also, can there be a positive

probability of convergence to ω∗ with discount factors arbitrarily close to one. In fact we

expect that in the framework parameterized by α, reducing α is very similar to reducing

the speed of learning, and thus may be thought of as analogous to dividing a period

into many subperiods, so we expect that for any δ ∈ (0, 1), asymptotically incomplete

learning will be possible when α is sufficiently small, but we have not managed to prove

this. (In contrast, for a given problem with an uninformative action a∗, if δ is sufficiently

close to one it cannot be optimal to choose a∗ because if it was optimal to do so in a

single period, it would be optimal to do so in every subsequent period, but the value in

future periods of the information gleaned from a highly informative action exceeds the

losses in the current period. A related result is Theorem 4.3 of Aghion et al. (1991),

which asserts that as δ → 1, the discounted per period value of the problem approaches

the discounted per period value of a decision maker who sees θ.)

Our analysis in this paper is restricted in several ways.

A natural direction of generalization is to situations in which the dimension of the

space of beliefs may be greater than the codimension of the set A∗ of uninformative
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actions. When these objects and the policy function are “well behaved,” the set of beliefs

mapped to uninformative actions will be a submanifold of Ω, and the question becomes

whether there can be a positive probability that the sequence of beliefs converges to a

point in this submanifold. One can anticipate certain additional technical complications,

but at this point there seems to be little reason to expect the qualitative properties of

the results to change.

A major direction for generalization is to consider the possibility that Y is infinite.

In particular, the case of normally distributed shocks is of considerable interest. Again,

significant additional complications can be foreseen, but at this point we are not aware

of any insuperable obstacles.

Finally, an economically important possibility is that learning might be incomplete

because there is a positive probability of convergence to a belief whose support is not

all of Θ. As with the other extensions described above, this appears to present certain

challenges, which most likely can be overcome.

A Proof of Theorem 1

This section continues Section 2, with the goal of proving Theorem 1. Appendix B

generalizes this result to state and action spaces that are compact subsets of smooth

manifolds, at the expense of additional technical complexity. That argument depends

on the results in this section, so this section and Section 2 are prerequisites.

The next subsection studies the preservation of tameness by various operations that

recombine operators, culminating in Proposition A3, which considers composition of Cr

functions as an operator. We then use these tools to prove Proposition 3.1. After these

preparations, the second subsection gives the bulk of the argument.

A1 Combinations of Tame Operators

Our argument is ultimately a matter of establishing the tameness of an operator mapping

a neighborhood of the given single period reward function in ∆rCr,1
w (Ω × A) to itself.

Over the course of our work there will be numerous arguments showing that certain

other operators are tame, or that tameness is preserved by certain operations. This sub-

section provides a basic toolkit for recombining such results. Throughout the following

discussion, except as indicated, X , X ′, Y , Y ′, Z, Z ′, W , and W ′ are metric spaces, and

X and X ′ are always compact.

The first of two results require no proof.
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Lemma A1. If S ⊂ C(X, Y ), γ : S → C(X ′, Y ′) is tame, and S ′ ⊂ S, then γ|S′ is

tame.

Lemma A2. If g : X ′ → Y ′ is Lipschitz, S ⊂ C(X, Y ), and γ : S → C(X ′, Y ′) is the

constant operator γ(f) = g for all f , then γ is tame.

Let C ⊂ X be compact, and let ρC : C(X, Y ) → C(C, Y ) be the operator ρC(f) =

f |C . Of course ρC is 1-Lipschitz, and it maps Lipschitz bounded sets to Lipschitz bounded

sets, so:

Lemma A3. ρC is a tame operator.

Corollary A.1. The identity function of C(X, Y ) is a tame operator.

Lemma A4. If S ⊂ C(X, Y ), S ′ ⊂ C(X ′, Y ′), and γ : S → S ′ and γ′ : S ′ → C(X ′′, Y ′′)

are tame, then γ′ ◦ γ is tame.

Proof. Of course γ′ ◦ γ is continuous. Fix f ∈ S, a γ-compliant neighborhood U ⊂ S

of f , and a γ′-compliant neighborhood U ′ ⊂ S ′. Since γ is continuous, U ∩ γ−1(U ′) is a

neighborhood of f . For any Lipschitz bounded T ⊂ U ∩ γ−1(U ′), γ(T ) and γ′(γ(T )) are

Lipschitz bounded, and γ′ ◦ γ|T = γ′|γ(T ) ◦ γ|T is a composition of Lipschitz functions, so

it is Lipschitz. Thus U ∩ γ−1(U ′) is γ′ ◦ γ-compliant.

We consider two sorts of cartesian products of functions. If f ∈ C(X, Y ) and f ′ ∈

C(X, Y ′), f × f ′ : X → Y × Y ′ is the function x 7→ (f(x), f ′(x)). If f ∈ C(X, Y ) and

f ′ ∈ C(X ′, Y ′) let f ⊗ f ′ : X × X ′ → Y × Y ′ be the function (x, x′) 7→ (f(x), f ′(x′)).

Our main use for theese constructions is as a proxy for the pair (f, f ′), which allows us

to avoid defining and analyzing tameness for operators acting on pairs of functions.

The proofs of the following two results are entirely parallel, so we only prove the first.

Lemma A5. If g : X → Y ′ is Lipschitz, then the operator γ : f 7→ f × g from C(X, Y )

to C(X, Y × Y ′) is tame.

Proof. For any f, f ′ ∈ C(X, Y ), d(f × g, f ′ × g) = d(f, f ′), so γ is 1-Lipschitz. Let

T ⊂ C(X, Y ) be Lipschitz bounded. If K ⊂ Y is a compact set such that f(X) ⊂ K

for all f ∈ T , then K × g(X) is compact and contains the image of γ(f) for all f ∈ T .

If every f ∈ T is Λ-Lipschitz, then every element of { f × g : f ∈ T } is Λ-Lipschitz, so

{ f × g : f ∈ T } is Lipschitz bounded. Thus C(X, Y ) is γ-compliant.

Lemma A6. If g : X ′ → Y ′ is Lipschitz, then the operator γ : f 7→ f ⊗ g from C(X, Y )

to C(X ×X ′, Y × Y ′) is tame.
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When S ⊂ C(X, Y ) and γ : S → C(X ′, Y ′) and γ′ : S → C(X ′, Z ′) are operators,

γ × γ′ : S → C(X ′, Y ′ × Z ′) is the operator (γ × γ′)(f) = γ(f)× γ′(f).

Proposition A1. For a nonempty S ⊂ C(X, Y ) two operators γ : S → C(X ′, Z) and

γ′ : S → C(X ′, Z ′) are tame if and only if γ × γ′ is tame.

Proof. First suppose that γ and γ′ are tame. Of course γ × γ′ is continuous. Fix f ∈ S

and neighborhoods U, U ′ ⊂ S of f that are γ-compliant and γ′-compliant respectively.

Suppose that T ⊂ U ∩ U ′ is Lipschitz bounded. Then γ(T ) and γ′(T ) are Lipschitz

bounded, so there are compact sets K ⊂ Z and K ′ ⊂ Z ′ and Lipschitz constants Λ

and Λ′ such that for all g ∈ T , K and K ′ contain the images of γ(g) and γ′(g), γ(g)

is Λ-Lipschitz, and γ′(g) is Λ′-Lipschitz. Therefore, for all g ∈ T , K ×K ′ contains the

image of (γ × γ′)(g) and this function is max{Λ,Λ′}-Lipschitz. In addition, there are

constants L, L′ such that γ|T is L-Lipschitz and γ′|T ′ is L′-Lipschitz, so (γ × γ′)|T is

max{L, L′}-Lipschitz. Thus U ∩ U ′ is γ × γ′-compliant.

Now assume that γ × γ′ is tame. Since γ × γ′ is continuous, γ and γ′ are continuous.

Fixing f ∈ S, let U ⊂ S be a γ × γ′-compliant neighborhood of f , and let T ⊂ U

be Lipschitz bounded. There is a compact K∗ ⊂ Z × Z ′ and a Λ∗ such that for all

f ∈ T , the image of (γ × γ′)(f) is contained in K∗ and (γ × γ′)(f) is Λ∗-Lipschitz. Let

K = { z : (z, z′) ∈ K∗ } be the projection of K∗ on Z. Since the projection Z×Z ′ → Z is

continuous, K is compact. For each f ∈ T , the image of γ(f) is contained in K and γ(f)

is Λ∗-Lipschitz. Since (γ×γ′)|T is Lipschitz, γ|T is also Lipschitz. Thus U is γ-compliant

and (by symmetry) γ′-compliant.

