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Preface

Contemporary mathematics is a very different thing from the mathematics
of 150 years ago. To a certain extent this is simply because we know a
lot more, but the more radical changes are transformations of the most
fundamental concepts of the subject.

At a certain point in the 19th century mathematicians realized that set
theory could be used to give exact descriptions of all the objects they worked
with. The most obvious and immediate benefit is increased clarity and rigor,
but that is far from the end of the story. The methods used to give precise
definitions of existing concepts can also be used to define novel structures,
and in the 20th century this led to the emergence of many entirely new fields
of research. A bit more subtly, the axiomatic method based on set theory
can be used to take a concept apart, to break it down into more fundamen-
tal elements, to recombine these elements, and ultimately to reformulate
the original concept in ways that discard inessential aspects inherited from
particular applications while retaining a critical core. This is the process of
abstraction.

This book describes some of the resulting concepts. Up to a point its
trajectory is quite similar to the mathematical curriculum at the secondary
school and early university level: fundamentals of mathematical reasoning,
basic facts about real numbers, continuity and convergence, some algebra,
and then the calculus. Every idea had some predecessor in the mathematical
thought of Sir Isaac Newton. But instead of thinking of these as a collec-
tion of problem-solving methods or “skills,” we will be entirely concerned
with viewing them as a system of interrelated definitions that combine to
create a mathematics that is more general, unified, and powerful than any-
thing Newton could have imagined. The final chapters use these concepts to
develop geometric structures that go far beyond geometry as it was under-
stood in the 18th century, but which are now fundamental in mathematics
and physics.

These concepts are, in themselves, quite simple. Whatever difficulties
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they entail arise in two ways. First, understanding one of them is primarily
a matter of seeing that the definition is a “correct” response to some need, or
a more general version of another concept of proven value. We will empha-
size relationships between the concepts, their historical origins, and certain
fundamental results that “validate” them, but this is only the beginning
of an accumulation of experience that generates an ever-evolving sense and
appreciation of each of them. The second source of difficulties is that truly
understanding these concepts means understanding their implications and
larger consequences for mathematics. At present mathematical knowledge
is exploding, and the distant future is unknowable; my own guess is that for
at least a few more generations our understanding of these ideas will become
increasingly incomplete. But while these thoughts should make professional
mathematicians feel humble, the reader certainly isn’t expected to grapple
with such profound mysteries.

This book is different from other books about mathematics you may
have seen. It aims at a broad audience, and assumes very little in the way
of prior mathematical background. It is, I hope, particularly well suited for
high school and college students who are interested in mathematics but have
a hard time finding books that don’t assume background they lack. At the
same time it is a book of mathematics, with formal definitions, theorems,
and proofs, rather than a book about what mathematics “is like,” or what it
aims to accomplish, or the biographies of mathematicians. Even though it
treats some subjects that are usually thought to be advanced, it is in various
ways easier reading than other math books, focusing on the simplest aspects
of each topic, with thorough, detailed, and gentle explanations of the steps
in each argument. There is very little in the way of “gotcha” cleverness. It
rambles a bit, so that not that much needs to be carried forward from one
chapter to the next. I would hope that it is accessible to anyone of normal
intelligence who approaches it with patience, going slowly enough to really
understand each new idea and argument, and with sincere interest. I have
tried in various ways to make it a bit more entertaining, in the everyday
sense, than scholarly math books which presume a readership of addicts like
myself. But your mileage may vary.

In spite of everything, there will almost certainly be times when what
you’re reading doesn’t seem to make sense. The first thing to do is to retrace
your mental steps and try to puzzle things out; usually a confusion has its
roots in an earlier misapprehension of some small detail. But sometimes
that won’t work, at which point it would be best to ask someone. Contrary
to what your teachers may have told you about the only stupid questions
being those that are unasked, almost all your questions will be dumb. Really
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dumb. Everything here is simple, once you’ve seen it in the proper light, so
most likely the answers to your questions will make you look, and feel, like
a goofball. Try to have a thick skin about this; it happens to everyone.

There is also a lot of terminology. The first time a technical term appears
it will be in bold face, either in a definition or (more commonly) with some
precise, but less formal, explanation of its meaning. There will probably be
many times when you encounter a term you don’t recall, or whose meaning
you don’t recall, or recall vaguely. Even if you are just a little bit unsure, it’s
a good idea to review the definition. (You should be able to find it quickly
by looking in the index.) This is largely a book about definitions, and
the perspective on mathematics they embody and express; using the jargon
freely once it’s been introduced is an important strategy for reinforcing your
familiarity and understanding. This may seem harsh, but it’s a bit like
learning a foreign language: a good instructor conducts the course entirely
in that language from a very early stage.

Almost certainly you already know that mathematical notation makes
heavy use of the Greek alphabet. But you might see a few Greek letters
that are new to you, and it helps to know how they are pronounced, and
a bit about how the Greek and Roman alphabets are related. If, instead
of trying to memorize the Greek alphabet now, you keep a reference handy
(perhaps bookmarked in your browser) and look up unfamiliar letters as you
go along, you’ll learn everything you need to know effortlessly.

Will reading this book help you get good grades in math courses?

I started writing it in response to frustrations I felt in teaching a course
that is usually called Mathematics for Economists. In part because the
amount of time in a one semester course is very short, in part because stu-
dents primarily want to know how to solve the problems that will determine
their grades, and in part because the problem solving techniques developed
in this course are inputs to other courses in economics, I felt, and largely
succumbed to, pressure to focus on the “how to do it” aspects of the subject,
shortchanging the conceptual underpinnings. Some of my students were ex-
cellent, but many were woeful products of years of precisely this sort of
instruction, with an almost transcendental inability to deal with the sub-
ject matter that went far beyond any lack of native intelligence. In actual
fact many of them were at least as smart as most people, or significantly
smarter. And no normal human being is truly so stupid as to be incapable of
understanding elementary mathematics, which is much simpler than many
commonplace aspects of everyday life.

Imagine a piano student who works for years with scales, triads, and
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exercises, but who never plays or hears any actual music. It would be a
hopeless struggle to “remember” information that had been stripped of any
meaning. Now suppose that one day this person attends a concert. The
next day her “skills” would be no different than they had been before, but
she could begin to practice in an entirely different manner, especially if she
continued to listen to music, and began to play real music herself. My
highest hope for this book is that in some readers it will trigger such a
process, but it is a starting point, not a cure.

There is a much simpler answer to the question above: kittens that like
to play inevitably turn into cats who know how to catch mice. Profes-
sional mathematicians are primarily motivated by intellectual stimulation
and aesthetic pleasure; the “unreasonable effectiveness” of mathematics as
a tool for dealing with the world is, for them, an unintended side effect.
The last chapter recommends several other books that convey this sense of
mathematics to less experienced readers, and there’s no reason not to start
exploring them now.
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Chapter 1

What Mathematics Is

1.1 Why Read This Book?

You enter the first room of the mansion and it’s completely
dark. You stumble around bumping into the furniture, but gradu-
ally you learn where each piece of furniture is. Finally, after six
months or so, you find the light switch, you turn it on, and sud-
denly it’s all illuminated. You can see exactly where you were.
Then you move into the next room and spend another six months
in the dark.

–Andrew Wiles

Does this sound like you taking a math course? Maybe you’re thinking
“Yeah, except for the part about how ‘suddenly it’s all illuminated.’ ” First
of all, you’re in excellent company: Andrew Wiles (b. 1953) is describing his
experience working out the proof of what was until then the most famous
unresolved conjecture in mathematics. For everyone, especially the best,
new mathematics is baffling until you understand it, but once you really
understand it, it’s simple.

Unlike most books, which focus on one nut or bolt at a time, this book
proceeds with a lighter touch, aiming to first give you a sense of the overall
structure of mathematics, its methods, and its larger agenda. One concrete
purpose is to serve as a supplemental reading for students taking courses
in advanced calculus and real analysis. A supplemental reading should do
something different from the course’s main text, and if I had to summarize
the difference in just a few words, I would say that whereas textbooks con-
ceive of the learning process as work, this book is meant to be entertaining.

1
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Like a popular book about science, it takes a broader (and somewhat super-
ficial) view of the material, emphasizing certain key concepts as they stand
in relation to each other and the larger goals of the subject. Following a
pedagogical method that is standard in physics, but rather uncommon in
mathematics, the historical development of these ideas is used to portray
them as creative responses to the problems and opportunities of the eras in
which they were created, not just static facts devoid of drama.

For many people a course in real analysis is their first exposure to
“higher” mathematics, with clear axiomatic foundations and rigorous justifi-
cations of all assertions. Prior to this point, mathematics may have seemed
like a grabbag of algorithms for performing various calculations, but real
analysis and subsequent courses are primarily concerned with theorems and
proofs. Computations are still important, but if you really understand the
logic of the material, you should be able to figure out how to compute when
the need arises, and merely knowing how to compute is no substitute for
real understanding. There is an undeniable sense in which this is a “harder”
kind of mathematics—you are asked to perform (by your textbook, but not
here!) at a higher level—but knowing exactly why things are the way they
are is in many ways, in the end, the simplest and easiest approach.

An initial acquaintance with the concepts described here doesn’t require
a huge effort. In order to understand this book you have to be able to follow
a logically compelling argument, like a juror at a trial, but there are only
a few algebraic computations that could be described as complex. While
some of the proofs have surprising aspects, they are mostly straightforward,
and there is nothing terribly deep or complex here. This book is not meant
to be “studied,” and you are not expected to do lots of problems as you go
through it. The problems at the end were added as an afterthought. Possibly
you’ll enjoy them—many introduce interesting concepts and results—and
working a few for each chapter may help reinforce and consolidate your
understanding, but it’s up to you. The main text was written with the
expectation that you’ll simply be reading.

And it is all breathtakingly beautiful. The concepts described in this
book are among the greatest contributions to science ever, as important as
evolution and relativity in making the last couple centuries a watershed in
human affairs. Results such as the fundamental theorem of algebra and
the existence of non-Euclidean geometries, which stymied the most talented
mathematicians for decades or centuries, are made accessible, not just to
experts, but to beginners.

The rigorous, proof-oriented approach to mathematics requires exact
axiomatic foundations, which means going back to the very beginnings of
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the subject and redeveloping everything from scratch. For some readers this
will mean that the early parts of the book, especially this chapter and the
next, are largely review, but the point of view will probably be somewhat
unfamiliar, and there are a few advanced ideas and intriguing tangents to
spice things up.

Going back to the very beginning also means that this book is in prin-
ciple accessible to readers who have only advanced as far as high school
algebra. Whether this is true in practice depends on the reader’s ability
and motivation. If you’re a secondary school student (or a curious layper-
son) who enjoys mathematics, and you think you’re reasonably good at it,
by all means give this book a try! When I was young I was frustrated by
the paucity of books that were accessible, and aimed at letting me advance
in the subject by reading on my own. If you feel the same way, you’re the
sort of reader I have had in my mind’s eye.

Especially if you have less preparation, you’ll probably find that this
book is much more tiring than other kinds of reading. With a book of
crossword puzzles the usual pace would be one or two a day, or maybe three
if you felt exceptionally enthusiastic. Thinking about each section here as
a puzzle, to be solved and savored, will put you on a good pace. Learning
mathematics reprograms the mind at a deep level, and this is a process that
takes time, and sleep. So read slowly, trying to fully understand each step,
and take some time out to digest before going on to the next section or
chapter. As you reflect on what you’ve read, you’ll often notice some new
connection or unexpected perspective.

Reading a book about rigorous mathematics is a bit like walking a
tightrope—if you don’t correctly understand something, subsequent mate-
rial quickly becomes confusing or impenetrable—and perhaps most readers
won’t make it to the end. This happens to all readers of math books at all
levels, and you shouldn’t feel bad about it. Possibly you’ll pick up where
you left off a couple weeks, or a couple years, later, with your prior confusion
clarified. But even if you don’t, by going as far as you could you will have
succeeded in pushing your understanding to a new level.

1.2 What Is “Doing” Mathematics?

I recently read some autobiographical comments by a mathematician who
said that when he was a high school student, the idea that new mathematics
was being created in the present day would have seemed as bizarre to him
as imagining that professors of English sat around making up new words.
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One can hardly imagine learning about music without quickly realizing that
it is something that people compose and perform, but in elementary and
secondary school mathematics is often presented as an entirely impersonal
collection of true facts and computational methods. Computational ques-
tions are used in math courses to test the student’s facility, and too often
students (and their instructors!) mistakenly believe that the ability to solve
such problems is the goal of the course. If you just practice the methods of
doing standard problems you might scrape by, but the real point of learning
mathematics is to develop the ability to understand logical and quantitative
arguments, and to create original, valid arguments yourself. Before anything
else, one should have a sense of what people are trying to do when they “do”
mathematics.

It seems that elementary mathematics emerged in the ancient world as a
response to practical problems such as keeping accounts or measuring land.
As knowledge accumulated and became more voluminous, presumably there
arose a desire to make it more systematic. All this is pretty murky and
speculative, but what we do know for sure is that this process led eventually
to the discovery of the axiomatic method, as embodied in Euclid’s (325-
265 BC) Elements.

In the axiomatic method a substantial body of knowledge is organized
as a combination of a small number of fundamental propositions, called ax-

ioms, that are taken as given, and a large number of logical consequences.
It is a fundamental method of all of science (not just mathematics) for at
least three reasons. First, it simplifies, clarifies, and organizes everything.
In your own study of mathematics you should aim at capturing the psycho-
logical benefits of the axiomatic approach by organizing your own knowledge
around first principles and deductive methods. Second, the distinction be-
tween assumptions and logical inferences is critical in science: assumptions
are open to doubt, but logic is not, so if a conclusion seems dubious or
downright counterfactual, some assumption has to be modified.

Most important, though, is that axiomatic organization of scientific
knowledge almost always suggests a host of specific questions and general
directions for further research. The explosive growth of scientific knowl-
edge during the last few centuries is, in large part, the natural consequence
of a relentless pursuit of what seem, after logical organization of existing
knowledge, to be the most fundamental unresolved issues.
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For a concrete illustration of how this might happen (the actual his-
torical process was much more complicated) we’ll consider the notion of
symmetry. We’ll begin with the observation that, in some vague sense,
an equilateral triangle is “more symmetric” than an isoceles triangle. Just
what is this “symmetry” thing, of which there might be more or less in any
particular instance? Well, the general idea of symmetry has a huge num-
ber of applications, and one thing they all have in common is interchange
of various elements of the object under consideration. Concretely, one can
place a copy of an equilateral triangle on top of the original triangle in six
different ways that preserve the distances between all vertices, but for an
isoceles triangle there are only two ways to do this.

So, it seems that a symmetry of an equilateral triangle can be represented
by a function1 mapping vertices to vertices, say σ(A) = B, σ(B) = C, and
σ(C) = A. It seems natural to ask about the properties of such mappings,
and it seems evident that a mapping representing a symmetry should be a
bijection: exactly one element of its domain is mapped to each element of
its range2.

1The discussion below assumes you already know what sets and functions are. If you
don’t, you should first read the description of these concepts at the beginning of Section
1.4.

2As you may already know, this property is usually broken down into two parts. A
function f : X → Y is one-to-one, or injective, or an injection, if, for each element y
of the range Y , there is at most one x in X such that f(x) = y. It is onto, or surjective,
or a surjection, if, for each y ∈ Y there is at least one x ∈ X such that f(x) = y. For a
function between two finite sets with the same number of elements, or from a finite set to
itself, these two conditions amount to the same thing.
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Actually, a mathematician is inclined to ask a somewhat different ques-
tion: what are the properties of the collection of all mappings representing
symmetries of a given object? It turns out that there are three key proper-
ties. First, the identity function should always be a symmetry. For any
set X, IdX will denote the mapping that takes each element of X to itself.
Thus:

Id{A,B,C}(A) = A, Id{A,B,C}(B) = B, Id{A,B,C}(C) = C.

Second, the composition of any two mappings representing symmetries should,
in turn, be a mapping representing a symmetry. In general, if f maps the
set X into the set Y , and g maps the set Y into the set Z, then the compo-

sition of f and g is the mapping g ◦ f of X into Z that takes each x ∈ X to
g(f(x)). Suppose τ(A) = A, τ(B) = C, and τ(C) = B. Then (as you should
verify for yourself) τ ◦ σ takes A to C, B to itself, and C to A. Third, the
inverse of any mapping representing a symmetry should represent a sym-
metry. If f is a bijection mappingX into Y , then f−1 is the unique mapping
of Y into X satisfying f−1 ◦ f = IdX . So, σ−1, which takes A to C, B to A,
and C to B, should represent a symmetry.

Now let’s consider a different situation exhibiting symmetries. Alice,
Bob, and Carol play the following game. Each takes a black pawn and a
white pawn behind his or her back, then, without letting the other players
see, brings forward a hand containing a single pawn. If all three players chose
the black pawn, or they all chose the white pawn, then no money changes
hands. If two chose black and one chose white, or if two chose white and one
chose black, then the two who chose the same color each pay $1 to the third
player. Evidently this game is symmetric insofar as the rules are “invariant”
under any bijective mapping of the set {Alice,Bob,Carol} to itself.

The point of this example is that the relevant symmetries on the set
{A,B,C} of vertices of an equilateral triangle are, in some obvious but as
yet unexpressed sense, “the same” as the relevant symmetries on the set
{Alice,Bob,Carol} of players of this game. The technique modern mathe-
matics uses to capture such notions is abstraction: we define a new type of
object that embodies the common features of these two symmetric situations
while discarding the aspects that are particular to one or the other of the
two examples.

Sometimes this process goes further than one might expect, arriving at
definitions that can seem completely baffling if one has not already traced
through the process that led to them. The definition below might seem
mystifying if you didn’t know that it is based on two further observations
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about composition of functions. First, if f : X → Y is a function, then

f ◦ IdX = f = IdY ◦ f.

Second, composition is associative: if f : X → Y , g : Y → Z, and
h : Z → W are functions, then for any x the three steps in figuring out
what h(g(f(x))) is can be thought of as the result of combining pairwise
compositions in two different ways, but the grouping doesn’t affect the result:

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Here is our first main concept, which will come up again and again.

Definition 1.1. A group is a set G with a binary operation (that is, a
function taking ordered pairs of elements of G to elements of G, that we
will write using the notational conventions of multiplication) satisfying the
following conditions:

(a) The operation is associative: g(g′g′′) = (gg′)g′′ for all g, g′, g′′ ∈ G.

(b) There is an eG ∈ G, called the identity element, such that

eGg = g = geG

for all g ∈ G.

(c) For each g ∈ G there is an inverse g−1 ∈ G such that

gg−1 = eG = g−1g.

The set of all bijections from {A,B,C} to itself is a group, as is the set
of all bijections from {Alice,Bob,Carol} to itself. If we want to emphasize
that these are really the same group we can proceed as follows. First, for
any positive integer n we define Sn to be the set of all bijections from
{1, . . . , n} to itself. This is called the symmetric group on {1, . . . , n};
since compositions and inverses of bijections are bijections, it clearly satisfies
the three conditions above. An action of a group G on a set X is a function
taking each pair (g, x) in which g ∈ G and x ∈ X to an element of X, which
we denote by gx. This function must have the following properties:

(i) eGx = x for all x ∈ X;

(ii) g(g′x) = (gg′)x for all g, g′ ∈ G and x ∈ X.
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In the first action we have in mind an element of Sn interchanges the elements
of {A,B,C} in “the same way” that it interchanges the elements of {1, 2, 3}.
For example, if σ(1) = 1, σ(2) = 3, and σ(3) = 2, then σA = A, σB = C,
and σC = B. The action of S3 on {Alice,Bob,Carol} is defined analogously.

The action is said to be faithful if eG is the only element of G that
induces the identity function on X. That is, if gx = x for all x ∈ X,
then g = eG. We can now sum it all up quite succinctly by saying that
in the two situations described above S3 acts faithfully on {A,B,C} and
{Alice,Bob,Carol} respectively.

This all seems pretty simple, and the ancient Greeks clearly knew about
symmetry, and were interested in it, so you might guess that these defini-
tions have been around for at least 2500 years, but you would be wrong.
The concept of a group is only about 200 years old. It’s not so easy to psy-
choanalyze the failings of our forebears, but one can suggest three factors
to account for this.

First, until recently people have generally believed that mathematical
objects are, in some sense, already “out there.” In ancient Greece the
Pythagorean school of philosophy held that all numbers are rational, i.e.,
ratios of integers. Note the denigration suggested by this terminology: even
if other numbers do exist, they’re kind of nutty. Possibly you were taught,
at a certain age, that −1 doesn’t have a square root, then later you learned
that it does, sort of, except that

√
−1 is “imaginary” and not “real.”

Probably more important than such prejudices, which mathematicians
would have been happy to overcome, even if the solid citizens were dubious,
is the fact that the technology for constructing new mathematical objects
using set theory is a recent development. We’ll say much more about this
in a little bit.

Finally, even though the central definitions of mathematics are, in the
end, simple, the historical process that created them wasn’t. Nowadays
there are thousands of new definitions proposed every year, in the course
of mathematicians doing their work. For specific, well defined projects this
can be straightforward, but the biggest concepts in mathematics, such as
symmetry, or number, or geometry, are studied continually for centuries on
end, and the formulations of them that are most popular in any period are
obtained by recrafting earlier approaches to fit the applications of greatest
current interest. Although symmetries have been around in various forms for
a long time, certain aspects of their importance became apparent during the
first part of the 19th century. The definitions above, and the overall way we
think about groups, emerged gradually during the next fifty or one hundred
years. As you probably noticed, by themselves these definitions don’t really
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say anything about symmetry that you didn’t know beforehand, and while
they might seem simple and natural, we haven’t yet presented any particular
reason to think they’ll be useful or interesting.

Much of the recent growth of mathematics is the result of a more or less
automatic consequence of abstraction: a new concept, say the notion of a
group, is introduced because it is relevant and illuminating in its application
to preexisting mathematical phenomena, but it then becomes an object of
study in itself. To give some flavor of this, and to introduce ideas that will
recur in different contexts later, I am going to quickly state some of the basic
definitions and results of group theory. The material below is written in the
terse, “just the facts,” style of modern mathematics, but please don’t be
intimidated. At this point you can’t possibly “truly understand” either the
importance or the ramifications of what follows, and you shouldn’t expect
to comprehend it “fully.” (Realistically, you’ll probably need to review it,
possibly more than once, as the concepts are applied later.) Just read it
slowly and carefully, trying to see that it makes sense on its own terms.

Let G be a group. One important fact about groups is that if g, ε ∈ G
satisfy g = gε, then

ε = eGε = (g−1g)ε = g−1(gε) = g−1g = eG.

A symmetric argument shows that ε = eG whenever g = εg. That is, there
is only one element of G that acts like eG, in connection with any element
of G, from either side. Another important fact is that g′ = g−1 whenever
gg′ = eG because

g−1 = g−1eG = g−1(gg′) = (g−1g)g′ = eGg
′ = g′.

Again, a symmetric argument implies that g′ = g−1 whenever g′g = eG.
Thus, for each g ∈ G, there is only one element of G that acts, from either
side, like g−1. In particular, each g ∈ G is the inverse of its inverse:

(g−1)−1 = g.

Now let H be a second group. A homomorphism from G to H is a
function ϕ : G → H that “respects” or “commutes with” the group opera-
tions:

ϕ(gg′) = ϕ(g)ϕ(g′)

for all g, g′ ∈ G. It is always the case that ϕ(eG) = eH because

ϕ(eG) = ϕ(eG)ϕ(eG)ϕ(eG)−1 = ϕ(eGeG)ϕ(eG)−1 = ϕ(eG)ϕ(eG)−1 = eH .
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For any g ∈ G we have ϕ(g−1) = ϕ(g)−1 because

ϕ(g)ϕ(g−1) = ϕ(gg−1) = ϕ(eG) = eH .

A homomorphism ϕ is said to be an isomorphism if it is bijective, in
which case we say that G and H are isomorphic. The most basic and
important fact about isomorphisms is that the inverse of an isomorphism
is also an isomorphism. To prove this we first note that the inverse of any
bijection is a bijection, so the key point is that the inverse of an isomorphism
is a homomorphism. Take two elements h and h′ of H, set g := ϕ−1(h) and
g′ := ϕ−1(h′), and compute that

ϕ−1(hh′) = ϕ−1(ϕ(g)ϕ(g′)) = ϕ−1(ϕ(gg′)) = gg′ = ϕ−1(h)ϕ−1(h′).

By the way, the symbol ‘:=’ is the assignment operator. In most
mathematics books it’s written as ‘=’, leaving the reader to determine from
the context whether the sentence in question is an assertion that two things
are equal or a definition of the thing on the left as a symbol whose meaning
is the thing on the right.

If f : X → Y is a function and f(x) = y, then we say that y is the
image of x under f , and that x is a preimage of y. Another important
point about notation is that whenever f : X → Y is a function and B ⊂ Y ,
f−1(B) denotes the set { x ∈ X : f(x) ∈ B } of preimages of elements of
B. This makes sense regardless of whether f is invertible, in the sense of
being one-to-one and onto. Usually we’ll write f−1(y) in place of the more
cumbersome f−1({y}) when y ∈ Y , but now you have to be careful: if f is
invertible, f−1(y) will typically denote the element of X that is mapped to
y by f , and otherwise it denotes the set of preimages of y.

An isomorphism from a group to itself is called an automorphism.
That IdG is an automorphism is a simple and obvious, but crucially impor-
tant, fact. There are automorphisms that are called inner automorphisms

because they come from the group itself: for any γ ∈ G let Cγ : G → G be
the function that takes g ∈ G to Cγ(g) = γgγ−1. This is a homomorphism
because

Cγ(gg
′) = γgg′γ−1 = γgeGg

′γ−1 = γgγ−1γg′γ−1 = Cγ(g)Cγ(g
′)

for all g, g′ ∈ G, and Cγ−1 is the inverse of Cγ (please convince yourself
that this is so) so Cγ is an automorphism. Note that IdG = CeG

is an
inner automorphism. An automorphism that isn’t inner is called an outer

automorphism.
A subgroup of G is a subset G′ ⊂ G such that:
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(i) eG ∈ G′;

(ii) g−1 ∈ G′ whenever g ∈ G′;

(iii) gg′ ∈ G′ whenever g, g′ ∈ G′.

That is, a subgroup of G is a subset containing eG that is “closed” under
inversion and the group operation, in the sense that { g−1 : g ∈ G′ } and
{ gg′ : g, g′ ∈ G′ } are both contained in G′. (Since (g−1)−1 = g for all g, the
first set is actually equal to G′, and the second set is equal to G′ because G′

contains eG.) Observe that G itself and {eG} are always subgroups. (That
is, please check (i)-(iii) in your head.) To a large extent group theory regards
the “structure” of a group as synonymous with its system of subgroups.

Let ϕ : G → H be a homomorphism. The following argument shows
that if H ′ is a subgroup of H, then

ϕ−1(H ′) := { g ∈ G : ϕ(g) ∈ H ′ }

is a subgroup of G. Above we showed that ϕ(eG) = eH , so eG ∈ ϕ−1(H ′).
If g ∈ ϕ−1(H ′), then g−1 ∈ ϕ−1(H ′) because

ϕ(g−1) = ϕ(g)−1 ∈ {h−1 : h ∈ H ′ } = H ′.

If g, g′ ∈ ϕ−1(H ′), then gg′ ∈ ϕ−1(H ′) because

ϕ(gg′) = ϕ(g)ϕ(g′) ∈ {hh′ : h, h′ ∈ H ′ } = H ′.

The kernel of ϕ is
ker(ϕ) := ϕ−1(eH).

Since {eH} is a subgroup of H, ker(ϕ) is a subgroup of G, but it turns out
that not every subgroup can be the kernel of a homomorphism. A normal

subgroup of G is a subgroup N such that Cγ(g) ∈ N whenever g ∈ N and
γ ∈ G. If g ∈ ker(ϕ) and γ is any element of G, then Cγ(g) ∈ ker(ϕ) by
virtue of the calculation

ϕ(Cγ(g)) = ϕ(γgγ−1) = ϕ(γ)ϕ(g)ϕ(γ−1) = ϕ(γ)eHϕ(γ−1)

= ϕ(γ)ϕ(γ−1) = ϕ(γ)ϕ(γ)−1 = eH .

Thus the kernel of ϕ is a normal subgroup of G.
Here’s an example of a subgroup that is not normal. Let σ ∈ S3 be

the function that takes 1 to 2, 2 to 1, and 3 to itself. Then σ−1 = σ,
so G′ := { Id{1,2,3}, σ } obviously contains all products and inverses of its
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elements and is consequently a subgroup of S3. If γ ∈ S3 takes 1 to itself, 2
to 3, and 3 to 2, then

γ =











1 → 1

2 → 3

3 → 2,

σ =











1 → 2

2 → 1

3 → 3,

and γ−1 =











1 → 1

2 → 3

3 → 2,

so Cγ(σ) =











1 → 3

2 → 2

3 → 1.

(It doesn’t matter in this particular instance because γ−1 = γ, but our
notation for compositions lead to compositions like the one above being
computed by reading from right to left, first finding the effect of γ−1, then
the subsequent effect of σ, and finally the effect of γ.) Since it does not
contain Cγ(σ), G′ is not a normal subgroup of S3.

Everything so far is quite elementary and basic. If you feel a bit over-
whelmed, rest assured that that is natural: for many nonmathematical sub-
jects the learning process can be primarily a matter of remembering the sorts
of things that the human mind finds easy to remember, in part because they
are easily related to other things you already know. The concepts above are
second nature for any mathematician, but only as a result of seeing them
applied again and again over the years. There are many groups in the rest
of the book, so the concepts will probably seem quite familiar by the time
you reach the end.

The next definition is quite a bit less elementary. The group G is said to
be simple if its only normal subgroups are {eG} andG itself. (One thing you
should know about mathematical terminology is that “simple” objects are
usually not so simple. Truly simple things are typically said to be “trivial.”)
As it happens, one of the most celebrated recent advances of mathematics
is the completion of the classification of finite simple groups. That is,
there is now a list of exactly described finite simple groups, and any finite
simple group is isomorphic to some element of the list. The proof of the
theorem stating that this is so is scattered in about 500 journal articles
comprising over ten thousand pages, almost all of which are written in the
dense style we saw above. Currently a group of mathematicians is working
to boil this down to a simplified and unified presentation that is expected
to occupy “only” about 5000 pages.

Pretty much everyone can directly experience the wonderful flowering
of music, film, and other arts, echoing around the world these days. All
educated people know that we are living in an era of profound and rapid
scientific advances, even if each of us is limited in our ability to understand
the specifics. Unfortunately, only a small fraction of the population knows
that this is a period of equally wonderful progress in mathematics, and only
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experts can fully appreciate the beauty and magnificence of these contribu-
tions to world civilization.

1.3 Proofs

In mathematics a proposition is “known” if it has been proven. In this sense,
mathematics is all about proofs, but many students arrive at college level
mathematics without having seen any proofs, and among those who have
seen some, many have never had to write their own proofs. Here we address
some basic questions. What is a proof? Why are they the standard of truth
and knowledge in mathematics? How are proofs conceived and constructed?
What should you be trying to do when you read one? How can you learn
to write proofs yourself?

The fundamental idea is quite simple: a proof is a logically compelling
argument showing that certain premises imply a desired conclusion. That
is, we wish to show that a proposition P implies another proposition Q. We
do this by constructing a sequence of intermediate propositions R1, . . . , Rn,
where R1 = P and Rn = Q, such that for each i = 2, . . . , n, Ri is an
“obvious” or “elementary” consequence of R1, . . . , Ri−1 and other facts of
mathematics that are already known. Everybody understands what a pros-
ecutor is trying to do in the courtroom, and at a first cut a mathematical
proof is the same sort of thing: an argument that is airtight.

Things get a little bit complicated, both theoretically and practically,
when one delves into the details. What constitutes a “valid inference?”
This has been an important issue in philosophy from ancient Greece to the
present, but, practically speaking, it isn’t a serious problem at the beginning
level, since everyone knows what simple logical inferences look like. The
inferences in the vast majority of proofs, including all the proofs in this
book, are simple in this sense. We won’t worry about it.

Other mathematical sciences use proofs, but by and large their ethos con-
cerning what is known is more permissive, including empirical regularities or
propositions that seem overwhelmingly likely, but for which no proof has yet
been found. Why are mathematicians such purists? Actually, conjectures
and open problems play an important role in mathematical research, so it
is not quite correct to say that proof is the only accepted form of “knowl-
edge.” In this sense the bright red line between theorems and “conjectures
for which we have compelling evidence” is a social phenomenon, and to de-
scribe it carefully would take many pages. But at the heart of any detailed
explanation is the idea that in mathematics “knowing” which things are
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true, or very likely to be true, is much less important than having an exact
understanding of why they are true.