If Z and Z ′ are compact, S ⊂ C(X, Y ) and S ′ ⊂ C(X ′, Y ′), and γ : S → C(Z,W )

and γ′ : S ′ → C(Z ′,W ′) are operators, then γ ⊗ γ′ : S ⊗ S ′ → C(Z,W )⊗ C(Z ′,W ′) is

the operator given by γ ⊗ γ′(f ⊗ f ′) = γ(f)⊗ γ′(f ′).

Proposition A2. If Z, and Z ′ are compact, S ⊂ C(X, Y ) and S ′ ⊂ C(X ′, Y ′) are

nonempty, and γ : S → C(Z,W ) and γ′ : S ′ → C(Z ′,W ′) are tame operators, then

γ ⊗ γ′ is tame.

Proof. Fix f0 ⊗ f ′
0 ∈ S ⊗ S ′. Let U ⊂ S be a γ-compliant neighborhood of f0, and let

U ′ ⊂ S ′ be a γ′-compliant of f ′
0. Then U ⊗U ′ is a neighborhood of f ⊗ f ′ in S⊗ S ′. Let

T0 ⊂ U⊗U ′ be Lipschitz bounded, let T = { f : f⊗f ′ ∈ T0 } and T ′ = { f ′ : f⊗f ′ ∈ T0 },

and let T1 = { f ⊗ f ′ : f ∈ T, f ′ ∈ T ′ }. There is a compact K0 ⊂ Y × Y ′ that contains

the image of every f ⊗ f ′ ∈ T0. Let K and K ′ be the projections of K0 on Y and Y ′.

Let Λ0 > 0 be such that every element of T0 is Λ0-Lipschitz. Then every element of T is

Λ0-Lipschitz with image contained in K, and similarly for T ′, so T and T ′ are Lipschitz
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bounded. Consequently γ(T ) and γ′(T ′) are Lipschitz bounded and γ|T and γ′|T ′ are

Lipschitz. It follows immediately that γ ⊗ γ′(T1) is Lipschitz bounded and γ ⊗ γ′|T1 is

Lipschitz. Since T0 ⊂ T1, γ⊗γ
′(T0) is Lipschitz bounded and γ⊗γ′|T0 is Lipschitz. Thus

U ⊗ U ′ is γ ⊗ γ′-compliant.

The difficulty in proving the converse of the last result (which we do not need) arises

as follows. Assume that γ ⊗ γ′ is tame. Fixing f0 ⊗ f ′
0 ∈ S ⊗ S ′, let Ũ ⊂ S ⊗ S ′ be a

γ ⊗ γ′-compliant neighborhood of f0 ⊗ f ′
0. We may assume that Ũ = U ⊗ U ′ where U

and U ′ are neighborhoods of f0 and f ′
0. Let T ⊂ U be Lipschitz bounded. If T ′ ⊂ U ′

was Lipschitz bounded, then T ⊗ T ′ would be Lipschitz bounded and γ ⊗ γ′|T⊗T ′ would

be Lipschitz, and we could infer from this that T was Lipschitz bounded and γ|T was

Lipschitz. In particular, if U ′ necessarily contained a Lipschitz element f ′, then we could

take T ′ = {f ′}, but it seems that some such additional assumption is required.

Lemma A7. If Y is compact, then the operator γ : f⊗g 7→ g◦f from C(X, Y )⊗C(Y, Z)

to C(X,Z) is tame.

Proof. Let T ⊂ C(X, Y )⊗ C(Y, Z) be Lipschitz bounded. There is a compact subset of

Y × Z containing the image of every element of T ; let K be its projection on Z. There

is a Λ > 0 such that every f ⊗ g ∈ T is Λ-Lipschitz, which implies that f and g are

Λ-Lipschitz. We can now see that for every element of γ(T ) is Λ2-Lipschitz and its image

is contained in K, so γ(T ) is Lipschitz bounded.

For any f ⊗ g, f ′ ⊗ g′ ∈ T , the distance from g ◦ f to g′ ◦ f ′ is not greater than the

distance from g ◦ f to g′ ◦ f plus the distance from g′ ◦ f to g′ ◦ f ′. The distance from

g ◦ f to g′ ◦ f is not greater than the distance from g to g′, which is not greater than the

distance from f ⊗ g to f ′ ⊗ g′. The distance from g′ ◦ f to g′ ◦ f ′ is not greater than Λ

times the distance from f to f ′, and the distance from f to f ′ is not greater than the

distance from f ⊗ g to f ′ ⊗ g′. Therefore γ|T is (1 + Λ)-Lipschitz. We have shown that

C(X, Y )⊗ C(Y, Z) is γ-compliant.

Lemma A8. If g : Y → Z is locally Lipschitz, then the operator γg : C(X, Y ) → C(X,Z)

given by γg(f) = g ◦ f is tame.

Proof. Let T ⊂ C(X, Y ) be Lipschitz bounded. If K ⊂ Y is a compact set such that

f(X) ⊂ K for all f ∈ T , then g(K) is compact and contains the image of γg(f) for

all f ∈ T . In addition, Lemma 2.1 implies that g|K is Λ′-Lipchitz for some Λ′. If

every f ∈ T is Λ-Lipschitz, then every element of γg(T ) is Λ
′Λ-Lipschitz. Thus γg(T ) is

Lipschitz bounded. Evidently γg|T is Λ′-Lipschitz. Thus C(X, Y ) is γg-compliant.

Lemma A9. γ : f ⊗ g 7→ f is a tame operator from C(X, Y )⊗ C(X ′, Y ′) to C(X, Y ).
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Proof. If T ⊂ C(X, Y )⊗C(X ′, Y ′) is Lipschitz bounded, then there is a compact set K

containing the image of each of its elements and a Λ > 0 such that each of its elements

is Λ-Lipschitz. For each f ⊗ g ∈ T , f is Λ-Lipschitz and its image is contained in the

projection of K on Y , so γ(T ) is Lipschitz bounded. Of course γ|T : f ⊗ g 7→ g is

1-Lipschitz. Thus C(X, Y )⊗ C(X ′, Y ′) is γ-compliant.

The following result is crucial.

Proposition A3. If V , W , and X are finite dimensional inner product spaces, and

C ⊂ V and D ⊂ W are compact sets that are the closures of their interiors, then the

operator

γ : ∆rCr
w(C,D)⊗∆rCr

w(D,X) → ∆rCr
w(C,X)

given by γ(∆rf ⊗∆rg) = ∆r(g ◦ f) is tame.

Proof. From Proposition 2.1 we have ∆r(g ◦ f) = τ r ◦ (∆rf ⊗ ∆rg), and Lemma A8

implies that the operator ∆rf ⊗∆rg 7→ τ r ◦ (∆rf ⊗∆rg) is tame.

The proof of Proposition 3.1 applies many of the results above.

Proof of Proposition 3.1. Recall that Q(ω, a) =
∑

y q(y|ω, a) · δβ(ω,a,y), so that

KQ(V )(ω, a) =
∑

y

q(y|ω, a) · V (β(ω, a, y)).