An example illustrates why this is so. In 1742 a Prussian mathematician
named Christian Goldbach (1690-1764) wrote a letter to Leonhard Euler
(1707-1783) proposing a conjecture which, after slight reworking, is that
every even number is the sum of two prime numbers. At present this has
been verified by computers for all even numbers less than 3×1017, and there
are probabilistic arguments that suggest that it is, in a certain sense, over-
whelmingly likely to be true. Prime numbers are distributed in an irregular
and “ragged” way, and the whole thing feels rather hopeless, so it might
seem reasonable to just accept Goldbach’s conjecture and go on to other
things. There are at least three reasons mathematicians have a different
attitude.

First off, whether or not Goldbach’s conjecture is actually true is not
very important in itself. Nothing anybody wants to do in the world would
be affected by a very large even number that happened to not be the sum
of two primes. In other sciences we agree to “know” certain things that
haven’t been established with complete rigor because there are bridges that
need to be built and diseases we would like to treat.

Second, the absolute certainty provided by proof has allowed mathemat-
ics to reach incredible heights. Proofs that go on for hundreds of pages are
possible precisely because no doubt is allowed to creep in at any stage. Think
of building a machine with thousands of parts. If each part has a failure rate
of one in one thousand, the machine probably won’t work. Mathematicians
do have some tolerance for research showing that unresolved conjectures
would have interesting consequences—among other things, such work plays
an important part in establishing that some conjectures are more important
than others—but there are important practical reasons for not letting this
sort of thing get out of hand.

Finally, in mathematics the quest is more important than the destina-
tion. Hard open problems stimulate the development of new techniques that
broaden and deepen our overall understanding of mathematics. Building on
earlier work by G. H. Hardy (1877-1947) and J. E. Littlewood (1885-1977),
in 1937 Ivan Vinogradov (1891-1983) showed that every sufficiently large
odd number can be written as a sum of three primes. That is, there is an
integer N such that for every integer n > N there are primes p, q, r such that
2n+1 = p+ q+ r. The ideas involved in that work are far beyond the scope
of this book, but hopefully the reader can imagine how these developments
might be much more interesting than simply knowing whether Goldbach’s
conjecture happens to be true.
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If you glance at a book about “higher” mathematics, you’ll quickly see
that it consists largely of definitions, theorems, and proofs, with a bit of
less formal explanation thrown in, but not much. If it is a textbook, the
problems mostly ask the students to supply proofs. The view of mathe-
matics embodied in this approach is that there is an established, logically
structured, body of material that is generally accepted, and that the task of
the author, and any student, is to first forge a secure connection with this
larger structure, then develop the book’s specific topic by extending that
structure’s logic, paying meticulous attention to getting each detail right.

This approach also embodies certain beliefs about the psychology of
learning mathematics, and the role of mathematical writing in that process.
The student’s primary focus should always be on why things are the way they
are. It is generally thought that the most effective way to communicate that
in writing is to say as little as the logical structure of the material allows,
precisely in order to highlight that structure.

If you are accustomed to focusing on how to do calculations, you won’t
already know the proper way to learn this sort of mathematics. It will take
some getting used to, you’ll have to make several adjustments, and there
are some pitfalls you’ll need to avoid. And to be frank, even if you succeed
in all this, learning new mathematics will still be hard. To an important
extent mathematicians enjoy the subject precisely because it is something
they can really sink their teeth into.

The most important thing to get used to is that you have to go one step
at a time, paying attention to each aspect of the definition, theorem, or
proof at hand, before going on to the next item. If you skip over even a few
fine points, pretty soon what you are trying to read will stop making sense,
and you will have to go back. Actually, you will need to review material you
have already read fairly often, either because you don’t remember things or
you get confused, even if you do sincerely try to apprehend each element.
Measured in pages per hour, reading mathematics is a very slow process.
In part this is because the content per page is quite high—with everything
stripped down to the minimum, a 200 page math book is actually much
longer than a 700 page book about, say, history—but it is also the case that
learning mathematics is just inherently slow.

What you should always be trying to do is to turn all the little details
into a larger, simpler picture of the key ideas underlying the main results,
and more generally why the topic is interesting, important, and structured
the way it is. Ultimately, understanding a mathematical topic is a matter of
achieving a mental state in which you could reverse engineer the particular
details by starting with the big picture and applying standard methods of
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proof and the general background obtained from prior study, the things that
everyone knows. (The meaning of “everyone” varies according to your level!)
Your ability to do this is very much a function of your command of the basics,
and an important technique for strengthening them is to continually ask
yourself whether you really understand the calculations and earlier results
that are being applied in the proof you are reading right now, recreating
them mentally, or even looking things up, if you are even a bit unsure. This
means going even slower, which will try your patience, but in a sense it is
merely a matter of supplying the sort of repetition and reinforcement that
occur naturally in other sorts of writing, but which are lost in the process
of stripping mathematical exposition down to the minimum. If this attitude
toward the material is habitual, in the long run it will speed things up
because you will be able to read with greater assurance and confidence.

A very different set of issues arise when a student starts writing proofs. It
often happens that the first assignment asking for a proof leaves the student
paralyzed, feeling that it must be simple, but not knowing where to begin.
It’s actually a lot like learning a computer programming language, in that
the first step, writing a program that simply prints “Hello, world!”, is hard
because it applies several aspects of the language, whereas everything that
comes later can be assimilated one step at a time. To see what’s involved,
let’s look at a simple, but very famous, proof.

Theorem 1.2 (Euclid). There are infinitely many prime numbers.

Proof. Suppose there are only finitely many prime number p1, . . . , pn. Let
r = p1 ·. . . ·pn+1. Then r has a factorization as a product of prime numbers,
but no pi can divide r, so there must be primes that are not included in the
list p1, . . . , pn. This contradiction completes the proof.

Before talking about the content of this argument, lets look at the purely
mechanical features. We see a heading consisting of “Theorem” and an
identifying number, both in bold face. In this case, but not always, there is
an attribution consisting of a name in parentheses. Usually this is either the
name of the theorem, if it has one, or the name of the person who first proved
the theorem, but in this particular case we know that the theorem appeared
in Euclid’s Elements, but we don’t know very much about its prior history.
Following this there is a statement in italics called the assertion. Some
space is skipped, and the actual proof is bracketed by the word “Proof”
(unindented and in italics) and a square box.

The square box is a replacement in modern texts for the more traditional
symbol ‘Q.E.D.’ This is an abbreviation for the the Latin phrase quod erat
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demonstratum, which means “thus it is demonstrated.” Possibly the symbol
‘Q.E.D.’ was truly useful back in the days when Latin had some real status
as a universal language, but now it’s just a piece of trivia. More important
is the fact that the reader often needs to be told that a proof is over. Even
though this is the meaning of the square box, it can still be helpful to say
this in words, as we have done here.

This format embodies and enforces an important principle called infor-

mation hiding: all the information required to understand the proof is
contained in the assertion, except to the extent that a proof invokes the-
orems that were proved earlier, and the assertion can be applied in later
arguments without knowing how the proof works. A similar idea has been
found to be very useful in organizing the code of large computer program-
ming projects. The declaration of a subroutine makes a promise about what
will happen when the subroutine is invoked. In order to use the subrou-
tine you do not need to know the details of how this promise is fulfilled.
The declaration will typically also specify the resources that are utilized by
the implementation of the subroutine. This sets an outer bound on what
you need to know in order to understand the implementation. Information
hiding seems to be an indispensable principle for organizing large bodies of
precise interrelated technical information in a way that can be understood
and manipulated by people.

Turning to the actual content of the proof, we see a very common and
useful idea called proof by contradiction. Logically, it is expressed by
the following formula:

[(P ∧ ¬Q) ⇒ Q] ⇒ [P ⇒ Q].

Here P and Q are variables that represent “elementary” propositions, and
∧, ¬, and ⇒ mean “and,” “not,” and “implies” respectively. In words this
formula says that if we can prove that Q is true whenever both P and ¬Q
hold, then Q must be true whenever P holds. If our goal is to prove that P
implies Q, then, in the proof, we can add the assumption that Q is false to
the other assumptions embodied in P . A more general version of this idea
is expressed by the formula

[[(P ∧ ¬Q) ⇒ R] ∧ ¬R] ⇒ [P ⇒ Q].

If P and ¬Q together imply some proposition R (e.g., 1 = 0) that we know
to be false, then Q must be true whenever P is true.

Here’s another famous example of this sort of argument.
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Theorem 1.3. There do not exist nonzero integers a and b such that a2 =
2b2, so

√
2 is an irrational number.

Proof. Suppose that, contrary to the assertion, there do exist such a and b.
The prime factorization of a2 is unique, so it must be obtained by squaring
the prime factorization of a, and consequently it has 2 raised to an even
power. But the same reasoning shows that the prime factorization of b2

has 2 raised to an even power, so that the prime factorization of 2b2 has 2
raised to an odd power. This is a contradiction of the uniqueness of prime
factorization.

Another important proof technique is called induction. It has the fol-
lowing logical pattern.

[P0 ∧ (∀n > 0)[Pn−1 ⇒ Pn]] ⇒ (∀n ≥ 0)Pn.

The symbol ‘∀’ is read “for all.” The idea is that there is a sequence of
propositions P0, P1, P2, . . . that we want to prove. If we can prove that
P0 is true, then it is enough to prove Pn, for general n, with the additional
hypothesis that Pn−1 is true. (To be a bit more precise, it is actually enough
to prove Pn with the additional hypothesis that P0, P1, . . . , Pn−1 are all
true.)

We will use induction to prove the binomial theorem, which is a famous
and very useful result that is used to expand expressions of the form (x+y)n.
First of all you have to know that for any positive integer n,

n! := 1 · 2 · · · (n− 1) · n

(pronounced “n factorial”) is the product of all the integers between 1 and
n. For example 4! = 1 · 2 · 3 · 4 = 24. We also set 0! := 1; there are deep
explanations of why this is the “right” definition of 0!, but we’ll just accept
it as a convention. For a positive integer n and an integer k with 0 ≤ k ≤ n
we define

(

n

k

)

:=
n!

k!(n− k)!
.

Lemma 1.4. For any integers n and k with n ≥ 1 and 1 ≤ k ≤ n,

(

n

k

)

=

(

n− 1

k − 1

)

+

(

n− 1

k

)

.



1.3. PROOFS 19

Proof. We compute that

(

n

k

)

=
n!

k!(n− k)!
=
n · (n− 1)!

k!(n − k)!
=

(k + (n− k)) · (n− 1)!

k!(n − k)!

=
(n− 1)!

(k − 1)!(n − k)!
+

(n− 1)!

k!(n − k − 1)!
=

(

n− 1

k − 1

)

+

(

n− 1

k

)

.

This time the result was called a lemma because its primary role to serve
as an intermediate step in the proof of another theorem. Propositions are
usually results that are less important than theorems, but which nonetheless
have some conceptual interest. A corollary is a simple consequence of some
result, usually the one that comes right before it.

Here is another proof using induction:

Corollary 1.5. For any integers n and k with n ≥ 1 and 0 ≤ k ≤ n,
(n
k

)

is
an integer.

Proof. If k = 0 or k = n, then
(n
k

)

= n!
n!·0! = 1, obviously. In particular, we

have
(

1
0

)

= 1 =
(

1
1

)

, so the result is true for n = 1. Suppose, for some n ≥ 2,

that we have already shown that
(n−1

0

)

,
(n−1

1

)

, . . . ,
(n−1
n−2

)

,
(n−1
n−1

)

are integers.

Then
(n
0

)

,
(n
1

)

, . . . ,
( n
n−1

)

,
(n
n

)

are integers: if k = 0 or k = n, then
(n
k

)

= 1,

as we have already noted, and if 0 < k < n, then
(

n
k

)

is an integer by virtue
of the lemma above.

The symbol
(n
k

)

is called a binomial coefficient and pronounced “n
choose k” because it is the number of distinct k-element subsets of {1, . . . , n},
or any set with n elements. To show this we argue by induction on n,
using the formula in the proof above. Arbitrarily, choose some element of
{1, . . . , n} that we’ll call “the last” element. For k = 0 or k = n the claim
is obvious, there is one null set and one subset containing all n elements.
For 0 < k < n, any k-element subset is either the last element together with
some (k − 1)-element subset of the remainder or a k element subset of the
remainder. Assuming that the claim has already been established with n
replaced by n−1, there are

(n−1
k−1

)

subsets of the first type and
(n−1
k

)

subsets
of the second type, so the claim follows from the hypothesis that the claim
is true with n replaced by n− 1, and the lemma above.

Here is the binomial theorem, with an inductive proof.
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Theorem 1.6 (Binomial Theorem). For any numbers x and y, and any
integer n ≥ 1,

(x+ y)n =

n
∑

i=0

(

n
i

)

xn−iyi.

Proof. This is obviously true when n = 1. Suppose it has already been
established with n− 1 in place of n. We compute that

(x+ y)n = (x+ y)(x+ y)n−1 = (x+ y)

n−1
∑

i=0

(

n−1
i

)

xn−i−1yi

=

n−1
∑

i=0

(n−1
i

)

xn−iyi +

n−1
∑

i=0

(n−1
i

)

xn−i−1yi+1.

Changing the index in the second sum by one gives

(x+ y)n =
n−1
∑

i=0

(n−1
i

)

xn−iyi +
n
∑

i=1

(n−1
i−1

)

xn−iyi

=
(n−1

0

)

xn +
n−1
∑

i=1

(

(n−1
i

)

+
(n−1
i−1

)

)

xn−iyi +
(n−1
n−1

)

yn

=
(n
0

)

xn +
n−1
∑

i=1

(n
i

)

xn−iyi +
(n
n

)

yn

where the last equality applies Lemma 1.4 and the fact that
(n−1

0

)

= 1 =
(n
0

)

and
(

n−1
n−1

)

= 1 =
(

n
n

)

.

In each of the proofs we have seen so far we invoked certain mathematical
truths without proving them first. Specifically, the first proof uses the fact
that any integer can be written as a product of prime numbers, and that if
an integer r is divisible by another integer p ≥ 2, then r+ 1 is not divisible
by p. The second proof uses the fact that the factorization of an integer
into a product of primes is unique, up to the ordering of the factors. The
inductive proofs use things like the commutative, associate, and distributive
properties of addition and multiplication. For those new to writing proofs,
these facts might all be very well known, and at the same time it is not clear
what it is, precisely, that justifies the assumption that the reader also knows
them. There is also an important related question: how much detail do you
need to include? These questions have a practical and a theoretical aspect.
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From a practical point of view, a proof occurs in some larger context
which creates certain assumptions about what is known, it is directed at
some actual or imagined audience, and it is intended to create certain effects
that go beyond its purely logical mission. The proofs you read will usually be
in books that (if they are logically organized) begin with some declaration
of expectations concerning the reader’s prior study in mathematics, and
some statement of the fundamental assumptions of the work. Many books,
including this one, begin at a lower level than the central topic, reviewing
material that should be familiar to any plausible reader, precisely in order
to create a commonly understood framework.

The proofs that you’ll write while taking courses are a bit different, since
your goal is to demonstrate that you understand the material, and that you
are a smart person who can present arguments clearly and precisely. The
question of what you can assume will be answered, to some extent, by the
material already presented in the course, but really you should think in
terms of a proof having some central idea. Your goal should be to present
that central idea clearly, with enough detail to convince the instructor that
you are aware of and know how to handle any nuances in the argument.

Proofs are written in English: you should use proper grammar (or at
least try if you’re not a native speaker) and write in complete, correctly
punctuated sentences. When you can use words in place of symbols without
loss of precision, do so. In particular, the logical symbols ∧, ∨ (“or”), ¬,
⇒, ∀, and ∃ (“there exists”) should generally be avoided except when one
wishes to emphasize the logical structure. Creating a well written proof
usually involves extensive rewriting. Often this is a matter of aiming for
greater brevity without loss of content, but more generally good mathemat-
ical writing results from a process in which the author just keeps asking
if there is some way to make things even a little bit easier for the reader
until she really can’t think of anything. This is hard work, but it can give
a surprising amount of aesthetic satisfaction. Whereas the central defini-
tions of mathematics are embodiments of profound thought and centuries of
experience, proofs can be surprising, clever, and charming.