Since compositions of weakly Cr,1 functions are weakly Cr,1 (Lemma 2.3) it is clear that

the functions q(y|·, ·) and β(·, ·, y) are Cr,1. In each case applying Lemma A7 (composi-

tions of tame operators are tame) we have the following sequence of observations. Lemma

A6 implies that for each y ∈ Y the operator ∆rV 7→ ∆rV ⊗ ∆rβ(·, ·, y) is tame, after

which Proposition A3 implies that the operator ∆rV 7→ ∆r(V ◦ β(·, ·, y)) is tame. Now

Lemma A5 implies that the operator ∆rV 7→ ∆rq(y|·, ·)× ∆r(V ◦ β(·, ·, y)) is tame. If

µ is multiplication of two real numbers, then application of Lemma A6 and Proposition

2.1 implies that the operator

∆rV 7→ ∆r
(

µ ◦ (q(y|·, ·)× (V ◦ β(·, ·, y)))
)

= ∆r
(

q(y|·, ·) · (V ◦ β(·, ·, y))
)

is tame. Finally, similar reasoning with addition in place of multiplication shows implies

the tameness of the operator

∆rV 7→ ∆r
(

∑

y

q(y|·, ·) · (V ◦ β(·, ·, y))
)

= ∆rKQ(V ) = KQ(∆
rV ).
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A2 The Proof

We return to the setting provided by the hypotheses of Theorem 1. That is, V and W

are finite dimensional inner product spaces, Ω ⊂ V and A ⊂ W are compact subsets of

V and W that are the closures of their interiors, r ≥ 2, u0 ∈ Cr,1(Ω × A) satisfies the

standard conditions, and Q : Ω × A → ∆(Ω) is rth order smoothing. Let π0 : Ω → A

be the myopic optimal policy function, so for each ω the unique maximizer of u0(ω, ·) is

π0(ω).

We fix a compact neighborhood Y ⊂ Ω× A of the graph of π0. For each ω let

Yω = { a : (ω, a) ∈ Y }

be the “ω-slice” of Y . We require that Y is small enough that ∂2au0(ω, a) is negative

definite for all (ω, a) ∈ Y , and that for each ω, ∂au0(ω, a) 6= 0 for all a ∈ Yω \ {π0(ω)}.

Let U be the set of u ∈ Cr
w(Ω× A) such that:

(a) ∂2au0(ω, a) is negative definite for all (ω, a) ∈ Y .

(b) For each ω:

(i) There is a unique maximizer of u(ω, ·) which is in the interior of Yω.

(ii) ∂au0(ω, a) 6= 0 for all a ∈ Yω other than this maximizer.

Of course u0 ∈ U .

Lemma A10. U is open in Cr
w(Ω×A).

In order to give a high level overview of the proof of Theorem 1 we defer the proofs

of the supporting results until after that argument has been stated.

Let W ∗ be the dual of W , and let D be the set of Cr−1 functions d : Y → W ∗ such

that for each ω there is a unique a ∈ Yω such that d(ω, a) = 0, a is in the interior of Yω,

and ∂ad(ω, a) is nonsingular. Let P : U → D be the operator given by

P (u)(ω, a) = ∂au(ω, a).

Let S be the set of π ∈ Cr−1(Ω, A) such that for each ω, π(ω) is in the interior of

Yω. For d ∈ D we define πd : Ω → A implicitly by requiring that d(ω, πd(ω)) = 0. The

implicit function theorem implies that πd ∈ Cr−1
w (Ω, A), so πd ∈ S. Let F : D → S be

the operator

F (d) = πd.

In the following result tameness is with respect to relatively coarse norms of Cr
w(Ω ×

A,W ∗) and Cr
w(Ω, A), but even so the proof is relatively long and challenging.
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Proposition A4. F is locally Lipschitz and tame.

Let B be the set of u ⊗ π ∈ U ⊗ S such that ∂au(ω, π(ω)) = 0 for all ω. Let

H : B → Cr−1
w (Ω) be the operator

H(u⊗ π) = u ◦ (IdΩ × π).

Lemma A11. H(B) ⊂ Cr
w(Ω).

When u ∈ U is given, û denotes ∆ru, when d ∈ D is given, d̂ denotes ∆r−1d, and

when π ∈ S is given, π̂ denotes ∆r−1π. If û, d̂, or π̂ is given and there is no risk of

confusion, u, d, or π will be the corresponding elements of U , D, or S. Let:

U = { û : u ∈ U }; D = { d̂ : d ∈ D }; S = { π̂ : π ∈ S }; B = { û⊗ π̂ : u⊗ π ∈ B }.

Let P : U → D, F : D → S, H : B → ∆r(Cr,1(Ω)), and G : U → ∆r(Cr(Ω× A)) be the

operators:

P(û) = ∆r−1(P (u)); F(d̂) = ∆r−1(F (d)); H(û⊗ π̂) = ∆rH(u⊗ π);

G(û) = û0 +KQ(H(û⊗ F(P(û)))).

Proposition A5. P is tame.

Proposition A6. F is tame and locally Lipschitz.

Proposition A7. H is tame.

Proposition A8. G is tame.

Proof of Theorem 1. Since U is open in Cr
w(Ω×A) and the norm of ∆rCr

w(Ω×A) induces

a finer topology, U is an open subset of ∆rCr
w(Ω × A). Since G is tame, there is a G-

compliant neighborhood W ⊂ U of û0. In a metric space every neighborhood of a point

contains a closed neighborhood, so we may assume that W is closed.

Of course the image of û0 is bounded, so (in view of the definition of the norm of

∆rCr
w(Ω×A)) there is a neighborhood T ′ of û0 such that there is a compact neighborhood

of the image of û0 that contains the image of every element of T ′. The closure of T ′ also

has this property, so we may assume that T ′ is closed.

Choose Λ > 0 such that û0 is strictly Λ-Lipschitz. Let UΛ be the set of û ∈ U that

are Λ-Lipschitz. The limit of a uniformly convergent sequence of Λ-Lipschitz functions

is Λ-Lipschitz, so UΛ is a closed subset of U . Let

T = W ∩ T ′ ∩ UΛ.
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Since T is a closed subset of a Banach space, it is complete.

Of course T is a Lipschitz bounded subset of W, so G(T ) is Lipschitz bounded.

Therefore there is a compact neighborhood of the image of û0 that contains the image

of every element of G(T ), and there are κ, µ > 0 such that every element of G(T ) is

κ-Lipschitz and G|T is µ-Lipschitz. For sufficiently small ε > 0 it is the case, for all

δ ∈ (−ε, ε), that û0 + δG(T ) ⊂ T ′ and û0 + δG(T ) ⊂ UΛ (because û0 is (Λ − εκ)-

Lipschitz) so û0+ δG(T ) ⊂ T . In addition the map (û, δ) 7→ û0+ δG(û) from T × (−ε, ε)

to T is (1 + µ)-Lipschitz, and for each δ ∈ (−ε, ε) the map û0 + δG(·) : T → T is

εµ-Lipschitz. If εµ < 1, Lemma 2.2 implies that each û0+ δG(·) has a unique fixed point

ûδ that is a Lipschitz function of δ.

We now have u0 + δKQ(H(uδ, F (P (uδ)))) = uδ and J(uδ) = H(uδ, F (P (uδ))), so

Iδ(uδ) = uδ, which is to say that uδ is the refactored value function. In addition, since

P, H, and F are tame, by replacing ε with a smaller number if need be we can make

π̂δ = F(P(ûδ)) and V̂δ = H(ûδ, π̂δ) Lipschitz functions of δ.

We now give the proofs of the supporting results.

Proof of Lemma A10. We will show that a given u ∈ U has a neighborhood U ′ ⊂ Cr
w(Ω×

A) that is contained in U . For ω ∈ Ω let π(ω) be the point in A where u(ω, ·) attains

its maximum. Lemma 2.5 implies that π is Cr−1. There is a continuous β : Ω → (0,∞)

such that for all ω the open β(ω)-ball centered at π(ω) is contained in Yω. Let ε > 0

be small enough that u(ω, a) < u(ω, π(ω))− ε and ‖∂au(ω, a)‖ > ε for all ω and a ∈ Yω

outside the open β(ω)-ball centered at π(ω). Let U ′ be the set of u′ ∈ Cr
w(Ω × A) such

that ∂2au
′(ω, a) is negative definite and |u′(ω, a) − u′(ω, a)| < ε/2 for all (ω, a) ∈ Y .

Evidently U ′ is an open subset of Cr
w(Ω × A). For u′ ∈ U ′ and ω ∈ Ω, any maximizer

of u(ω, ·) must be in the ball of radius β(ω) centered at π(ω). If there were two such

maximizers then the line segment between them would have a minimizer (relative to the

line segment) of u′(ω, ·), say a, and ∂2au
′(ω, a) could not be negative definite. Thus there

is a unique maximizer. We have ∂au
′(ω, a) 6= 0 for all ω and a ∈ Yω outside the open

β(ω)-ball centered at π(ω). If a ∈ Yω is in the open β(ω)-ball centered at π(ω), but

is not the maximizer a∗ of u′(ω, ·), then integration of ∂aau
′(ω, ·)(a− a∗) along the line

segment between a and a∗ shows that ∂au
′(ω, a)(a− a∗) 6= 0. Thus U ′ ⊂ U .

Proof of Proposition A4. We first show that F is continuous. Aiming at a contradiction,

suppose that {di} is a sequence in D converging to d ∈ D and there is an ε > 0

such that for each i there is some ωi such that ‖πdi(ωi) − πd(ωi)‖ > ε. Passing to a

subsequence, assume that ωi → ω and πdi(ωi) → a. By continuity, πd(ωi) → πd(ω), so
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‖a − πd(ω)‖ ≥ ε. Since di converges to d uniformly, d(ω, a) = lim d(ωi, πdi(ωi)) = 0,

contradicting the assumption that d(ω, ·)−1(0) is a singleton.

We can now show that F is locally Lipschitz. Fix d ∈ D. We will work with an ε > 0

and a convex neighborhood Z ⊂ D of d such that:

(a) a is in the interior of Yω whenever ‖a− πd(ω)‖ ≤ ε.

(b) There is some b > 0 such that ‖∂ad
′(ω, a)w‖ ≥ b‖w‖ for all d′ ∈ Z, w ∈ W , ω ∈ Ω,

and a ∈ A such that ‖a− πd(ω)‖ ≤ ε.

(c) There is some c ∈ (0, b) such that ‖∂ad
′(ω, a) − ∂ad

′(ω, a′)‖ < c for all d′ ∈ Z,

ω ∈ Ω, and a, a′ ∈ A such that ‖a− πd(ω)‖, ‖a
′ − πd(ω)‖ ≤ ε.

Such objects exist: if ε is sufficiently small, then (a) holds, and (b) and (c) hold if Z is

a sufficiently small neighborhood of d.

For d0, d1 ∈ Z and ω ∈ Ω, if c : [0, 1] → R
n is the path c(t) = (1− t)πd0(ω)+ tπd1(ω),

then

d0(ω, πd1(ω)) =

∫ 1

0

∂ad0(ω, c(t)) · (πd1(ω)− πd0(ω)) dt

= ∂ad0(ω, πd0(ω)) · (πd1(ω)− πd0(ω))

+

∫ 1

0

(

∂ad0(ω, c(t))− ∂ad0(ω, πd0(ω))
)

· (π1(ω)− πd0(ω)) dt.

We can now apply d1(ω, πd1(ω)) = 0, (b), and (c) to obtain

‖d1−d0‖ ≥ ‖d1(ω, πd1(ω))−d0(ω, πd1(ω))‖ ≥
∥

∥∂ad0(ω, πd0(ω))·(πd1(ω)−πd0(ω))
∥

∥

−
∥

∥

∥

∫ 1

0

(

∂ad0(ω, c(t))− ∂ad0(ω, πd0(ω))
)

· (πd1(ω)− πd0(ω)) dt
∥

∥

∥

≥ (b− c)‖πd1(ω))− πd0(ω)‖,

so ‖πd1 − πd0‖ ≤ 1
b−c

‖d1 − d0‖.

We now show that F is tame. Fix δ ∈ (0, ε). Possibly after replacing Z with a smaller

neighborhood of d, in addition to (a), (b), and (c) we may assume that ‖πd′ − πd‖ < δ

for all d′ ∈ Z. We wish to show that Z is F -compliant. Suppose that T ⊂ Z is Lipschitz

bounded. We have already shown that F |T is Lipschitz, and our set up constrains the

images of the functions πd′ to lie in a compact set, so it remains to show that there is

Λ′ > 0 such that every element of F (T ) is Λ′-Lipschitz. We will show that there is a

constant C > 0 such that if d′ ∈ Z is Λ-Lipschitz, then πd′ is CΛ-Lipschitz.
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Fix ω ∈ Ω. Since πd is continuous there is a number ζ > 0 small enough that

δ + ‖πd(ω1)− πd(ω0)‖ < ε for all ω0 and ω1 in the open ζ-ball centered at ω. If d′ ∈ Z

and c : [0, 1] → A is the path c(t) = (1− t)πd′(ω0) + tπd′(ω1), then

d′(ω0, πd′(ω1)) =

∫ 1

0

∂ad
′(ω0, c(t)) · (πd′(ω1)− πd′(ω0)) dt

= ∂ad
′(ω0, πd′(ω0)) · (πd′(ω1)− πd′(ω0))

+

∫ 1

0

(∂ad
′(ω0, c(t))− ∂ad

′(ω0, πd′(ω0))) dt · (πd′(ω1)− πd′(ω0)).

Now (b) gives

‖∂ad
′
ℓ(ω0, πd′(ω0)) · (πd′(ω1)− πd′(ω0))‖ ≥ b‖πd′(ω1)− πd′(ω0)‖.

We have ‖πd′(ω0)− πd(ω0)‖ ≤ δ and thus ‖πd′(ω1)− πd(ω0)‖ ≤ ε, so ‖c(t)− πd(ω0)‖ ≤ ε

for all t, and we can apply (c) to the second term, obtaining

‖∂ad
′(ω0, c(t))− ∂ad

′(ω0, πd′(ω0))‖ < c.

Therefore

‖d′(ω0, πd′(ω1))− d′(ω1, πd′(ω1))‖ = ‖d′(ω0, πd′(ω1))‖ ≥ (b− c) · ‖πd′(ω1)− πd′(ω0)‖.

Now the argument follows the logic of the proof of Lemma 2.1. Since Ω is compact

there are ω1, . . . , ωk and ζ1, . . . , ζk such that the open balls around ωi of radius ζi cover Ω,

and if d′ ∈ Z is Λ-Lipschitz, then the restriction of πd′ to each ball of radius ζi centered

at ωi is Λ/(b− c)-Lipschitz. The Lebesgue number lemma gives an α > 0 such that for

all ω0, ω1 ∈ Ω, if ‖ω1 − ω0‖ < α, then for some i the ball of radius ζi centered at ωi

contains both ω0 and ω1. Let M = maxω0,ω1∈Ω ‖ω1 − ω0‖. We now see that if d′ ∈ Z is

Λ-Lipschitz and ‖ω1 − ω0‖ ≥ α, then ‖πd′(ω1) − πd′(ω0)‖ ≤ MΛ ≤ (MΛ/α)‖ω1 − ω0‖,

so πd′ is max{ 1
b−c
, M
α
}Λ-Lipschitz.

Proof of Lemma A11. Suppose that u ⊗ π ∈ B. On the interior of Ω the envelope

theorem gives D(H(u⊗ π))(ω) = ∂ωu(ω, π(ω)). Thus, on the interior of Ω, DH(u⊗ π)

is a composition of Cr−1 functions, so it is Cr−1, and it extends continuously to all of

Ω. Thus H(u ⊗ π) is Cr on the interior of Ω, and its derivatives up to order r extend

continuously to all of Ω.

Proof of Proposition A5. For u ∈ U the passage from û to ∆r−1P (u) is (in the language

of partial derivatives) a matter of projecting away those partials of u that are only with

respect to the components of ω (including u itself) and then restricting to Y . In our
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formalism the first process is a matter of discarding u and restricting the other multilinear

functions representing the various derivatives of u to subspaces of their domains. These

operations can be understood as composition with a projection, which is 1-Lipschitz, so

this step is tame by Lemma A8. Lemma A3 implies that the second step is tame, so P

can be understood as a composition of tame operators, which is tame by Lemma A4.

Proof of Proposition A6. Having shown that F is tame, in view of Proposition A1 it

now suffices to show that each of the operators d 7→ Dsπd (s = 1, . . . , r − 1) is tame

and locally Lipschitz. Fix d ∈ D. A consequence of the implicit function theorem is the

formula

Dπd(ω) = −∂ad(ω, πd(ω))
−1 · ∂ωd(ω, πd(ω)),

which is derived by totally differentiating the formula d(ω, πd(ω)) = 0 and solving for

Dπd(ω). Let f(L) = L−1 be the function mapping a nonsingular linear transformation

to its inverse. Differentiating the formula L · f(L) = I gives the formula

Df(L)V = −L−1 · V · L−1

for all linear L, V : Rn → R
n with L invertible. In particular, f is a locally Lipschitz

function, and a formula for Dsπd(ω) as a polynomial function of ∂ad(ω, πd(ω))
−1 and the

various derivatives of d can be obtained by differentiating the formula above s−1 times,

then substituting the previously obtained formulas for the lower order derivatives of πd.