Both for the proofs you read and those you write, there is a difference
between a “proof in logic” and a proof aimed at a human audience. For all
but the simplest theorems, a complete and exact proof in which every step
was spelled out explicitly would be long and virtually unreadable, at least
by humans. (There is an active research program developing languages that
express proofs exactly, so that computers can verify them. Converting one
page of mathematics written for people into such a language currently takes
roughly one week.) A proof for humans is really a compelling argument to
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the effect that a proof in logic could be constructed. There is an expectation
that the reader will be able to fill in “obvious” details, and the appropriate
style depends very much on the level of the intended audience.

An additional problem, both for reading proofs and writing them, is that
although they must (with minor exceptions) be presented in a logically linear
fashion, to guard against circular reasoning, they are best thought of as the
result of a “top-down” way of thinking. That is, the proposition we want
to prove is first understood as a consequence of a few “big” intermediate
steps, then we look for proofs of these steps, perhaps breaking some of these
into smaller pieces, and so forth. When reading a proof, you should not be
content with merely seeing how each step is a consequence of what came
before. In addition, you should try to understand the larger architecture
of the argument, and you should try to imagine the process by which the
author passed from the main ideas to the details.

After you’ve had a little practice, the problem of what you can legiti-
mately assume in a proof will not seem so hard. But that does not mean
that we have resolved the issue from a theoretical point of view. In fact this
question—“Where does mathematics begin?”—is a very hard one that is
still not completely settled. The next section describes an overall approach
to it that is at least very effective in a practical sense.

1.4 Foundations: Sets, Relations, and Functions

Whence it is manifest that if we could find characters or signs
appropriate for expressing all our thoughts as definitely and as exactly
as arithmetic expresses numbers or geometric analysis expresses lines,
we could in all subjects in so far as they are amenable to reasoning
accomplish what is done in Arithmetic and Geometry.

For all inquiries which depend on reasoning would be performed by
the transposition of characters and by a kind of calculus, which would
immediately facilitate the discovery of beautiful results. For we should
not have to break our heads as much as is necessary today, and yet we
should be sure of accomplishing everything the given facts allow.

Moreover, we should be able to convince the world what we should

have found or concluded, since it would be easy to verify the calculation

either by doing it over or by trying tests similar to that of casting out

nines in arithmetic. And if someone would doubt my results, I should

say to him: “Let us calculate, Sir,” and thus by taking to pen and ink,

we should soon settle the question.

Gottfried Wilhelm Leibniz (1646-1716) The Method of Mathematics
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Optimism about Leibniz’ dream peaked around the year 1900, as a result
of the development of set theory. Here we’ll first explain how set theory is
useful to mathematics, then say a bit about why things didn’t work out as
well as some had hoped.

You probably already know that a set is a collection of things called
elements. For instance {you,me} denotes a set whose two elements are
simply listed. A set is determined by its elements: if two sets have the
same elements, they are the same set. A set can contain a single element,
if which case it is called a singleton. Don’t confuse a singleton with its
unique element: a and {a} are not the same thing! The set that has no
elements is called the null set or empty set and is denoted by ∅. We say
that A is a subset of B, and write A ⊂ B, if every element of A is also an
element of B. It is a proper subset of B if, in addition, there is at least
one element of B that is not an element of A.

The basic operations for constructing sets include union, intersection,
and set difference: if A and B are sets, then their union A ∪ B is the set
containing all the elements of A and all the elements of B, their intersection

A∩B is the set containing all the elements of A that are also elements of B,
and the set difference A\B is the set containing all the elements of A that
are not elements of B. In addition, one may define a subset of a given set
by selecting out those elements that have a certain property. If P (b) means
“b is red,” and B is the set of balloons, then { b ∈ B : P (b) } is the set of red
balloons. More generally, almost any method of constructing mathematical
objects can be used to define sets; we’ll see many examples as we go along.

Set theory provides an all-purpose toolkit for precisely describing math-
ematical objects and concepts we already know about, and for defining new
ones. For example, everyone knows that ordered pairs like (x, y) are impor-
tant in mathematics, but just what is an ordered pair? Using set theory, we
can define (x, y) to be {{x}, y}. There are other ways to define an ordered
pair, and nobody really wants to work with this definition, so it probably
all seems pretty boring. But that’s the whole point! By agreeing on such
a definition, all the ambiguity and potential for controversy is eliminated,
just as Leibniz had hoped.

Continuing, the cartesian product of two sets A and B is defined to
be

A×B := { (a, b) : a ∈ A and b ∈ B }.

Ordered triples, quadruples, etc., and cartesian products of three sets, four
sets, etc., can be defined in many analogous ways, at least some of which
should be obvious, and which are much too tedious to describe here.
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A binary relation is defined to be an ordered triple r = (A,B,R) in
which A and B are sets and R ⊂ A×B. For example, the relation ‘is taller
than’ could be the triple (H,H,S) in which H is the set of people and S
is the set of pairs (p, q) is which p and q are people and p is taller than q.
As with our formal definition of ordered pairs, this definition of a relation is
useful because it is precise and fully general, but in almost all cases we will
think of a relation, say ‘less than,’ as a symbol like ‘<’ such that ‘a < b’ is
a proposition such that a < b is true for some (a, b) ∈ A × B and false for
others.

A function is defined to be binary relation f = (A,B,F ) with the
additional property that for each a ∈ A there is exactly one b ∈ B (usually
written f(a)) such that (a, b) ∈ F . In this circumstance we say that A is
the domain of f , B is the range of f , and F is the graph of f . The
symbol ‘f : A → B’ is treated grammatically as a noun (any sentence with
this symbol should be grammatical if the symbol is replaced by ‘f ’) and
indicates that f is a function with domain A and range B.

The image of f is

f(A) := { f(a) : a ∈ A }.

Note that (A, f(A), F ) is a function that is different from f if the image of
f is a proper subset of B. This is why it is not quite correct to identify the
function f with F . More generally, if A′ ⊂ A, then f(A′) := { f(a) : a ∈ A′ }.
Then f(a) is an element of A and (as we have defined things) f({a}) is a
singleton subset of A, but standard practice is to write {f(a)}, so that the
symbol f({a}) never occurs.

If B′ ⊂ B, the preimage of B′ is

f−1(B′) := { a ∈ A : f(a) ∈ B′ }.

Usually we will write f−1(b) in place of f−1({b}), but as we mentioned in
our discussion of group theory, when the function f is invertible, f−1(b)
usually denotes the element that is mapped to b. In practice, this is less
confusing than it sounds; a little common sense will usually guide you to
the right interpretation.

If A′ ⊂ A, the restriction of f to A′ is the function f |A′ : A′ → B with
the definition

f |A′ := (A′, B, F ∩ (A′ ×B)).

This is one of the two most important ways of creating a new function
from given functions (composition is the other one) and the properties of



1.4. FOUNDATIONS: SETS, RELATIONS, AND FUNCTIONS 25

restrictions are often so simple and straightforward that they are regarded
as too obvious to mention. But in order to develop a secure grasp of the
foundations you have to pay careful attention to the nuts and bolts, so we
will lean in the direction of discussing restrictions explicitly.

The importance of functions had been recognized long before set theory
was developed, but there was no single definition, and there was a tendency
to think of a function as synonymous with the formula that defined it. This
has all the usual disadvantages of lack of standardization, and in addition it
created a tendency to overlook the fact that a single formula can define more
than one function. For example, the formula f(x) = x2 defines a function
from the integers to the integers, another function from the rational numbers
to the rational numbers, and a third function from the real numbers to the
real numbers. Set theory gave mathematicians a language that allowed them
to settle on one general definition of the term “function,” with obvious and
enormous benefits for mathematical communication.

By the way, the function concept is another one of those “profound”
ideas that seems to embody some very deep wisdom about how mathematical
information should be organized, even though it has a very simple definition.
It emerged gradually out of the experience of mathematicians, and it’s not
so easy to say why it works so well. (It’s easy to see that in some sense
sets are like nouns and functions are like verbs, but do we really understand
why human languages have this organization?) In somewhat the same way,
academics have found that if they save copies of journal articles in file folders,
as most do, the only method that allows you to find what you are looking
for is to label the folders with the names of the authors. (Filing by topic
works very poorly.) There is no obvious reason why no other method is
effective, but it is perhaps not at all coincidental that there is a well defined
(and easily computed!) function from the set of journal articles to the set
of authors that maps each article to its first author.

It is a digression, and a more advanced concept than one would typically
expect at this level, but I would like to explain another organizational prin-
ciple that mathematicians have noticed, and found very useful, during the
last sixty or so years. A category C consists of:

(a) a class3 Ob(C) of things called objects;

(b) for each pair of objects A,B ∈ Ob(C), a set C(A,B) of morphisms

from A to B;

3The concept of a class is a variant of the set concept that will be explained below.



26 CHAPTER 1. WHAT MATHEMATICS IS

(c) for each triple of objects A,B,C ∈ Ob(C) a function from C(A,B) ×
C(B,C) to C(A,C) called composition. The image of (f, g) under
this mapping is denoted by g ◦ f .

Usually, but not always, the objects are sets, the morphisms are functions,
and “composition” is composition of functions. This structure is required
to have the following properties:

(i) Composition is associative: if A,B,C,D ∈ Ob(C), f ∈ C(A,B),
g ∈ C(B,C), and h ∈ C(C,D), then

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

(ii) For each object A ∈ Ob(C) there is an identity IdA ∈ C(A,A) such
that IdB ◦ f = f and f ◦ IdA = f whenever A,B ∈ Ob(C) and f ∈
C(A,B).

For an initial example, we can point out that sets and functions consti-
tute a category. Groups and homomorphisms give a slightly more interest-
ing example. Suppose that G, G′, and G′′ are groups and ϕ : G → G′ and
ϕ′ : G′ → G′′ are homomorphisms. Then

ϕ′(ϕ(gh)) = ϕ′(ϕ(g)ϕ(h)) = ϕ′(ϕ(g))ϕ′(ϕ(h))

for all g, h ∈ G, so ϕ′ ◦ ϕ : G → G′′ is a homorphism. Clearly IdG is a
homomorphism, and properties (i) and (ii) are satisfied by homomorphisms
because they are satisfied by functions.

You have probably noticed that the definition of a category is extremely
long-winded, and at the same time everything it says is (in the applications
we have seen, and many others) quite trivial. In fact one very useful aspect
of this concept is that saying, for example, that “groups and homomor-
phisms constitute a category” compresses a lot of easily understood, easily
verified information into a neat little package. Of course this alone wouldn’t
make the concept useful if the situation didn’t arise frequently, but it does.
Actually, categories are so ubiquitous in mathematics that there is not much
interesting mathematics associated with the concept itself, at least until one
studies very advanced topics, in more or less the same way that there is
not much of interest to say about functions in general, even though there
are many interesting types of functions. For most of our applications of
the concept there is no useful “theory of categories,” and in this sense we
don’t really need the concept. But the experience of mathematicians has
been that it is good to organize mathematics as the study of this or that
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category, and much of the material in this book conforms to this principle,
so I think it will be illuminating to keep the concept in mind.

The language of categories can already be used to give a very general
explanation of one reason groups are so important. Some of the terminol-
ogy we introduced earlier in connection with groups is actually applicable
to any category C. A morphism f ∈ C(X,Y ) is an isomorphism if it has
an inverse, which is a morphism g ∈ C(Y,X) such that g ◦ f = IdX and
f ◦ g = IdY . An endomorphism of X ∈ Ob(C) is a morphism f ∈ C(X,X)
whose domain and range are both X. An automorphism of X is an endo-
morphism of X that is also an isomorphism.

Theorem 1.7. For any category C and any X ∈ Ob(C), the set of auto-
morphisms of X is a group.

Proof. We must first of all show that a composition of automorphisms is an
automorphism, so suppose that f and f ′ are automorphism with inverses g
and g′. Since composition is associative we have

(f ′ ◦ f) ◦ (g ◦ g′) = f ′ ◦ (f ◦ g) ◦ g′ = f ′ ◦ IdX ◦ g′ = f ′ ◦ g′ = IdX

and

(g ◦ g′) ◦ (f ′ ◦ f) = g ◦ (g′ ◦ f ′) ◦ f = g ◦ IdX ◦ f = g ◦ f = IdX ,

so f ′◦f is indeed an automorphism because g◦g′ is its inverse. It is now easy
to see that (a)-(c) of Definition 1.1 are satisfied: composition of automor-
phisms is associative because composition of morphisms is associative, IdX is
an identity element, and the category theoretic inverse of an automorphism
is an automorphism, and an inverse in the group theoretic sense.

In addition to providing a sort of universal language and toolbox for
mathematics, set theory made some very important substantive contribu-
tions to mathematical understanding. The theory of cardinality for infinite
sets is particularly important and useful. For finite sets it clearly makes
sense to say that two sets A and B have the same cardinality if there if a
bijection b : A → B. Georg Cantor (1845-1918) took the step of applying
this notion to infinite sets. In particular, we say that a set A is countable if
there is a bijection b : N → A where N := {1, 2, 3, . . .} is the set of natural

numbers. If A′ is an infinite subset of A, then b−1(A′) = {n1, n2, . . .} is an
infinite subset of N, and we can define a bijection b′ : N → A′ by setting
b′(i) := b(ni). Thus any infinite subset of a countable set is countable, so
countability is the smallest infinite cardinality.



28 CHAPTER 1. WHAT MATHEMATICS IS

We now explain Cantor’s remarkable proof that the set of real numbers,
which is denoted by R, is uncountable. We will use the fact that every
real number has an infinite decimal expansion, but there is an obnoxious
detail arising out of the fact that some numbers have more than one such
expansion, e.g., 3.0000 . . . = 2.9999 . . .. So, let S be the set of numbers
between 0 and 1 whose decimal expansion involves only the digits ‘4’, ‘5’,
and ‘6’. We argue by contradiction: suppose that R is countable, so that
there is a bijection b : N → R. Then b−1(S) = {n1, n2, . . .} is an infinite
subset of N, and we can define a bijection c : N → S by specifying that
c(i) := b(ni). Think of c as a list:

c(1) = 0.4656445 . . .

c(2) = 0.5644546 . . .

c(3) = 0.6454445 . . .

...

Now construct a new number s with decimal expansion 0.d1d2d3 . . . where
d1 ∈ {4, 5, 6} is different from the first digit of c(1), d2 ∈ {4, 5, 6} is different
from the second digit of c(2), d3 ∈ {4, 5, 6} is different from the third digit of
c(3), and so forth. Clearly the s constructed in this way is an element of S,
but its construction guarantees that it is different from c(1), different from
c(2), different from c(3), etc. This contradicts the assumption that every
element of S is in the list c(1), c(2), c(3), . . .. Very pretty!

Here is another argument along seemingly similar lines. Suppose that
S1, S2, . . . is a countable collection of sets, and that each Si is countable.
For the sake of simplicity let’s assume that Si ∩ Sj = ∅ whenever i 6= j.
We would like to show that the union S1 ∪ S2 ∪ . . . of all these sets is
countable. For each i let ci : N → Si be a bijection. We construct a
bijection c : N → S1∪S2∪ . . . by sweeping out the diagonals of the diagram
below one after the other, specifying that

c(1) = c1(1) c(3) = c1(2) c(6) = c1(3) c(10) = c1(4) c(15) = c1(5)
c(2) = c2(1) c(5) = c2(2) c(9) = c2(3) c(14) = c2(4)
c(4) = c3(1) c(8) = c3(2) c(13) = c3(3)
c(7) = c4(1) c(12) = c4(2)
c(11) = c5(1)

and so forth. Again, a bit surprising, but simple and completely convincing
once you’ve seen it. Or is it? Although just about any normal person
(and most 19th century mathematicians) would accept the argument above
without any question, it actually applies an advanced and surprising idea.
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The Axiom of Choice: If r = (A,B,R) is a binary relation such that for
each a ∈ A there is at least one b ∈ B such that (a, b) ∈ R, then there is a
function f : A→ B with (a, f(a)) ∈ R for all a ∈ A.

In the discussion above it was assumed that for each i there is a nonempty
set of functions like ci. But the argument actually assumes that there is a
function i 7→ ci that simultaneously specifies such a bijection for every i. In
the preceeding proof we could explicitly define a function D : N → {4, 5, 6}
such that dn = D(n) is different from the nth digit of sn for all n ∈ N by,
for instance, letting D(n) be the smallest element of {4, 5, 6} different from
the nth digit of sn. The set of all bijections between N and Si isn’t endowed
with a structure that allows us to construct the desired function i 7→ ci by
specifying a “canonical” choice of ci, and (although it is far from obvious
at this point) there is simply no way to get the desired function without
invoking something like the axiom of choice.