For d̂′ in a sufficiently small neighborhood of d̂, there are consequently Lipschitz bounds

on how rapidly Dsπd′ varies as d̂′ varies, so F is locally Lipschitz. Furthermore, Lips-

chitz bounded subsets of a sufficiently small neighborhood of d̂ are mapped to Lipschitz

bounded sets by the operator d̂′ 7→ Dsπd′ . Thus F is tame.

Proof of Proposition A7. We have ∆rH(u⊗π) = H(u⊗π)×∆r−1DH(u⊗π), so Propo-

sition A1 implies that H is tame if û⊗ π̂ 7→ H(u⊗ π) and û⊗ π̂ 7→ ∆r−1DH(u⊗ π) are

tame. We show these in turn.

Since the projection Jr(V,W ) → W onto the first component is linear, hence Lips-

chitz, û 7→ u and π̂ 7→ π are tame (Lemma A8). Thus (Proposition A2) û⊗ π̂ 7→ u⊗π is

tame. The projections u⊗π 7→ u and u⊗π 7→ π are tame (Lemma A9) and the constant

operator u⊗π 7→ IdΩ is tame (Lemma A2). Now u⊗π 7→ IdΩ×π, u⊗π 7→ u⊗(IdΩ×π),

and u ⊗ π 7→ u ◦ (IdΩ × π) = H(u⊗ π) are tame (Proposition A1 and Lemmas A9 and

A7 respectively). Thus (Lemma A4) û⊗ π̂ 7→ H(u⊗ π) is tame.

By the envelope theorem

DH(u⊗ π) = (∂ωu+ ∂au ◦Dπ) ◦ (IdΩ × π) = ∂ωu ◦ (IdΩ × π),
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so (Lemma A4 and Proposition A3) û ⊗ π̂ 7→ ∆r−1DH(u ⊗ π) is tame if û ⊗ π̂ 7→

∆r−1∂ωu ⊗∆r−1(IdΩ × π) is tame. By virtue of Proposition A2 it suffices to show that

û⊗π̂ 7→ ∆r−1∂ωu and û⊗π̂ 7→ ∆r−1(IdΩ×π) are tame. Lemma A9 implies that û⊗π̂ 7→ û

and û ⊗ π̂ 7→ π̂ are tame, so (Lemma A4) it suffices to show that û 7→ ∆r−1∂ωu and

π̂ 7→ ∆r−1(IdΩ × π) are tame. The first of these is tame because the passage from û to

∆r−1∂ωu is composition with a linear projection, which is Lipschitz (Lemma A8).

The constant and identity operators π̂ 7→ ∆r−1IdΩ and π̂ 7→ π̂ are tame (Lemma A2

and Corollary A.1) so (Proposition A1) π̂ 7→ ∆r−1IdΩ × π̂ is tame. The passage from

∆r−1IdΩ × π̂ to ∆r−1(IdΩ × π) is tame because it is accomplished by applying the linear

function Jr−1(V, V )× Jr−1(V,W ) → Jr−1(V, V ×W ) that takes the sum of the various

components (Lemma A8). Thus (Lemma A4) π̂ 7→ ∆r−1(IdΩ × π) is tame.

Proof of Proposition A8. We now know that P, F , and H are tame, and KQ is tame

by assumption. Therefore Lemma A4 implies that û 7→ F(P(û)) is tame. Combining

the tameness of the identity operator (Corollary A.1) and Proposition A2 shows that

û 7→ û⊗F(P(û)) is tame, and therefore (again by Lemma A4) û 7→ KQ(û⊗F(P(û))) is

tame. By assumption û0 is Lipschitz, so (Lemma A2) û 7→ û0 is tame, and applications

of Proposition A2 and Lemma A8 (with addition as the Lipschitz function) imply that

û 7→ û0 +KQ(û⊗F(P(û))) = G(û) is tame.

B Dynamic Programming on Manifolds

This appendix presents and proves Theorem B1, which generalizes Theorem 1 to dynamic

programs in which the sets of states and actions are compact subsets of suitably smooth

manifolds and are the closures of their interiors. The analysis is largely a matter of

transporting the results of Appendix A to the more general setting, so that and Section

2 (but not Sections 3–7) are prerequisites.

B1 Smooth Manifolds

In this subsection we present basic definitions for Cr manifolds, and differential calculus

for Cr functions between manifolds. These definitions should be understood as pertaining

equally to Cr,1 manifolds and Cr,1 functions between then, insofar as the discussion is

valid (with indicated modifications) if we replace Cr with Cr,1 everywhere.

A set M ⊂ R
k is an m-dimensional Cr manifold9 if, for each x ∈ M , there are open

9A more principled definition of a smooth manifold specifies that it is a topological space that is
covered by open sets with coordinate charts such that the “transition function” defined by any two
such charts is smooth. Having manifolds be subsets of Euclidean spaces has various conveniences. The
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sets U ⊂M and V ⊂ R
m such that x ∈ U and there is a Cr parameterization ψ : V → U ,

by which we mean that ψ is a Cr homeomorphism between V and U , and Dψ(y) has rank

m for all y ∈ V . (Here R
k is called the ambient space of M .) Standard constructions

imply that ψ−1 is Cr, in the sense of having a Cr extension to a neighborhood of U in

R
k. We say that ψ−1 is a Cr coordinate chart for M .

The tangent space TxM of a point x ∈ U is the image Dψ(ϕ(x)), which is m-

dimensional because Dψ(ϕ(x)) has full rank. (The chain rule easily implies that TxM

does not depend on the choice of ϕ.) Let N ⊂ R
ℓ be an n-dimensional Cr manifold, let

f : M → N be a Cr function, and let W be a neighborhood (in R
k) of M for which

there is a Cr function f̃ : W → R
ℓ such that f̃ |M = f . The standard definition of the

derivative of f at x ∈ M is Df(x) = Df̃(x)|TxM , and we will have some use for this

notion. However, for distinct x, x′ ∈ M , Jr(TxM,Rℓ) and Jr(Tx′M,Rℓ) are different

spaces, and there is as yet no notion of distance between ∆rf(x) and ∆rf(x′), so we take

a different approach.

Let Grk−m(R
k) be the Grassmann manifold of (k −m)-dimensional linear subspaces

of Rk. In standard and rather obvious ways this can be given the structure of a C∞

manifolds. We endow the manifold M with a C∞ function νM : M → Grk−m(R
k) such

that TxM + µM(x) = R
k. We also endow M with a neighborhood WM ⊂ R

k and

continuous functions πM : W → M and ̟M : W → R
k such that πM(x) = x for all

x ∈ M and ̟M(w) ∈ νM(πM (w)) for all w ∈ W . Standard constructions based on the

inverse function theorem imply the existence of such objects, and that πM is Cr. For

x ∈M we define

∆̃rf = ∆r(f ◦ πM).

We say that f is Cr,1 if M and N are Cr,1 and ∆̃rf is locally Lipschitz.

Lemma B1. If (in addition to M and N) P ⊂ R
h is a p-dimensional Cr,1 manifold and

f :M → N and g : N → P are Cr, then, for all x ∈M ,

∆̃r(g ◦ f)(x) = τ r
Rk,Rℓ,Rh(∆̃

rf(x), ∆̃rg(f(x))).

Proof. Using Proposition 2.1, we compute that

∆̃r(g ◦ f)(x) = ∆r(g ◦ f ◦ πM)(x) = ∆r((g ◦ πN ) ◦ (f ◦ πM))(x)

= τ r
Rk ,Rℓ,Rh(∆

r(f ◦ πM)(x),∆r(g ◦ πN )(f(x)))

= τ r
Rk ,Rℓ,Rh(∆̃

rf(x), ∆̃rg(f(x))).

easy Whitney embedding theorem (e.g., p. 24 of Hirsch (1976)) implies that restricting attention to
submanifolds of Euclidean spaces is almost entirely without loss of generality.
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Let C be a compact subset of M that is the closure of its interior. We will say that

a function f : C → N is weakly Cr if it continuous, the restriction f ◦ of f to the interior

of C is Cr in the usual sense, and ∆̃rf ◦ has a continuous extension to C, in which case,

as before, we abuse notation slightly by letting ∆̃rf denote this extension. For T ⊂ N

let Cr
w(C, T ) be the set of such functions whose images are contained in T . As before,

and we say that f ∈ Cr
w(C, T ) is Cr,1 if ∆̃rf is Lipschitz. Let Cr,1

w (C, T ) be the set of

such functions. We write Cr
w(C) and C

r,1
w (C) in place of Cr

w(C,R) and C
r,1
w (C,R).