More generally, the axiom of choice is not a consequence of other “stan-
dard” assumptions of set theory, and it was a source of considerable con-
troversy for many years. Nonconstructive reasoning of the sort employed
by Cantor was sharply criticized by Leopold Kronecker (1823-1891) which
resulted in Cantor being embattled for much of his career. Ernst Zermelo
(1871-1953) gave a precise formulation of the axiom of choice in 1904, and
over the next few decades it became clear that attempting to live without it
would result in severe constraints on the sorts of mathematics that could be
done. Nowadays the type of mathematics advocated by Kronecker, which
is called constructivism, is a minor specialization that is of some interest
more broadly because constructivist mathematics is, to some extent, a use-
ful model of what computers can do. Although some logicians study axioms
that might be thought of as possible replacements for the axiom of choice,
all other mathematicians utilize it freely.

Possibly you’re wondering whether there is any cardinality between count-
ability and the cardinality of the real numbers, which is sometimes called
the cardinality of the continuum. That’s a damn good question. In
1900 David Hilbert (1862-1943) gave a lecture in which he laid out a list
of unsolved problems that he thought were very important, and which he
hoped might prove useful as targets to guide the development of mathe-
matics during the coming century. Hilbert was then already the leading
mathematician in the world, and he would go on to make many other im-
portant contributions, but nothing else he did is as famous as the Hilbert

Problems. The continuum hypothesis—the conjecture that there is no
cardinality between countability and the cardinality of the continuum—was
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the first problem on his list! As we’ll explain in a little bit, the question was
resolved a few decades later. Would you care to guess what the answer is?

So, as of 1900 mathematicians could see that sets could be used to repre-
sent just about any mathematical object. The next step in fulfilling Leibniz’
vision was to develop a symbolic calculus that gave a precise formal language
for defining sets, creating new sets from given sets, and more generally repre-
senting any valid mathematical argument as a sequence of allowed inferences
within an exact system of symbolic logic. This project was attempted by
Bertrand Russell (1872-1970) and Alfred North Whitehead (1861-1947) but
Russell found an unexpected and extremely painful problem. Let S be the
set of sets that are not elements of themselves. Is S an element of itself?
Working through the two cases, we find that if it is, then it isn’t, and if it
isn’t, then it is. Ouch!

Russell and Whitehead managed to salvage their project by developing
something called the “theory of types” which gave a very finely described
hierarchy of sets, carefully designed to prohibit the sorts of constructions
that led to the paradox. Around the same time, Zermelo and Abraham
Fraenkel (1891-1965) gave a different system of axioms describing allowed
constructions of new sets from given sets that they hoped would provide
a satisfactory foundation. These works, and the huge amount of research
descended from them, are very complicated, and even professional mathe-
maticians don’t need to know that much about it, nor do many of them
have the time to study very deeply in this area. Mostly they take what
is generally called a “naive” approach to the subject, using the simplest
constructions freely and knowing a few additional things like the theory of
infinite cardinals that appear frequently in other areas of research. One
idea that is useful is the notion of a class. I must confess that I really have
no precise knowledge concerning how classes are described formally. The
general intuition is that Russell’s paradox arises because we falsely assume
that the operations that are allowed for sets are also allowed for these more
diffuse collections. By describing such collections as “classes,” while sharply
circumscribing the operations that classes allow, we are able to talk mean-
ingfully about the “class of all sets” or “the class of all groups,” as we did
in our discussion of categories, even though there is no “set of all sets” or
“set of all groups.”

Leibniz was hoping not only for a language that could represent all math-
ematical objects (and all concepts of science, apparently) but also for com-
putational procedures, analogous to the algorithms for addition and mul-
tiplication, that would allow any well posed problem to be answered in a
mechanical and uncontroversial fashion. During the last one hundred years,
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along with the fantastic growth in computational technology, researchers
have developed a detailed and precise understanding of what turn out to be
rather severe limits to what computation can possibly accomplish. Barriers
occur at several levels. For certain types of problems computational solution
is possible in principle, but the fastest possible algorithms would consume
a vast amount of computer time if applied to any problem instance outside
of a few “toy” examples. In certain areas of mathematics there are types
of problems for which there can never be a general algorithm, even though
any instance of the problem has a definite answer.

Finally, there are questions that simply have no answers. In 1931 Kurt
Gödel (1906-1978) showed that any sufficiently rich system of symbolic logic
must include propositions that are undecidable, which means that neither
the proposition nor its negation can be proved using the logic’s formal rules
of deduction. (Since we can always expand our axiom system by appending
an undecidable proposition, or its negation, his argument actually shows
that there are infinitely many undecidable propositions.) In 1940 he showed
that the negation of the continuum hypothesis cannot be derived from the
Zermelo-Fraenkel axiom system. In 1963 Paul Cohen (b. 1934) showed that
the continuum hypothesis cannot be derived from the Zermelo-Fraenkel ax-
ioms, so it is undecidable.

As was the case with the axiom of choice, after this the continuum hy-
pothesis can only be judged in terms of whether its consequences are more
in accord with our intuitions, or more useful in applications, than the con-
sequences of its negation. Many mathematicians talk about this as a matter
of determining whether the continuum hypothesis is “true” or not, but to
me it seems that such ways of speaking further compound the problem that
the word ‘true’ is already overburdened with multiple meanings. If, on
some basis, we decided that the continuum hypothesis was true, and then
some mathematician showed that its negation implied wondrously beautiful
theorems, would we really want to say that that person was doing “false
mathematics?”

In any event, although these ideas are quite important in the history of
mathematics, for the more mundane work of the rest of the book they are a
distant background where the horizon meets the sky. The most important
point for us is that even if we lack a completely precise formal apparatus of
logical deduction, the language of set theory will allow us to proceed in a
manner that is, in every practical sense, exact and rigorous.



Chapter 2

The Real Numbers

One of the things that makes math “hard” is that the practical side of the
subject, which is what most people spend most of their time studying, is
bound up with the real numbers. Because the set of real numbers is so famil-
iar, it’s easy to lose sight of the fact that it is actually an extremely complex
mathematical structure. When one starts to approach the subject from the
point of view of proofs it is important to develop clear understandings, or
conventions, concerning the properties of the reals that are taken as given.
This chapter lays out an axiom system for the real numbers. The axioms are
numerous, but, with one possible exception, each of them expresses a prop-
erty of the real numbers that has been familiar since you first learned about
fractions and decimals and negative numbers and such, back in elementary
school.

We’ll also look at a number of structures that share some of the proper-
ties of the real numbers. Strictly speaking, this material is really not part
of the standard curriculum in courses on calculus and linear algebra, and it
is included mainly in the hope that you’ll find it interesting. But the ideas
we’ll talk about are starting points of a great deal of mathematics that is
central to the discipline, not to mention rich and deeply beautiful. And
these seemingly unnecessary concepts and terminology will actually come
up frequently throughout the rest of the book.

2.1 Fields

To start off with, here’s a big, Big, BIG definition.

32
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Definition 2.1. A field is a triple (F,+, ·) in which F is a set and

+ : F × F → F and · : F × F → F

are binary operations (written using the usual conventions of addition and
multiplication, i.e., the ‘·’ is usually omitted) with the following properties:

(F1) x+ (y + z) = (x+ y) + z for all x, y, z ∈ F .

(F2) There is 0 ∈ F such that x+ 0 = x for all x ∈ F .

(F3) For each x ∈ F there is −x ∈ F such that x+ (−x) = 0.

(F4) x+ y = y + x for all x, y ∈ F .

(F5) x(yz) = (xy)z for all x, y, z ∈ F .

(F6) There is 1 ∈ F \ {0} such that x · 1 = x for all x ∈ F .

(F7) For each x ∈ F \ {0} there is x−1 such that x · x−1 = 1.

(F8) xy = yx for all x, y ∈ F .

(F9) x(y + z) = xy + xz for all x, y, z ∈ F .

There is a lot to digest here. Let’s start off with some terminology. The
elements 0 and 1 are called the additive identity and the multiplicative

identity respectively, or just “zero” and “one,” even in connection with the
most complicated or abstract field. For a field element x, −x and x−1 are
its additive inverse and multiplicative inverse (or “negative x” and “x
inverse”) respectively. In words, axioms (F1) and (F5) say that addition and
multiplication are associative while (F4) and (F8) say that these operations
are commutative. Axiom (F9) is the distributive law.

Possibly you have already noticed that (F,+) is a group. If a group op-
eration is commutative, as is the case with (F,+) by (F4), then the group is
said to be commutative or abelian, in honor of Niels Henrik Abel (1802-
1829). (Note that ‘abelian’ is not capitalized, unlike almost all other adjec-
tives derived from mathematicians’ names. I have no idea what motivation
or historical accident led to this exception.) If we set

F ∗ := F \ {0},

then (F ∗, ·) is also an abelian group. In Chapter 1 we showed that the iden-
tity element of a group is unique (if you don’t recall how to prove this, figure
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it out again) so 0 and 1 are the unique additive and multiplicative identities.
We also showed that the identity element of a group is the only element of
the group that acts like the identity in connection with any element of the
group, and that a general group element has a unique inverse. In particular,
additive and multiplicative inverses are unique.

There are many interesting and important fields. The set of rational

numbers is denoted by Q, earlier we mentioned that the set of real num-

bers is denoted by R, and the set of complex numbers is denoted by C.
There are two other members of this group of standard symbols: the set of
natural numbers is N := { 1, 2, 3, . . . }, which we met in the last chapter,
and the set of integers is ZZ := { . . . ,−2,−1, 0, 1, 2, . . . }. Presumably you
are already familiar with natural numbers, integers, and rational numbers,
even if the symbols are new, and their basic properties will be taken for
granted in our work. No doubt you also know a lot about the real num-
bers, even if really knowing what the real numbers are is the subject of this
chapter. Complex numbers come up when one studies quadratic equations,
so probably almost all readers have seen them, but we’ll also describe them
explicitly in a bit, and learn a lot more about them later in the book.

Everyone knows that Q satisfies (F1)-(F9) and is consequently a field1,
but let’s think a bit about what is involved in actually proving this. One
approach is to start with basic properties of the integers and use them to
prove the field axioms for Q. A different approach, with wider applicability,
supposes that we already know that R is a field. The general idea is so
important that we’ll state it as a theorem, even though the proof is very
simple.

Theorem 2.2. If F is a field and K ⊂ F , then K (endowed with the re-
strictions of addition and multiplication to K ×K) is a field if and only if
0, 1 ∈ K and K contains all sums, products, additive inverses, and multi-
plicative inverses of its elements.

Proof. If K is a field, then it must be “closed” under addition and multipli-
cation, i.e., it contains all sums and products of its elements, because this
is part of the definition of a field. Since the additive identity of K, say 0̃,
satisfies 0̃ + 0̃ = 0̃, and 0 is the only element of F that acts like an additive
identity in connection with any element of F , we must have 0̃ = 0. Similar
arguments show that the multiplicative identity of K must be 1, and that
for any x ∈ K, the additive or multiplicative inverse of x, as an element of
K, must agree with its inverse in F .

1Almost always F is written in place of (F, +, ·), since it almost never happens that we
wish to consider the set F endowed with some different structure.
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Conversely, if K contains all sums and products of its elements, then the
restricted field operations are functions from K ×K to K, and (F1), (F4),
(F5), (F8), and (F9) hold in K because they hold in F . If K contains 0 and
1, then (F2) and (F6) hold, and if K contains the inverses of its elements,
then (F3) and (F7) hold.

When the conditions described in this result hold we say that K is a
subfield of F , and that F is an extension of K. Any subfield of R contains
N because it contains 1 and all sums of its element, it contains ZZ because it
contains 0, N, and the negations of its elements, and it contains Q because
it contains ZZ and the inverses and products of its elements. Thus every
subfield of R is an extension of Q.

The result above has some simple consequences that generate a huge
collection of examples.

Corollary 2.3. Let F be a field. Then:

(a) If L is a subfield of F and K is a subfield of L, then K is a subfield
of F .

(b) If K is a nonempty set of subfields of F , then
⋂

K∈KK is a subfield of
F .

(c) For any set S ⊂ F there is a smallest subfield K of F that contains
S. (In more detail, this means that K contains S and is contained in
any other subfield of F that contains S.)

Proof. To prove (a) observe that because it is a subfield of L, K contains
0, 1, and all sums, products, and inverses of its elements, and by virtue of
these properties K is a subfield of F . The proof of (b) is similar: if each
K ∈ K contains all sums, products, and inverses of its elements, then so does
⋂

K∈KK, and if each K ∈ K contains 0 and 1, then so does
⋂

K∈KK because
K is nonempty. Finally (c) follows from (b) because we can construct K by
taking the intersection of all subfields of F that contain S. (This collection
of subfields is nonempty because it contains F itself.)

If K is a subfield of F and x1, . . . , xr ∈ F , then the smallest subfield of
F containing K ∪ {x1, . . . , xr} is denoted by K(x1, . . . , xr). To get a better
sense of how these things work we’ll look at Q(

√
2) in some detail. Clearly

any subfield of R that contains
√

2 must contain every number of the form

r + s
√

2

t+ u
√

2
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where r, s, t, u ∈ Q and either t 6= 0 or u 6= 0. (Since
√

2 is irrational,
t+u

√
2 is different from 0 except when t = 0 = u.) The set of such numbers

contains 0, 1, and all sums, products, and inverses of its elements, so it is
Q(

√
2). Now observe that

r + s
√

2

t+ u
√

2
=
r + s

√
2

t+ u
√

2
· t− u

√
2

t− u
√

2
=

(rt− 2su) + (st− ru)
√

2

t2 − 2u2
.

Based on this calculation we can conclude that

Q(
√

2) = { r + s
√

2 : r, s ∈ Q}.

In general an algebraic number is a possibly complex number (these
are described below) α that satisfies some equation of the form

cnα
n + cn−1α

n−1 + · · · + c1α+ c0 = 0

where n ≥ 1 and c0, c1, . . . , cn are integers with c0 6= 0 6= cn. An algebraic

number field is a field of the form Q(α) where α is an algebraic number.
(It turns out that if α1, . . . , αn are algebraic numbers, then there is an
algebraic number β such that Q(α1, . . . , αn) = Q(β), so this definition is
less restrictive than it seems.) A transcendental number is a complex
number that is not algebraic. If α is a transcendental number, Q(α) is said
to be a transcendental extension of Q.

So, when we have a big field and a small field, there are often lots of
intermediate fields. An obvious choice for the small field is Q, and R is
perhaps the most obvious “big” field containing Q. However, the field C of
complex numbers is even bigger, and a much more natural choice because (as
we’ll prove in Chapter 3) it is algebraically complete: every polynomial

αnX
n + · · · + α1X + α0

whose coefficients α0, . . . , αn are in C has a root in C, where a root is a
number r such that αnr

n + · · · + α1r + α0 = 0.
For us a complex number is a symbol x + iy where x and y are real

numbers. (The standard notational convention is to write x rather than
x+ i0 and iy rather than 0 + iy when y 6= 0.) The sum and product of two
such numbers β = x+ iy and γ = w + iz are defined by the formulas

β + γ = (x+ w) + i(y + z) and βγ = (xw − yz) + i(xz + yw)

which are obtained by treating i as a square root of −1.
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Just by looking at these formulas carefully, it is easy to see that (C,+)
is a commutative group, that multiplication is commutative, and that 1 is a
multiplicative identity. Applying the formula for multiplication shows that
the multiplicative inverse of a nonzero x+ iy is

x

x2 + y2
− i

y

x2 + y2
.

To check that multiplication is associative, and that the distributive law
hold, we have the computations below, in which α = u + iv is a third
complex number.

Before you look at them, though, I want to say something about how
you should read such a calculation. It is a good idea to go slowly and
convince yourself that every step is justified, but after that you shouldn’t
worry about “understanding” or “remembering” anything beyond the gen-
eral method that led to the calculation. When a complicated calculation has
some “meaning” it is usually a symptom of bad writing or of the possibility
of introducing more concepts that would replace the calculation with a line
of reasoning. For the calculations below such concepts exist, but we won’t
come to them until much later, and in the meantime we want to know that
C is a field.

Getting down to work:

α(βγ) = (u+ iv)
(

(xw − yz) + i(xz + yw)
)

=
(

u(xw − yz) − v(xz + yw)
)

+ i
(

v(xw − yz) + u(xz + yw)
)

=
(

(ux− vy)w − (uy + vx)z
)

+ i
(

(uy + vx)w + (ux− vy)z
)

=
(

(ux− vy) + i(uy + vx)
)

(w + iz)

= (αβ)γ;

α(β + γ) = (u+ iv)
(

(x+ w) + i(y + z)
)

=
(

u(x+ w) − v(y + z)
)

+ i
(

v(x+ w) + u(y + z)
)

=
(

(ux− vy) + (uw − vz)
)

+ i
(

(uy + vx) + (uz + vw)
)

=
(

(ux− vy) + i(uy + vx)
)

+
(

(uw − vz) + i(uz + vw)
)

= αβ + αγ.

Our next example of a field is both quite surprising, if you haven’t seen
it before, and an application of an extremely important method for defining
new mathematical objects. We’ll begin by explaining this method in general.
Let S be a set, and let ∼= be a binary relation on S. (As we explained in
the last chapter, “formally” ∼= is a triple whose components are two copies
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of S and a subset of S ×S, but we’ll follow the standard practice of writing
‘s ∼= t’ to indicate that s and t are related.) The relation ∼= is said to be:

(R) reflexive if s ∼= s for all s ∈ S;

(S) symmetric if, for all s, t ∈ S, s ∼= t implies t ∼= s;

(T) transitive if, for all s, t, u ∈ S, s ∼= u whenever s ∼= t and t ∼= u.

An equivalence relation is a relation that is reflexive, symmetric, and
transitive. The granddaddy of all equivalence relations is equality itself,
obviously.

If ∼= is an equivalence relation on S and s ∈ S, the equivalence class

containing s is

[s] := { t ∈ S : s ∼= t }.
A partition of S is a set P of nonempty subsets of S such that each element
of S is an element of exactly one element of P:

(a) ∅ /∈ P;

(b) for all C,D ∈ P, either C = D or C ∩D = ∅;

(c)
⋃

C∈P C = S.

It may seem obvious that the set { [s] : s ∈ S } of all equivalence classes is a
partition of S, but let’s walk through the details. For each s ∈ S we have

s ∈ [s] ⊂
⋃

s∈S

[s]

by reflexivity, so [s] 6= ∅ and
⋃

s∈S[s] = S. Therefore (a) and (c) hold.

The proof of (b) illustrates one of the things that makes math “hard,”
namely that something can be fairly obvious, and at the same time a com-
pletely precise proof of it involves unexpected and, frankly, rather tedious
details. (The argument below could actually be even more detailed, since we
do not explicitly mention certain appeals to the symmetry of ∼=, expecting
that the reader will regard them as obvious.) Suppose that [s]∩ [t] 6= ∅. We
need to show that [s] = [t], which follows if we can show that [s] ⊂ [t] and
[t] ⊂ [s]. We will only prove the first inclusion since the proof of the second is
obtained from the proof of the first by swapping s and t. Choose r ∈ [s]∩ [t],
and let u be any element of [s]. Since r ∼= s and r ∼= t, transitivity implies
that s ∼= t. Since u ∼= s and s ∼= t, transitivity implies that u ∼= t, so that
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u ∈ [t]. But u was an arbitrary element of [s], so we have shown that every
element of [s] is an element of [t], which is what we set out to do.

One of the most common ways to use set theory to define new mathe-
matical objects is “passage to equivalence classes.” Starting with a set we
already know about, we define an equivalence relation on it and take the
equivalence classes as the elements of the new set we are constructing. Often
there are operations, or relations, or functions, we would like to define on the
new set, and typically these are defined by saying that the sum (or product,
or whatever) of two equivalence classes is the equivalence class of any sum
of an element of one of the classes and an element of the other. There is
then the (typically mundane and tedious) task of proving that what you get
in this way is “independent of the choice of representatives,” meaning that
the equivalence class you end up with doesn’t depend on which elements
you chose from the two classes you are summing.

To see how this works in a concrete example, let n be a positive integer.
We say that two integers a and b are congruent mod n, and we write

a ≡ b mod n,

if a − b is a multiple of n, i.e., there is an integer k such that a − b = kn.
Make sure that you can see for yourself that this relation is, indeed, reflexive,
symmetric, and transitive. An equivalence class of the relation ‘congruent
mod n’ is called an integer mod n, and the set of integers mod n is denoted
by ZZn. We define addition and multiplication of integers mod n by the
formulas

[a] + [b] := [a+ b] and [a][b] := [ab].

To check that these definitions are independent of the choice of representa-
tives we suppose that [a] = [a′] (so that a and a′ are both representatives

of [a] = [a′]) and that [b] = [b′]. In order for our definitions of addition and
multiplication to make sense it had better be the case that [a+ b] = [a′ + b′]
and [ab] = [a′b′]. We have a′ = a+ kn and b′ = b + ℓn for some integers k
and ℓ, and

a′ + b′ = a+ b+ (k + ℓ)n and a′b′ = ab+ (aℓ+ bk + kℓn)n,

so this is indeed the case.
We have defined a set of equivalence classes ZZn and two binary opera-

tions on this set, that we have called “addition” and “multiplication.” Now
I want you to go back and look at (F1)-(F9) again, for each axiom asking
whether it is satisfied by (ZZn,+, ·). Ideally, for each axiom you should ei-
ther write out a proof that it holds or give an example that shows that it



40 CHAPTER 2. THE REAL NUMBERS

doesn’t, and if you feel like doing all that work that’s great. But for many
of the axioms you’ll probably be able to see whether it holds right away,
in which case writing things down is not necessary so long as you think
carefully about how to prove it.

Done? Actually, if you’re like most of my students, I’d be pretty sur-
prised. Go back and really do it this time!

Okay, here’s the situation: ZZn satisfies (F1)-(F6), (F8), and (F9), but
it can fail to satisfy (F7). For example, there is no inverse of [2] in ZZ4. One
way to think about this is that ZZ4 has zero divisors. In general [a] is a zero

divisor in ZZn if there is a [b] 6= [0] such that [a][b] = [ab] = [0]. In ZZ4

we have [2][2] = [0]. If [c] was an inverse of such an [a] we would have the
contradictory computation

[0] 6= [b] = [1][b] = ([c][a])[b] = [c]([a][b]) = [c][0] = [0],

so a zero divisor can’t have an inverse.

Hopefully you already know a bit about prime numbers. Probably you
think of a prime number as an integer whose only divisors are 1 and the
number itself, but here a slightly different definition works better: a prime

number is an integer p > 1 such that whenever p divides a product ab,
either p divides a or p divides b. There cannot be any zero divisors in ZZp
because if [a][b] = [ab] = 0, then p divides ab, so either p divides a, in which
case [a] = 0, or p divides b, in which case [b] = 0.

Theorem 2.4. If p is a prime, then ZZp is a field.

Proof. You’ve already shown that ZZp satisfies (F1)-(F6), (F8), and (F9).
Fix [a] ∈ ZZ∗

p (recall that whenever F is a field, F ∗ = F \ {0}) and consider
the function [b] 7→ [a][b] from ZZ∗

p to itself. This function is injective because
if [a][b] = [a][b′], then [0] = [a][b]− [a][b′] = [a]([b]− [b′]), whence [b]− [b′] = 0,
i.e., [b] = [b′]. Whenever a function from a finite set to itself is injective,
it is also surjective, just because the domain and the image have the same
number of elements, so there must be some [b] such that [a][b] = [1]. Since
[a] was arbitrary, we have shown that ZZp satisfies (F7).

Certainly ZZp seems quite different from the other fields (R, C, Q,
Q(

√
2)) we already know about, and it might strike you as silly and in-

consequential. In order to provide some evidence that ZZp isn’t silly we’ll
briefly describe one of the most celebrated theorems in all of mathematics.

From now on let p be an odd prime. That is, in addition to assuming
that p is a prime, we also assume that p 6= 2. Just as is the case with R,
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some numbers in ZZ∗
p are squares and others aren’t. If a is not divisible by

p and [a] ∈ ZZ∗
p has a square root—that is, there is some [b] ∈ ZZp such that

[b]2 = [a]—then we say that a is a quadratic residue mod p. For an odd
prime p and any integer a the Legendre symbol

(

a
p

)

is defined to be

(a

p

)

:=











1, a is a quadratic residue mod p,

−1, a is neither divisible by p nor a quadratic residue mod p,

0, a is divisible by p.

Theorem 2.5 (Law of Quadratic Reciprocity). If p and q are odd primes,
then

(p

q

)(q

p

)

= (−1)
p−1
2 ·

q−1
2 .

We should say a little about the right hand side of this equation. It will
be 1 or −1 according to whether (p − 1)(q − 1)/4 is even or odd. Since p
is odd, (p − 1)/2 will be even or odd according to whether p is congruent
to 1 or 3 mod 4, and similarly for q. After parsing all this, we see that the
assertion is that

(p
q

)( q
p

)

is 1 unless p and q are both congruent to 3 mod
4, in which case it’s −1. To me the formula seems like an unnecessarily
cryptic way of expressing this, even if it’s quite compact, but in any event
this formulation is now an unshakeable tradition.

The quadratic reciprocity theorem was stated without proof by Euler
in 1783 and proved (after Adrien-Marie Legendre (1752-1833) published an
incorrect proof) in 1796 by Carl Friedrich Gauss (1777-1855) who many
regard as the greatest mathematician of all time. It was his favorite theorem
among the many contributions he made to number theory, and he gave eight
different proofs. Quadratic reciprocity has been an important theme in
number theory ever since; among other things, one of the Hilbert Problems
was to find generalizations of quadratic reciprocity that apply to algebraic
number fields.

So ZZp is far from silly, at least in the eyes of Euler, Gauss, and Hilbert,
but perhaps it’s still inconsequential? Traditionally number theory has been
thought of as devoid of practical applications, a subject studied entirely for
its beauty and intellectual challenge. But recently all that has changed:
during the last thirty years algorithms involving ZZp for large p have become
the workhorses of cryptography and computer security.
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2.2 Rings

It is very natural to wonder about the types of structures that satisfy some,
but not all, of the axioms (F1)-(F9). There are many possibilities here, but
it turns out that some are much more important than others.

Definition 2.6. A ring is a triple (R,+, ·) in which R is a set and

+ : R×R→ R and · : R×R→ R

are binary operations satisfying (R1)-(R6) below.

(R1) x+ (y + z) = (x+ y) + z for all x, y, z ∈ R.

(R2) There is 0 ∈ R such that x+ 0 = x for all x ∈ R.

(R3) For each x ∈ R there is −x such that x+ (−x) = 0.

(R4) x+ y = y + x for all x, y ∈ R.

(R5) x(yz) = (xy)z for all x, y, z ∈ R.

(R6) x(y + z) = xy + xz and (x+ y)z = xz + yz for all x, y, z ∈ R.

We say that R is a ring with unit if

(R7) There is 1 ∈ R∗ := R \ {0} such that x · 1 = x = 1 · x for all x ∈ R.

We say that R is commutative if

(R8) xy = yx for all x, y ∈ R.

Here (R1)-(R5) are (F1)-(F5) and (R8) is (F8). In particular, (R,+) is
a commutative group. The difference between (R6) and (F9), and between
(R7) and (F7), is that insofar as multiplication is not necessarily commuta-
tive, it is necessary to give two equations rather than one. The fancy way
to state (R7) in words is to say that “there is a two sided identity element
for multiplication.”

In simpler words, a ring is a set whose elements can be added and multi-
plied. Addition has all the nice properties (associative, commutative, iden-
tity, and inverses) while multiplication is associative and satisfies the dis-
tributive law, but may lack other properties. After many years of elementary
and secondary school mathematics you may have never seen the word “ring,”
but you have certainly seen a lot of objects that belong to rings. To em-
phasize this we begin with lots of examples. In each case make sure you
understand why the relevant axioms are satisfied.
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Example 2.7. Any field is a commutative ring with unit, obviously.

Example 2.8. The set of integers ZZ is a commutative ring with unit.

Example 2.9. ZZ[
√

2] is the set of all numbers of the form a+ b
√

2 where
a and b are integers. It is a commutative ring with unit.

Example 2.10. If n > 1 is an integer, then ZZn is a commutative ring with
unit, as we saw in the last section.

Example 2.11. 3ZZ = { . . . ,−6,−3, 0, 3, 6, . . . } is a commutative ring with-
out a unit.

This example somehow gives the feeling that when you have a commuta-
tive ring without a multiplicative identity, something has been left out. As
a matter of general principle things are not that simple, but as a practical
matter almost all the rings that come up are subsets of rings with units.

Example 2.12. Let S be any set, let R be a ring, and let FR(S) be the set
of functions

f : S → R,

with addition and multiplication defined “pointwise:” for f, g ∈ FR(S), f+g
and fg are the functions that takes each s ∈ S to f(s) + g(s) and f(s)g(s)
respectively. Then FR(S) is a ring, it is commutative if R is commutative,
and if R has a unit, then the function taking each s ∈ S to 1 is a unit for
FR(S).

There are lots and lots of important rings of functions, as we’ll see as
we go along. Here’s another ring that looks like a ring of functions, but is
actually a bit different.

Example 2.13. Let R be a commutative ring, and let X be a variable. A
polynomial in X with coefficients in R is an expression of the form

amX
m + am−1X

m−1 + · · · + a1X + a0

where m is a nonnegative integer and a0, a1, . . . , am−1, am are elements of R.
Let R[X] denote the set of such polynomials. Elements of R[X] are added
and multiplied “as if” they were functions: if m ≤ n, then

(amX
m + · · · + a0) + (bnX

n + · · · + b0) =

bnX
n + · · · + bm+1X

m+1 + (am + bm)Xm + · · · + (a0 + b0)
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and

(amX
m + · · · + a0)(bnX

n + · · · + b0) =

ambnX
m+n + (ambn−1 + am−1bn)X

m+n−1 + · · · + (a1b0 + a0b1)X + a0b0.

We are free to interpret this example as a ring of functions that map R
into itself. But sometimes other interpretations are interesting. For example,
if R = ZZ, then we can also interpret ZZ[X] as a ring of functions mapping Q

to itself, or as a ring of functions mapping R to itself, or as a ring of functions
mapping C to itself. For this reason the “proper” way to think about R[X]
is that its elements are agglomerations of symbols that recombine according
to certain rules.

Matrices give rise to a wide range of examples. If m and n are positive
integers and R is a ring, then an m × n matrix with entries in R is a
rectangular array

A =







a11 · · · a1n
...

. . .
...

am1 · · · amn







whose entries are elements of R. We sometimes indicate the relationship
between the notation for the matrix itself and the notation for its entries by
saying, for example, that “A = (aij) is an m× n matrix.”

Addition of matrices is defined “componentwise.” That is, if A = (aij)
and A′ = (a′ij) are m× n matrices, then A+A′ is, by definition, the m× n
matrix whose ij-entry is aij +a′ij. This operation is associative and commu-
tative, and has an identity element (the matrix whose entries are all zero)
and inverses, simply because R satisfies (R1)-(R4). (If you want to sling the
lingo like a pro, you say that these properties are “inherited” from R.) So,
the m×n matrices with entries in R are a commutative group with addition
as the group operation.

Now suppose that A = (aij) is an m× n matrix with entries in R, and
B = (bjk) is n× p matrix with entries in R. We define the product AB of
these two matrix to be the m× p matrix whose ik entry is

ai1b1k + · · · + ainbnk.

(Think of picking up the ith row of A, rotating it 90◦, and dropping it on
the kth column of B.) In order for it to be possible to multiply A and B it
must be the case that, as we assumed, the number of columns of A is the
same as the number of rows of B. When this is so we say that A and B are
conformable.
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Matrix multiplication is associative: if C = (ckℓ) is a p × q matrix with
entries in R, then the iℓ-entry of (AB)C is

p
∑

k=1

(

n
∑

j=1

aijbjk
)

ckℓ

and the iℓ-entry of A(BC) is

n
∑

j=1

aij
(

p
∑

k=1

bjkckℓ
)

.

One can use the distributive law (R6) to rewrite the first expression as a sum
of np terms of the form aijbjkckℓ, then use associativity and commutativity
of addition to reorder them in a way that allows another application of the
distributive law to give the second expression.

It is even easier to see that matrix addition and multiplication satisfy the
distributive laws. Let A = (aij) and A′ = (a′ij) be m × n matrices, and let
B = (bjk) and B′ = (b′jk) be n× p matrices. Then the ik-entry of (A+A′)B
is

n
∑

j=1

(aij + a′ij)bjk

while the ik-entry of AB +A′B is

n
∑

j=1

aijbjk +

n
∑

j=1

a′ijbjk,

and appropriate applications of the distributive laws and associativity and
commutativity of addition show that these expressions are equal. The proof
that A(B +B′) = AB +AB′ is the mirror image of this.