We now establish the analogue of Proposition 2.2. That is, for a sequence of weakly Cr

functions, if the associated sequences of derivatives converge, then the limiting function

is weakly Cr and its derivatives are the limits of the associated sequences of derivatives.

Proposition B1. If {fi} is a sequence in Cr
w(C,N) with ∆̃rfi → g ∈ C(C, Jr(Rk,Rℓ)),

so that fi → f ∈ C(C,N), then f ∈ Cr
w(C,N) and ∆̃r(f) = g.

Proof. We first consider the special case in which C is contained in an open U ⊂M for

which there is a Cr coordinate chart ϕ : U → R
m, and f(C) is contained in an open

V ⊂ N for which there is a Cr coordinate chart ψ : V → R
n. For each i we have

∆̃r(ψ ◦ fi ◦ ϕ
−1)(u) = τ r(∆̃rϕ−1(u), ∆̃rfi(ϕ

−1(u)), ∆̃rψ(fi(ϕ
−1(u)))).

for all u in the interior of ϕ(C), and by continuity it holds for all u in ϕ(C). (It is easy

to see that the logic of Proposition 2.1 extends to the composition of any number of Cr

functions.) Therefore

∆̃r(ψ ◦ fi ◦ ϕ
−1)(u) → τ r(∆̃rϕ−1(u), g, ∆̃rψ(fi(ϕ

−1(u)))),

and Proposition 2.2 implies that ψ ◦ f ◦ ϕ−1 is Cr on the interior of ϕ(C), and that

∆̃r(ψ ◦ f ◦ ϕ−1)(u) = τ r(∆̃rϕ−1(u), g, ∆̃rψ(f(ϕ−1(u)))).

It follows that f is Cr on the interior of C, and that

∆̃rf(x) = τ r
(

∆̃rϕ(x), τ r
(

∆̃rϕ−1(ϕ(x)), g(x), ∆̃rψ(f(x))
)

, ∆̃rψ−1(ψ(f(x)))
)

= g(x)

for all x ∈ C.

To establish the general case we simply observe that C can be covered by finitely

many compact subsets that are the closures of their interiors, that are contained in the

domains of coordinate charts for M , and whose images under f are contained in the

domains of coordinate charts for N .

We note that ∆̃rCr(C) is a closed subspace of the Banach space C(C, Jr(Rk)).
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Lemma B2. Let M and N be Cr,1 manifolds, and let C ⊂ M be a compact set that is

the closure of its interior. Let M ′ be a Cr,1 manifold, let h : M ′ → M be a Cr,1 diffeo-

morphism10, and let C ′ = h−1(C), Then the operator γh : ∆̃
rCr,1(C,N) → ∆̃rCr,1(C ′, N)

given by γh(∆̃
rf) = ∆r(f ◦ h|C′) is tame.

Proof. Since h is Cr,1, h|C′ and ∆̃rh|C′ are Lipschitz, so Lemma A2 implies that the

operators ∆̃rf 7→ h|C′ and ∆̃rf 7→ ∆̃rhC′ are tame. Corollary A.1 implies that ∆̃rf 7→

∆̃rf is tame. Now Lemma A2 implies that ∆̃rf 7→ h|C′ ⊗ ∆̃rf is tame, and Lemma

A7 implies that ∆̃rf 7→ ∆̃rf ◦ h|C′ is tame, so Proposition A1 implies that ∆̃rf 7→

∆̃rh × ∆̃rf ◦ h|C′ is tame. We have ∆̃r(f ◦ h)(x′) = τ r(∆̃rh(x′), ∆̃rf(h(x′))) for all x

in the interior of C ′, and by continuity this formula also holds for boundary points, so

Lemma A8 implies the claim. (Various appeals to the composition of tame operators

being tame (Lemma A4) have been omitted.)

The proof of the following result is quite similar, so we leave it to the reader.

Lemma B3. Let M and N be Cr,1 manifolds, and let C ⊂ M be a compact set that

is the closure of its interior. Let N ′ be a Cr,1 manifold, and let h : N → N ′ be a

Cr,1 diffeomorphism. Then the operator ηh : ∆̃rCr,1(C,N) → ∆̃rCr,1(C,N)′ given by

ηh(∆̃
rf) = ∆r(h ◦ f) is tame.

B2 Smooth Dynamic Programs

We return to the dynamic programming setting. Fix an r ≥ 2, and assume now that

M ⊂ R
k and N ⊂ R

ℓ are m- and n-dimensional Cr,1 manifolds, and that Ω ⊂ M and

A ⊂ N are compact sets that are the closures of their interiors, and there is a given

transition function Q : Ω× A→ ∆(Ω).

For u ∈ Cr
w(Ω × A) we usually write û in place of ∆̃ru, for V ∈ Cr

w(Ω) we usually

write V̂ in place of ∆̃rV , and for π ∈ Cr−1
w (Ω, A) we usually write π̂ in place of ∆̃r−1π.

If û, V̂ , or π̂ is given, then u, V , or π denotes the corresponding element of Cr
w(Ω×A),

Cr
w(Ω), or C

r−1
w (Ω, A).

For V ∈ C(Ω) let KQ(V ) : Ω× A→ R be the function

KQ(V )(ω, a) =

∫

Ω

V (ω′)Q(ω, a; dω′).

The transition function Q is said to be rth order smoothing if K̃Q(C
r
w(Ω)) ⊂ Cr

w(Ω×A)

and K̃Q is tame, where K̃Q : ∆̃r(Cr
w(Ω)) → ∆̃r(Cr

w(Ω × A)) is the operator given by

K̃Q(V̂ ) = ∆̃r(K̃Q(V )).

10That is, h is a bijection and h and h−1 are Cr,1 functions.
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We say that u satisfies the standard conditions if, for each ω ∈ Ω, there is a unique

maximizer π(u,0)(ω) of u(ω, ·), π(u,0)(ω) is in the interior of A, and ∂aau(ω, π(u,0)) is nega-

tive definite. We call π(u,0) the myopically optimal policy of u. If u ∈ Cr
w(Ω×A) satisfies

the standard conditions, then the logic of Lemma 2.5 easily generalizes to imply that

π(u,0) ∈ Cr−1
w (Ω, A), and if, in addition, u ∈ Cr,1

w (Ω× A), then π(u,0) ∈ Cr−1,1
w (Ω, A).

The following result is the culmination of our work on dynamic programming. In

addition to generalizing Theorem 1 to the manifold setting, it also shows how the per

period reward can be taken as a parameter with respect to which the value function and

optimal policy are Lipschitz functions.

Theorem B1. Assume Q is rth order smoothing, u0 ∈ Cr,1
w (Ω×A) satisfies the standard

conditions, û0 is strictly Λ-Lipschitz, and α > 0. There is a neighborhood B of û0 in

{ û ∈ ∆r(Ω× A) : û is Λ-Lipschitz }

and ε > 0 such that:

(a) For each (û, δ) ∈ B × (−ε, ε):

(i) u satisfies the standard conditions;

(ii) The discounted dynamic program with payoff u and discount factor δ has value

and refactored value functions V(u,δ) ∈ Cr,1
w (Ω) and u(u,δ) ∈ Cr,1

w (Ω, A) and a

unique stationary optimal policy π(u,δ) ∈ Cr−1,1
w (Ω, A).

(b) The maps (û, δ) 7→ û(u,δ), (û, δ) 7→ V̂(u,δ), and (û, δ) 7→ π̂(u,δ) are Lipschitz.

In its overall outline the proof follows the path of the proof of Theorem 1. We define

three operators by generalizing our earlier definitions of P , F , and H , and the derived

extensions of P, F , and H. Composing an operator with a restriction operator can give

an operator whose action is local, in the sense of being confined to the domain of a single

coordinate chart. In the proofs of the analogues of Propositions A5, A6, and A7 the

following result will be used to transfer the tameness of P, F , and H to the manifold

setting.