For any positive integer n the set of n× n matrices with entries in R is
denoted by Mn(R). Any two elements of Mn(R) are conformable, and we
have shown that addition and multiplication of elements of Mn(R) satisfies
(R1)-(R6), so:

Example 2.14. If R is a ring and n is a positive integer, then Mn(R) is a
ring. If R has a multiplicative identity, then the identity matrix

I :=











1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
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is multiplicative identity for Mn(R).

Multiplication in Mn(R) is not commutative when n > 1, even if R is
commutative. If this is not a familiar fact it would be a good idea to take
the time to find A,B ∈M2(R) such that AB 6= BA. If you don’t know how
to get started, just experiment: a “sufficiently random” choice will work.

2.3 Ring Homomorphisms

We now have a rich supply of objects, so a categorically minded person
should be looking for some morphisms. As is very frequently the case, the
most interesting and important maps are those that “commute” with the
operations that define the structure.

Definition 2.15. If R and S are rings, then a function ϕ : R → S is a
homomorphism if

ϕ(a+ b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b)

for all a, b ∈ R.

Usually anything called a “homomorphism” should preserve all elements
of structure, so we should wonder about the additive identity and additive
inverses. But the requirement that ϕ(a + b) = ϕ(a) + ϕ(b) says precisely
that ϕ is a homomorphism between the additive groups (R,+) and (S,+),
and when we introduced homomorphisms of groups we showed that the
requirement that the homomorphism “commutes” with the group operations
implies that it also preserves identities and inverses.

Here are two basic examples of ring homomorphisms. First, for any
integer n the map a 7→ [a] taking an integer a to its congruence class mod
n is a homomorphism from ZZ to ZZn. Make sure you see why this is a
homomorphism; the details involved in verifying this are similar to what
was involved in showing that addition and multiplication in ZZn are well
defined. Second, if S is a set, R is a ring, and s0 ∈ S, then the mapping
f 7→ f(s0) is a homomorphism from FR(S) to R. Again, make sure you
understand this.

As was the case with groups, the assertion that “rings and homomor-
phisms constitute a category” encompasses a lot of trivial observations.
First, compositions of homomorphisms are homomorphisms: if ϕ : R → S
and ψ : S → T are homomorphisms, and a, b ∈ R, then

ψ(ϕ(a + b)) = ψ(ϕ(a) + ϕ(b)) = ψ(ϕ(a)) + ψ(ϕ(b))
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and
ψ(ϕ(ab)) = ψ(ϕ(a)ϕ(b)) = ψ(ϕ(a))ψ(ϕ(b)).

Even more trivially: i) composition of homomorphisms is associative, be-
cause it is just composition of functions; ii) for any ring R the identity
function IdR is a homomorphism; iii) IdS ◦ ϕ = ϕ = ϕ ◦ IdR for any homo-
morphism ϕ : R → S. All these things are not just obvious, but painfully
obvious, so it feels a bit embarrassing to be dwelling on them, but of course
any discussion involving homomorphisms applies them all the time.

If ϕ is a bijection, then it is said to be an isomorphism, and R and S are
said to be isomorphic. To show that we are using the word ‘isomorphism’
in its proper categoric sense we need to verify that if ϕ is an isomorphism,
then so is ϕ−1. Of course it is a bijection, and to establish that it is a
homomorphism we take two elements α and β of H, set a := ϕ−1(α) and
b := ϕ−1(β), and compute that

ϕ−1(α+β) = ϕ−1(ϕ(a)+ϕ(b)) = ϕ−1(ϕ(a+ b)) = a+ b = ϕ−1(α)+ϕ−1(β)

and

ϕ−1(αβ) = ϕ−1(ϕ(a)ϕ(b)) = ϕ−1(ϕ(ab)) = ab = ϕ−1(α)ϕ−1(β).

Retracing the path we followed when we studied groups, a subring of a
ring R is a nonempty set R′ ⊂ R that is closed under addition, negation, and
multiplication, so that it is itself a ring2 when endowed with the restrictions
of addition and multiplication to R′×R′. There are some obvious and basic
examples: it is always the case that {0} and R are subrings, and for any
r ∈ R,

rR = { rs : s ∈ R }
is a subring. If A is any set and, for each α ∈ A, Rα is a subring of R, then
⋂

α∈ARα is a subring.
With groups, kernels of homomorphisms were important, and the same

is true for rings. If ϕ : R→ S is a homomorphism, the kernel of ϕ is

ker(ϕ) := ϕ−1(0) = { r ∈ R : ϕ(r) = 0 }.

For example, the kernel of the homomorphism a 7→ [a] from ZZ to ZZn is

nZZ = { . . . ,−2n,−n, 0, n, 2n, . . . },
2Here are the details of the verification that R′ is a ring: (R1), (R4), (R5), and (R6) hold

for R′ because they hold for R; (R3) holds because we have required that R′ be closed under
negation; (R2) holds because we have required that R′ be nonempty and closed under
negation and addition, so that for any a ∈ R′ we have −a ∈ R′ and a + (−a) = 0 ∈ R′.
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and the kernel of the homomorphism f 7→ f(s0) from FR(S) to R is

{ f ∈ FR(S) : f(s0) = 0 }.

If ϕ : R→ S is a homomorphism and S′ is a subring of S, then ϕ−1(S′)
is a subring of R. Concretely, if a, b ∈ ϕ−1(S′), then a+ b and ab are also in
ϕ−1(S′) because

ϕ(a + b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b)

are in S′. Since {0} is always a subring of S, the kernel of a homomorphism
is a subring, but not every subring can be a kernel.

Definition 2.16. A subset I of a ring R is a two sided ideal of R if it is a
subgroup of the additive group (R,+) of R and ra ∈ I and as ∈ I whenever
a ∈ I and r, s ∈ R.

The latter condition is stronger than closure under multiplication, so a
two sided ideal of a ring is a subring. Note that for any ring R, {0} is a
two sided ideal. Of course it’s an additive subgroup, so to show this we can
observe that for any r ∈ R we have r · 0 = r(0 + 0) = r · 0 + r · 0, so that
r · 0 = 0, and 0 · s = 0 for any s by a symmetric argument. On the other
hand there are many subrings that are not two sided ideals; for example,
the integers ZZ are a subring, but not a two sided ideal, of the rationals Q.

In abstract algebra two sided ideals are much more important than sub-
rings, for various reasons, most of which flow directly or indirectly out of
the following fact:

Proposition 2.17. The kernel I of a homomorphism ϕ : R → S is a two
sided ideal.

Since {0} is always a two sided ideal, this is a special case of the following
result, which is no more difficult to prove.

Proposition 2.18. If ϕ : R → S is a homomorphism and J ⊂ S is a two
sided ideal of S, then I := ϕ−1(J) is a two sided ideal of R.

Proof. Since ϕ is a homomorphism of the underlying additive groups and J
is a subgroup of (S,+), I is a subgroup of (R,+). (This point was explained
in Section 1.2.) To complete the proof we observe that for any a ∈ I and
r, s ∈ R we have ra ∈ I and as ∈ I because

ϕ(ra) = ϕ(r)ϕ(a) ∈ ϕ(r)J ⊂ J and ϕ(as) = ϕ(a)ϕ(s) ∈ Jϕ(s) ⊂ J.
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Is every two sided ideal the kernel of some homomorphism? To answer
this question we introduce another construction based on equivalence classes.
Let R be a ring, and let I be a two sided ideal. We say that ring elements
a and b are congruent mod I if a − b ∈ I. Since a − a = 0 ∈ I, any a
is congruent to itself, so ‘congruence mod I’ is a reflexive relation. Since I
is closed under negation, a − b ∈ I if and only if b − a ∈ I, so ‘congruence
mod I’ is a symmetric relation. Since I is closed under addition, if a− b ∈ I
and b − c ∈ I, then a − c ∈ I, so a is congruent to c mod I whenever a is
congruent to b and b is congruent to c mod I. That is, ‘congruence mod
I’ is transitive. Thus we have an equivalence relation. In this context the
equivalence classes are called cosets, and the equivalence class containing a
is usually denoted by a+ I because, after all, it is { a+ i : i ∈ I }.

We define addition and multiplication of cosets by the formulas

(a+ I) + (b+ I) := (a+ b) + I and (a+ I)(b+ I) := ab+ I.

We need to show that these definitions are independent of the choices of
representatives, so suppose that a′ ∈ a+ I and b′ ∈ b+ I. Then a′ − a ∈ I
and b′ − b ∈ I, so

(a′ + b′) + I = (a′ − a) + (b′ − b) + (a+ b) + I = (a+ b) + I,

and a′(b′ − b) ∈ I and (a′ − a)b ∈ I, so

a′b′ + I = a′(b′ − b) + (a′ − a)b+ ab+ I = ab+ I.

We now check that these operations define a ring whose elements are the
cosets. Clearly (R1), (R4), (R5), and (R6) are satisfied by addition and mul-
tiplication of cosets because they are satisfied by addition and multiplication
in R. In addition, 0+ I is an additive identity, and for any a, (−a)+ I is an
additive inverse of a+ I. We have defined a new ring, called the quotient

ring, that is usually denoted by R/I. Actually, we have already seen an
example of this construction: for any integer m,

mZZ = {. . . ,−2m,−m, 0,m, 2m, . . .}

is an ideal of ZZ, and ZZm = ZZ/mZZ.
Let ϕ : R→ R/I be the function a 7→ a+ I. The fact that this map is a

homomorphism is an automatic consequence of our definitions. In addition,
ϕ(a) = 0 if and only if a ∈ I. Beginning with an arbitrary two sided ideal I,
we have constructed a homomorphism whose kernel is I. Thus a subset of
R is the kernel of some homomorphism if and only if it is a two sided ideal.
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The general idea of this construction is extremely important, and will
appear again later, so we’re going to repeat the whole thing in the context
of group theory. Let G be a group with identity element e, and let H be a
subgroup. A right coset with respect to H is a set of the form

Hg = {hg : h ∈ H }

where g ∈ G. We claim that ‘is in the right coset of’ is an equivalence
relation on G. For all g we have g = eg ∈ Hg, so the relation is reflexive. If
g′ ∈ Hg, then g′ = hg for some h ∈ H and consequently g = h−1g′ ∈ Hg′,
so the relation is symmetric. If g′ ∈ Hh and g′′ ∈ Hg′, then there are
h, h′ ∈ H with g′ = hg and g′′ = h′g′, so that g′′ = h′hg ∈ Hg. Therefore
the relation is transitive. Since it is an equivalence relation, and the cosets
are the equivalence classes, the collection of right cosets is a partition of G.

We would now like to define multiplication of right cosets by the for-
mula ‘HgHg̃ := Hgg̃,’ but in order for this to make sense the right hand
side cannot depend on the particular elements g and g̃ that were chosen
to represent the cosets of the left hand side. Put more concretely, for any
h, h̃ ∈ H we have H(hg) = Hg and H(h̃g̃) = Hg̃, so it must be the case
that Hgg̃ = Hhgh̃g̃. Now observe that Hhgh̃g̃ = Hgh̃g̃, and that mul-
tiplying both sides of the equation Hgg̃ = Hgh̃g̃ on the right by g̃−1g−1

gives H = Hgh̃g−1, which implies that gh̃g−1 ∈ H. We’ve shown that if
the definition HgHg̃ := Hgg̃ is independent of the choice of representatives,
then

Cg(h̃) = gh̃g−1 ∈ H

for all g ∈ G and h̃ ∈ H. That is, H is a normal subgroup of G. Conversely,
if H is a normal subgroup and g ∈ G, then Cg|H is a bijection between H
and itself (its inverse is Cg−1 |H) so

HgHg̃ = HgHg−1gg̃ = HCg(H)gg̃ = HHgg̃ = Hgg̃.

So, we’ll assume that our given subgroup is normal, and we’ll denote it
by N in conformity with the notational conventions of group theory. Mul-
tiplication of right cosets is not only well defined, but in fact this operation
on right cosets turns the set of right cosets into a group:

• This operation is associative because the group operation of G is as-
sociative.

• The coset Ne acts as a two sided identity element, obviously.

• For any g we have NgNg−1 = Ne = Ng−1Ng.
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The group consisting of the set of all right cosets, endowed with this opera-
tion, is called the quotient group and is denoted by G/N .

Let ϕ : G → G/N be the function g 7→ Ng. This map is a homomor-
phism, automatically by virtue of the formula defining the group operation in
G/N . Moreover, ϕ(g) = Ne if and only if g ∈ N , so ker(ϕ) = N . Beginning
with an arbitrary normal subgroup N , we have constructed a homomorphism
whose kernel is N . In the last chapter we showed that the kernel of a homo-
morphism (of groups) is always a normal subgroup, and now we have shown
that any normal subgroup is the kernel of a homomorphism.

Perhaps we should give examples, and of course many could be men-
tioned. Cartesian products are a rather rich source: for any two groups G
and H we can endow G×H with a natural group structure by defining the
group operation to be (g, h)(g′ , h′) := (gg′, hh′). (If you check to make sure
that this satisfies the definition of a group, as you should, you’ll easily see
that this construction actually works for any number of groups.) If G and
H are abelian, then so is G × H, in which case all subgroups are normal.
You might enjoy thinking about the various subgroups of ZZ× ZZ and their
associated quotient groups. (Figure 2.1 in Section 2.5 is a relatively compli-
cated instance.) If you pursue this topic, which is surprisingly rich, you’ll
find that it leads naturally into the study of the subgroups and quotient
groups of ZZm × ZZn. (Here ZZm and ZZn are regarded as additive groups.)

Pursuing the analogy with group theory a little further, it would seem
to make sense to define a simple ring to be a ring R whose only two sided
ideals are {0} and R itself, and indeed this is a standard definition. What
kind of rings are simple? The first thing to say is that this is an excellent
question! Simple groups have a rich theory, so this might also be true of
simple rings. Even if the answer is not very complex, it might prove to
be a stepping stone to more interesting questions. And it might be a fun
challenge to work it out.

It turns out that simple rings are not so, umm, “simple,” and in fact there
are some pretty famous theorems that address this issue. (Even worse, there
are actually things called “semisimple” rings.) We’ll restrict our focus to the
commutative case, so for the rest of this section all the rings are commuta-
tive. For a commutative ring there is no distinction between left ideals, right
ideals (I think you can guess what the definitions of these concepts are) and
two sided ideals, so from now on we’ll use the word “ideal” to describe these
things.

Let R be any commutative ring. There are two sorts of ideal we’ll need
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to consider. For each a ∈ R, aR = { ar : r ∈ R } is an ideal, because

ar + as = a(r + s) ∈ aR and s(ar) = a(rs) ∈ aR

for all r, s ∈ R. In the standard notation of ring theory this ideal is denoted
by (a), it is called the principal ideal generated by a, and an ideal is said
to be principal if it has this form. Of course (0) = {0} is such an ideal.
Next, consider

I0 = { a ∈ R : (a) = (0) }.
This is an ideal: if a, b ∈ I0, then a+ b ∈ I0 because

(a+ b) = { (a+ b)r : r ∈ R } ⊂ { ar + bs : r, s ∈ R } = (a) + (b) = (0),

and if r is any element of R, then ar ∈ I0 because

(ar) = { ars : s ∈ R } ⊂ (a) = (0).

Now suppose that R is simple. Then either I0 = R or I0 = (0), and for
each a ∈ R we must have either (a) = R or (a) = (0), so if I0 = (0), then
(a) = R for all nonzero a ∈ R. We consider these two possibilities in turn.

If I0 = R, then multiplication is identically zero. Indeed, whenever G is a
commutative group with the group operation thought of as addition (by the
way, this is standard practice in discussions of commutative groups) we can
turn it into a commutative ring by defining the product of any two elements
to be 0. (This multiplication is associative, distributive, and commutative,
obviously.) We’ll say that such “multiplication” is trivial. For a ring with
trivial multiplication, the ideals will be the subgroups of the underlying
commutative group: by definition any subgroup H is closed under addition
and negation, and contains 0, so it also contains the product of any element
of itself and any element of G. So, the ring derived from G will be simple if
and only if the only subgroups of G are {0} and G itself. Since any subgroup
of a commutative group is normal, this is case if and only if G is a simple
group. For any g ∈ G there is a subgroup

{. . . ,−g − g,−g, 0, g, g + g, . . .}

called the cyclic subgroup generated by g. We say that G is cyclic if it
is equal to one of its cyclic subgroups, but the requirement that G have no
subgroups other than {0} and G itself implies something stronger, namely
that G is equal to each of its nonzero cyclic subgroups. Since it’s a bit to the
side of the main thrust of our discussion, and because I think you might find
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it to be an interesting and enjoyable challenge, I’ll leave it to you to work
out what the simple cyclic groups are. Here’s a hint: start out by writing
down the simplest (in the usual sense of this word) examples of commutative
groups you can think of.