Proposition B2. Let X, X ′, Y , and Y ′ be metric spaces with X and X ′ compact, and

let γ : S → C(X ′, Y ′) be an operator, where S ⊂ C(X, Y ). If C1, . . . , Ck are compact

subsets of X ′ whose interiors cover X ′ and ρCj
◦ γ is tame for all j, then γ is tame.

As in the body of the paper, we defer the proofs of the supporting results until after

the main argument has been stated.
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Let π0 be the myopically optimal policy for u0. Let Y ⊂ Ω × A be a compact

neighborhood of the graph of π0. For each ω ∈ Ω let

Yω = { a ∈ A : (ω, a) ∈ Y }.

We require that Y is small enough that ∂aau0(ω, a) is negative definite for all (ω, a) ∈ Y

and, for each ω, ∂au0(ω, a) 6= 0 for all a ∈ Yω \ {π0(ω)}.

Let Ũ be the set of u ∈ Cr
w(Ω × A) such that ∂aau0(ω, a) is negative definite for all

(ω, a) ∈ Y and, for each ω, there is a unique maximizer of u(ω, ·) which is in the interior

of Yω, and ∂au0(ω, a) 6= 0 for all a ∈ Yω other than this maximizer. Of course u0 ∈ Ũ .

Let Ũ = { û : u ∈ Ũ }. For any Λ′ > 0 let ŨΛ′

be the set of û ∈ Ũ that are Λ′-Lipschitz.

Lemma B4. U is open in Cr
w(Ω×A).

Let Ẽ = { (x, y, ℓ) : x ∈ M, y ∈ N, ℓ ∈ TyN
∗ }. (Here TyN

∗ is the dual of TyN .)

To see that Ẽ is a Cr−1,1 manifold suppose that ϕ : U → R
m and ψ : V → R

n are Cr

coordinate charts for open U ⊂M and V ⊂ N , and let

ζ : { (x, y, ℓ) ∈ Ẽ : (x, y) ∈ U × V } → R
m × R

n × R
n∗

be the function ζ(x, y, ℓ) = (ϕ(x), ψ(y), ℓ ◦Dψ(y)−1). Evidently ζ is a Cr−1 coordinate

chart for Ẽ, and Ẽ is covered by the domains of such charts. For (x, y, ℓ) ∈ Ẽ let

̺(x,y)(x, y, ℓ) = (x, y) and ̺ℓ(x, y, ℓ) = ℓ.

Let D̃ be the set of Cr−1 functions d : Y → Ẽ such that ̺(x,y)(d(ω, a)) = (ω, a) and

∂a(̺ℓ ◦ d)(ω, a) is negative definite for all (ω, a) ∈ Y , and for each ω there is a unique

aω ∈ Yω such that d(ω, a) = 0, which is in the interior of Yω. For d ∈ D̃ we usually write

d̂ in place of ∆̃r−1d. Let P̃ : Ũ → D̃ be the operator given by

P̃ (u)(ω, a) = (ω, a, ∂au(ω, a)).

Let S̃ be the set of π ∈ Cr−1(Ω, A) such that for each ω, π(ω) is in the interior of Yω.

Let F̃ : D̃ → C(Ω, A) be defined implicitly by requiring that

̺ℓ(d(ω, F̃ (d)(ω))) = 0.

Let B̃ be the set of u ⊗ π ∈ Ũ ⊗ S̃ such that ∂au(ω, π(ω)) = 0 for all ω. Let H̃ : B̃ →

Cr−1
w (Ω) be the operator given by

H̃(u⊗ π) = u ◦ (IdΩ × π).

Lemma B5. H̃(B̃) ⊂ Cr
w(Ω).
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Let:

Ũ = { û : u ∈ Ũ }; D̃ = { d̂ : d ∈ D̃ }; S̃ = { π̂ : π ∈ S̃ };

B̃ = { û× π̂ : u⊗ π ∈ B̃ }.

Let P̃ : Ũ → D̃, F̃ : D̃ → S̃, H̃ : B̃ → ∆̃r(Cr,1(Ω)), and G̃ : Ũ → ∆̃r(Cr,1(Ω×A)) be the

operators given by:

P̃(û) = ∆̃r−1(P̃ (u)); F̃(d̂) = ∆̃r−1(F̃ (d)); H̃(û⊗ π̂) = ∆̃rH̃(u⊗ π);

G̃(û) = K̃Q(H̃(û⊗ F̃(P̃(û)))).

Proposition B3. P̃ is a tame operator.

Proposition B4. F̃ (D̃) ⊂ S̃ and F̃ is a tame operator.

Proposition B5. H̃ is a tame operator.

Proposition B6. G̃ is a tame operator.

Proof of Theorem B1. Since Ũ is open in Cr
w(Ω × A) and the norm of ∆rCr

w(Ω × A)

induces a finer topology, Ũ is an open subset of ∆rCr
w(Ω×A). Since G is tame, there is

a G-compliant neighborhood W ⊂ U of û0. In a metric space every neighborhood of a

point contains a closed neighborhood, so we may assume that W is closed.

The image of û0 is bounded, so there is a neighborhood T ′ ⊂ W of û0 such that there

is a compact set that contains the image of every element of T ′. The closure of T ′ also

has this property, so we may assume that T ′ is closed.

Let ŨΛ be the set of û ∈ Ũ that are Λ-Lipschitz. Since the limit of a uniformly

convergent sequence of Λ-Lipschitz functions is Λ-Lipschitz, Proposition B1 implies that

ŨΛ is a complete metric space. Let T̃ = T̃ ′∩ ŨΛ. Of course T̃ is Lipschitz bounded, and

since it is a closed subset of a complete metric space, it is complete.

Choose γ > 0 such that the closed ball B2γ(û0) of radius 2γ centered at û is contained

in T̃ ′. Choose α > 0 such that û0 is (Λ − 2α)-Lipschitz. Let B be the set of elements

of Bγ(û0) that are (Λ − α)-Lipschitz. Since T̃ is Lipschitz bounded, G̃(T̃ ) is Lipschitz

bounded, so there is a compact set that contains the image of every element of G̃(T̃ ).

For sufficiently small ε > 0 it is the case that δG̃(T̃ ) ⊂ Bγ(0) for all δ ∈ (−ε, ε). In

addition, for some κ, µ > 0 every element of G̃(T̃ ) is κ-Lipschitz and G̃|T̃ is µ-Lipschitz.

For sufficiently small ε > 0 every element of δG̃(T̃ ) is α-Lipschitz for all δ ∈ (−ε, ε).

Choose ε ∈ (0, 1/µ) such that both these conditions hold.

Let G : T̃ × B × (−ε, ε) → T̃ be the function

G(û′, û, δ) = û+ δG̃(û′).
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The conditions developed above imply that G is Lipschitz and for each (û, δ) ∈ B ×

(−ε, ε), G(·, û, δ) is µε-Lipschitz, hence a contraction. Applying Lemma 2.2, for each

(û, δ) ∈ B × (−ε′, ε′) there is a unique fixed point û(u,δ) ∈ T̃ of G(·, û, δ), and û(u,δ) is a

Lipschitz function of (û, δ).

We now have

u+ δKQ(H̃(u(u,δ), F̃ (P̃ (u(u,δ))))) = u(u,δ)

and

J(u(u,δ)) = H̃(u(u,δ), F̃ (P̃ (u(u,δ)))),

so Iδ(u(u,δ)) = u(u,δ), which is to say that u(u,δ) is the refactored value function for the

problem with per period reward u and discount factor δ.

Let π̂(u,δ) = F̃(P̃(û(u,δ))) and V̂(u,δ) = H̃(û(u,δ) ⊗ π̂(u,δ)). Since P̃ , F̃ , and H̃ are tame,

after restricting to a smaller neighborhood of (û0, 0, û0), π̂(u,δ) and V̂(u,δ) are Lipschitz

functions of (u, δ).

We now prove the supporting results.

Proof of Proposition B2. Fix f ∈ S. Let W ⊂ S be a neighborhood of f such that for

each j, W is (ρCj
◦ γ)-compliant. We claim that W is γ-compliant. Let T ⊂ W be

Lipschitz bounded. For each j there is a compact Kj ⊂ Y ′ that contains the image of

ρCj
(γ(f)) for all f ∈ T . If we set K =

⋃

jKj, then K is compact and contains the image

of γ(f) for all f ∈ T . For each j there is a constant Λj > 0 such that for every f ∈ T ,

ρCj
(γ(f)) is Λj-Lipschitz. Let M = maxy,y′∈K d(y, y

′). The Lebesgue covering lemma

gives an ε > 0 such that for all x, x′ ∈ X ′ such that d(x, x′) < ε there is a j such that

x, x′ ∈ Cj. Evidently every γ(f) ∈ γ(T ) is max{Λ1, . . . ,Λk,M/ε}-Lipschitz. Thus γ(T )

is Lipschitz bounded. For f ′, f ′′ ∈ T we have

d(γ(f ′), γ(f ′′)) = max
x′∈X′

d(γ(f ′)(x′), γ(f ′′)(x′)) = max
j

max
x′∈Cj

d(γ(f ′)(x′), γ(f ′′)(x′))

= max
j
d(ρCj

(γ(f ′)), ρCj
(γ(f ′′))).

Since each ρCj
◦ γ|T is Lipschitz, so is γ|T .

The reader should have no difficulty passing from the proof of Lemma A10 to a proof

of Lemma B4, so we do not provide a second version of this argument.

Proof of Proposition B3. It suffices to show that a given û ∈ Ũ has a neighborhood such

that the restriction of P̃ to that neighborhood of is tame. Let π be the myopically

optimal policy for u. We cover the graph of π with compact sets Y1, . . . , Yk ⊂ Y such

that, for each i:



APPENDIX 54

(a) Yi = Ωi × Ai is a cartesian product of compact subsets of Ω and A that are the

closures of their interiors.

(b) For each ω ∈ Ωi, π(ω) is in the interior of Ai.

(c) There are Cr,1 coordinate charts ϕi : Ui → R
m and ψi : Vi → R

n with Ωi ⊂ Ui ⊂M

and Ai ⊂ Vi ⊂ N .

For each i let D̃i be the set of C
r−1 functions d : Yi → Ẽ such that ̺(x,y)(d(ω, a)) = (ω, a)

for all (ω, a), and let P̃i : U → D̃i be the operator P̃i(u) = P̃ (u)|Yi. Let P̃i be the operator

given by P̃i(û) = ∆̃r−1(P̃i(u)). Evidently P̃i = ρYi ◦ P̃ , so if we can show that each P̃i

is tame, Proposition B2 will imply that P̃ is tame. Now P̃i = P̃ ′
i ◦ ρYi where P̃ ′

i has the

same definition as P̃ , restricted to the subdomain, so it suffices to show that P̃ ′
i is tame.

Let Pi and Pi be the analogous operators defined in Appendix A for the sets ϕi(Ωi) and

ψi(A), and let ζi : (x, y, ℓ) 7→ (ϕi(x), ψi(y), ℓ ◦ Dψi(y)
−1) be the Cr−1 coordinate chart

for Ẽ we saw earlier. We now have P̃i(u
′) = Pi(u

′ ◦ (ϕi × ψi)
−1) ◦ ζi and thus

P̃i(û
′) = γζi(Pi(γ(ϕi×ψi)−1(û′)))

and thus the claim follows from Proposition A5 and Lemma B2.

Proof of Proposition B4. Fix a d ∈ D̃. It suffices to show that there is a neighborhood

D̃′ ⊂ D̃ such that F̃ (D̃′) ⊂ S̃ and the restriction of F̃ to { d̂ : d ∈ D̃′ } is tame. Let

πd = F̃ (d). Let Y1 = Ω1×A1, . . . , Yk = Ωk×Ak be a compact cover of the graph of πd with

the properties enumerated in the last proof, so for each i we have Cr,1 coordinate charts

ϕi : Ui → R
m and ψi : Vi → R

n as above. Let ζi : (x, y, ℓ) 7→ (ϕi(x), ψi(y), ℓ◦Dψi(y)
−1) be

the Cr−1 coordinate chart for Ẽ we saw earlier. For each i let F̃i : D̃
′ → C(Ωi, Aji) be the

operator F̃i(d
′) = F̃ (d′)|Ωi

, and let F̃i be the operator given by F̃i(∆̃
rd′) = ∆̃r−1(F̃i(d

′)).

Evidently F̃i = ρΩi
◦ F̃ , so if we can show that each F̃i is tame, Proposition B2 will

imply that F̃ is tame. Now F̃i = F̃ ′
i ◦ ρΩi×Aji

where F̃ ′
i has the same definition as F̃ ,

restricted to the subdomain, so it suffices to show that F̃ ′
i is tame. Let Fi and Fi be

the analogous operators defined in Appendix A for the sets ϕi(Ωi) and ψi(A). Tracing

through the definitions, we find that

F̃i(d
′) = ψ−1

i ◦ Fi(ζi ◦ d
′ ◦ (ϕi ⊗ ψi)

−1) ◦ ϕi.

Therefore

F̃i(d̂
′) = ηψ−1

i
(γϕi

(Fi(ηζi(γ(ϕi⊗ψi)−1(d̂′))))),

and thus the claim follows from Proposition A5 and Lemma B2.
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Proof of Lemma B5. For u ⊗ π ∈ B̃ the envelope theorem gives D(H̃(u ⊗ π))(ω) =

D(u(·, π(ω)))(ω). Thus DH̃(u ⊗ π) is a composition of Cr−1 functions, and is Cr−1, so

H̃(u⊗ π) is Cr.

Proof of Proposition B5. Fix u⊗π ∈ B̃. It suffices to show that there is a neighborhood

B̃′ ⊂ B̃ such that the restriction of H̃ to { û′ × π̂′ : u′ ⊗ π′ ∈ B̃′ } is tame. Let

Y1 = Ω1×A1, . . . , Yk = Ωk×Ak be a compact cover of the graph of π with the properties

enumerated in the proof of Proposition B3, so for each i we have Cr,1 coordinate charts

ϕi : Ui → R
m and ψi : Vi → R

n as above. For each i let B̃i be the set of (u
′, π′) ∈ B̃ such

that π′(Ωi) is contained in the interior of Aji, and let H̃i : B̃
′ → Cr(Ωi, Ai) be the operator

H̃i(u
′, pi′) = H̃(u′, π′)|Ωi

. Let H̃i be the operator given by H̃i(û
′ ⊗ π̂′) = ∆̃r(H̃i(u

′, π′)).

Evidently H̃i = ρΩi
◦ H̃, so if we can show that each H̃i is tame, Proposition B2 will

imply that H̃ is tame. Now H̃i = H̃′
i ◦(ρΩi×Aji

⊗ρΩi
) where H̃′

i has the same definition as

H̃, restricted to the subdomain, so it suffices to show that H̃′
i is tame. Let Hi and Hi be

the analogous operators defined in Appendix A for the sets ϕi(Ωi) and ψi(A). Tracing

through the definitions, we find that

H̃i(û
′ ⊗ π̂′) = Hi((u

′ ◦ (ϕi ⊗ ψi)
−1)⊗ (ψi ◦ π

′ ◦ ϕ−1
i )) ◦ ϕi.

If θû′ and θπ̂′ are the projections û′ ⊗ π̂′ 7→ û′ and û′ ⊗ π̂′ 7→ π̂′, then

H̃i = γϕi
◦ Hi ◦ ((γ(ϕi⊗ψi)−1 ◦ θû′)⊗ (ηψi

◦ γϕ−1

i
◦ θπ̂′))).

Lemma A8 implies that θû′ and θπ̂′ are tame, so Lemmas B2, B3 and Proposition A2,

together with the tameness of compositions of tame operators (Lemma A4), imply that

H̃i is tame.

Proof of Proposition A8. We now know that P̃ , F̃ , and H̃ are tame, and K̃Q is tame by

assumption. Therefore Lemma A4 implies that û 7→ F̃(P̃(û)) is tame. Combining the

tameness of the identity operator (Corollary A.1) and Proposition A2 shows that û 7→

û⊗F̃(P̃(û)) is tame, and therefore (again by Lemma A4) û 7→ K̃Q(û⊗F̃ (P̃(û))) = G̃(û)

is tame.
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