Now suppose that (a) = R for all a ∈ R \ {0}. That is, aR = R for all
a 6= 0. Recall that a ring element a is a zero divisor if a 6= 0 and there is
a nonzero b such that ab = 0. It is natural to ask whether there can be any
zero divisors, and easy to see that the answer is “no,” since we would have

(0) = 0R = (ab)R = a(bR) = aR = R.

This is impossible unless R = {0}, but then a 6= 0 6= b is impossible.

Next, observe that for each nonzero a we have a ∈ (a), so there is some
1a ∈ R satisfying a1a = a. Naturally we would like to prove that 1a = 1b
for all nonzero a, b, so that there is a multiplicative identity. This actually
takes a bit of cleverness. First, observe that a(1a1a) = (a1a)1a = a1a, so
a(12

a − 1a) = 0. As there are no zero divisors, it follows that 12
a = 1a. There

is now the computation

1a(1a − 1b)1b = 12
a1b − 1a1

2
b = 1a1b − 1a1b = 0.

Again, there are no zero divisors, so it must be the case that 1a = 1b.
Denoting the common identity element by 1 (of course!) observe that for
each nonzero a we have 1 ∈ (a), so a has a multiplicative inverse. Now
look back at the axioms for a field. Any ring satisfies (F1)-(F5) and (F9),
we assumed also that R satisfies (F8), and we have just proved that it also
satisfies (F6) and (F7). To celebrate, let’s sum it all up:

Theorem 2.19. A simple commutative ring is either a field or a simple
cyclic group with trivial multiplication.

2.4 Prime Factorization

The last result was interesting in and of itself, but it also suggests a general
principal: the difference between fields and more general commutative rings
is that commutative rings that aren’t fields (or abelian groups with trivial
multiplication) have nontrivial ideals, so understanding a ring is, to a large
extent at least, a matter of understanding the ring’s ideals. Now we’ll apply
this principal to the concept of unique factorization into primes. The main
ideas are ones that many people learn in grade school, but by taking an
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abstract approach we’ll be able to show that the principle of unique fac-
torization into primes holds in ZZ[i] (elements of ZZ[i] are called Gaussian

integers because Gauss made a deep study of the properties of this ring)
and k[X] for any field k.

All the rings considered in this section will be commutative. As we
noticed earlier, a ring without a multiplicative identity is a bit of a strange
beast, so we won’t consider that possibility either. In a discussion of prime
factorization, zero divisors would tend to just get in the way, so we’ll only
consider rings that don’t have any. As it happens, a commutative ring with
unit that has no zero divisors is called an integral domain. Let R be such
a ring.

For a, b ∈ R we say that a divides b, and write a|b, if b = ar for some
r ∈ R. A ring element that divides 1 is called a unit. The units in ZZ
are 1 and −1, the units in ZZ[i] are 1, i, −1, and −i, and if k is a field,
then the units in k[X] are the nonzero constant polynomials because every
element of k∗ is a unit of k. Some authors extend our notational convention
by letting R∗ denote the set of units of R. This is a commutative group
with multiplication as the group operation. To show this we observe that if
u1v1 = 1 = u2v2, then (u1u2)(v1v2) = 1, so a product of two units is a unit.
Of course 1 is a unit, and any unit has a multiplicative inverse that is also
a unit, because this is just what the definition of a unit says.

A ring element a is irreducible if, whenever a = bc, either b is a unit
or c is a unit. For most people this definition is what they think of as the
definition of primality, but recall that in the last section we said that a is
prime if, whenever a|bc, either a|b or a|c.

Lemma 2.20. If a ∈ R is prime, then it is irreducible.

Proof. Suppose a = bc. Then a|bc, so either a|b or a|c, and (because we
could interchange b and c) we may assume that a|b, i.e., b = ad for some d.
Then a = (ad)c = a(dc), so dc = 1 and c is a unit.

Eventually we’ll see some examples of irreducible ring elements that are not
prime.

An irreducible factorization of a ∈ R is a representation of a of the
form

a = p1 · p2 · . . . · pk
where p1, . . . , pk are irreducible. We say that this representation is unique

if any other irreducible factorization differs only in the ordering of the irre-
ducibles and multiplication of the irreducibles by units. To explain exactly
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what we mean by this recall that the symmetric group Sk is the set of
bijections

σ : {1, . . . , k} → {1, . . . , k}.

Such a bijection is called a permutation. We will regard the factorization
as unique if any other irreducible factorization

a = q1 · q2 · . . . · qℓ

has the same number of factors, so ℓ = k, and there are units u1, . . . , uk and
a permutation σ ∈ Sk such that qi = uipσ(i) for all i = 1, . . . , k.

An integral domain R is a unique factorization domain, or UFD, if
every nonzero ring element has a unique irreducible factorization.

Proposition 2.21. If R is a UFD and a ∈ R is irreducible, then a is prime.

Proof. Suppose a|bc, so that bc = ad for some d. Let b = p1 · . . . · pk,
c = q1 · . . . · qℓ, and d = r1 · . . . · rm be irreducible factorizations. Then

p1 · . . . · pk · q1 · . . . · qℓ and a · r1 · . . . · rm

are irreducible factorizations of bc. By uniqueness, a must be the product
of a unit and some element of the list p1, . . . , pk, q1, . . . , qℓ, and consequently
a|b or a|c.

Our goal is to show that ZZ, ZZ[i], and k[X] are UFD’s. To this end
we will study the relationship between unique factorization in an integral
domain R and the ideals of R.

A principal ideal domain, or PID, is an integral domain whose ideals
are all principal, so that for any ideal I there is some ring element a with
(a) = I. The examples of rings we have seen so far don’t include any that
aren’t PID’s (for ZZ[

√
2] this is far from obvious) but in the larger world of

commutative rings, or even integral domains, the PID’s are quite special.

In view of Proposition 2.21, the lemma below will be superfluous once
we show that every PID is a UFD, but we need it in the proof of that result.

Lemma 2.22. Irreducible elements of a principal ideal domain R are prime.

Proof. Supposing that a is irreducible, and that a divides bc, we will show
that a divides either b or c. Extending our notation for principal ideals, let

(a, b) := { ra+ sb : r, s ∈ R }.
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It is straightforward to check that (a, b) is an ideal of R, so, since R is a
PID, (a, b) = (d) for some d. There are now two possibilities: either d is a
unit or it isn’t.

In the first case there is a u such that du = 1, and for any r ∈ R we
have r = d(ur) ∈ (d), so (d) = R. In particular, there are x, y ∈ R such
that xa+ yb = 1. But then c = xac+ ybc, after which a|c follows from the
assumption that a|bc.

Now suppose that d is not a unit. We have a = ud for some u because
a ∈ (d), and if d is not a unit then u must be a unit because a is irreducible,
so a|d. But d|b because b ∈ (d), so it follows that a|b.

The next proof is probably the hardest in the book up to this point.
In part this is simply because it’s a bit long, but I’m sure that if you take
things one step at a time you’ll be able to convince yourself that the logic
is ironclad. The other difficulty is that it’s not so easy to see how someone
would have thought of it, and in fact it may not be the case that someone
did. Especially in abstract algebra, arguments evolve over time, and are
sometimes transported from one context where things seem intuitive to an-
other where the ideas are less obvious. But there is also a way of thinking
about proofs which allows one to discover arguments like this one: instead of
trying to prove everything all at once, think about how to prove something
much weaker, or some small piece of the desired conclusion.

Proposition 2.23. If R is a PID, then it is a UFD.

Proof. Fix an a ∈ R that is not a unit. The proof has three steps.

Step 1: a has an irreducible factor. If a is irreducible we are done, so
suppose that a = a1b1 where a1 and b1 are not units. Then a1 /∈ (a) because
otherwise a1 = ac for some c, and a1 = ac = (a1b1)c = a1(b1c) would imply
that b1c = 1, so that b1 was a unit after all. If a1 is not irreducible, then
the same argument with a1 in place of a gives a1 = a2b2 where a2 and b2
are not units and a2 /∈ (a1). If continuing this process never arrives at an
irreducible factor of a, then there is a strictly increasing sequence of ideals

(a) ⊂ (a1) ⊂ (a2) ⊂ . . . .

Let I :=
⋃∞
k=1(ak). If i, j ∈ I and r ∈ R, then i, j ∈ (ak) for some k, so that

I contains i+ j and ri because they are elements of (ak). Thus I is an ideal,
so I = (c) for some c. But then c ∈ (ak) for some k, and ak+1 ∈ (c) ⊂ (ak),
which is a contradiction.

Step 2: a has an irreducible factorization. Step 1 gives a factorization a =
b1c1 where b1 is irreducible. If c1 is a unit or irreducible we are done, and
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otherwise Step 1 implies that c1 = b2c2 with b2 irreducible. If c2 = dc1 for
some d, then c2 = dc1 = (db2)c2, which is impossible because b2 is not a
unit, so c2 /∈ (c1). Again, if c2 is a unit or irreducible we are done, and
otherwise Step 1 implies that c2 = b3c3 with b3 irreducible, so that c3 /∈ (c2)
because b3 is not a unit. If this process continues forever then, as in Step 1,
I =

⋃∞
k=1(ck) is an ideal, I = (d) for some d, there is k such that d ∈ (ck),

and ck+1 ∈ (d) ⊂ (ck), which is a contradiction. Therefore the process must
eventually halt at an irreducible factorization.

Step 3: The irreducible factorization of a is unique. Suppose that p1 · . . . ·pk
and q1 ·. . . ·qℓ are two distinct irreducible factorizations of a. We may assume
that among all the elements of R that have multiple irreducible factoriza-
tions, and among all the pairs of distinct irreducible factorizations, this is
one for which max{k, ℓ} is minimal. Since pk|a, and irreducible elements of
a PID are prime, pk|qi for some i. After reordering, we may assume that
i = ℓ, so we obtain qℓ = upk, where umust be a unit because qℓ is irreducible.
Then

p1 · . . . · pk−1 = (uq1) · q2 · . . . · qℓ−1,

contradicting our assumption that max{k, ℓ} is minimal.

If we can show that ZZ, ZZ[i], and k[X] are PID’s, it will follow that
these rings are UFD’s. To show that they’re PID’s, a viable method is
to hook up with the Euclidean algorithm for computing greatest common
divisors by repeated division with remainder. I was taught this in grade
school, but maybe your grade school was different, so let’s quickly review
it. Beginning with two integers, say 3, 640, 227 and 364, 531, whose greatest
common divisor we’d like to compute, we divide the bigger one by the smaller
one:

3, 640, 227 = 9 × 364, 531 + 359, 448.

The key point is that any common factor of the two numbers is also a factor
of the remainder, and in fact a common factor of the remainder and the
smaller of the two numbers we started with, so we can divide again:

364, 531 = 1 × 359, 448 + 5083.

Continuing in this manner:

359, 448 = 70 × 5083 + 3638;

5083 = 1 × 3638 + 1445;

3638 = 2 × 1445 + 748;
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1445 = 1 × 748 + 697;

748 = 1 × 697 + 51;

697 = 13 × 51 + 34;

51 = 1 × 34 + 17;

34 = 2 × 17.

Any common divisor of 3, 640, 227 and 364, 531 is a common divisor of every
number in the list of remainders, and the final nonzero remainder, namely
17, is a common divisor of 3, 640, 227 and 364, 531, so it must be the greatest
common divisor.

The following definition and result extract and exploit the key property
of the integers that makes this work. It will all happen quickly, without
much apparent effort, and in fact one reason for reviewing the Euclidean
algorithm, as we did above, is that otherwise the algorithmic aspect might
not be apparent.

Definition 2.24. An integral domain R is Euclidean if there is a function
ν : R → ZZ≥ (where ZZ≥ := {0, 1, 2, , . . .} is the set of nonnegative integers)
such that:

(a) ν(a) = 0 if and only if a = 0;

(b) for any a, b ∈ R with b 6= 0 there exist q, r ∈ R such that a = qb + r
and ν(r) < ν(b).

Theorem 2.25. If the integral domain R is Euclidean, then it is a principal
ideal domain.

Proof. Let I be an ideal of R. Since (0) is principal, we may assume that I
has a nonzero element. Choose a nonzero b ∈ I for which ν(b) is minimal.
For any a ∈ I there exist q, r ∈ R with r = a− qb and ν(r) < ν(b), and since
r ∈ I, this implies that r = 0, so that b|a. Since a was an arbitrary element
of I, we have shown that I ⊂ (b), but the definition of an ideal implies that
(b) ⊂ I, so I = (b).

The remaining task is to show that ZZ, ZZ[i], and k[X] are Euclidean,
after which it will follow that they are PID’s and UFD’s. We need to find
suitable functions

νZZ : ZZ → ZZ≥, νk[X] : k[X] → ZZ≥, and νZZ[i] : ZZ[i] → ZZ≥.
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For ZZ this is easy: let
νZZ(a) = |a|.

Because it will occur in an argument below we mention that for any a, b ∈ ZZ
with b 6= 0 it is actually possible to find an integer q such that |a−qb| ≤ |b|/2.

There is also a simple and obvious idea that works for k[X]. The degree

deg(P ) of a nonzero P ∈ k[X] is the largest power of X that appears in P
with a nonzero coefficient. For example, deg(3) = 0 and deg(4X2−5X+1) =
2. We set

νk[X](P ) :=

{

0, P = 0,

deg(P ) + 1, otherwise.

If you had a decent algebra course in high school or before, then it’s probably
obvious to you that for any nonzero P0, P1 ∈ k[X] with P1 6= 0 we can use
polynomial division with remainder to produce Q,R ∈ k[X] with P0 =
QP1 + R and νk[X](R) < νk[X](P1). If it’s not obvious, think about it
carefully until you understand it.

For ZZ[i] the situation is a bit more complicated. The modulus (or
complex norm, or absolute value) of a complex number a = x+ iy is

|a| :=
√

x2 + y2.

In view of the Pythagorean theorem, this is just the distance from the origin
0 to a when we identify it with the point (x, y) in the plane. We’ll need to
know that |ab| = |a| |b|, which is proven by the following calculation:

|ab|2 = |(x+ iy)(z + iw)|2

= |(xz − yw) + i(xw + yz)|2

= (xz − yw)2 + (xw + yz)2

= x2z2 − 2xzwy + y2w2 + x2w2 + 2xwyz + y2z2

= x2z2 + y2w2 + x2w2 + y2z2

= (x2 + y2)(z2 + w2) = |a|2|b|2.

The modulus will play an important role later, and eventually we will have
a formula that allows a proof of this that is not just a “miraculous” compu-
tation.

The modulus is essentially the right concept, but, technically speaking,
the definition of a Euclidean ring requires an integer valued function, so we’ll
use the square of this quantity. That is, for a = x+ iy ∈ ZZ[i] we set

νZZ[i](a) := |a|2 = x2 + y2.
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Our goal now is to show that for any a, b ∈ ZZ[i] with b 6= 0 there is q =
u+ iv ∈ ZZ[i] such that |a− qb|2 < |b|2.

First suppose that b ∈ ZZ, so that b is real, and let a = x + iy. We can
find u, v ∈ ZZ such that |x− ub| ≤ 1

2 |b| and |y − vb| ≤ 1
2 |b|, after which

|a− qb|2 = |(x− ub) + i(y − vb)|2 = (x− ub)2 + (y − vb)2 ≤ (1
4 + 1

4)|b|2.

Turning to the general case, let b = z + iw. The complex conjugate of b
is b := z − iw. We use the fact that bb = z2 +w2 is real, so that the special
case with ab and bb in place of a and b gives a q such that |ab− qbb| < |bb|.
But now we have

|a− qb|2 =
|a− qb|2|b|2

|b|2
=

|ab− qbb|2
|b|2

≤ |bb|2
2|b|2

=
|b|2|b|2
2|b|2

= 1
2 |b|2.

2.5 Algebraic Integers and Modules

Now consider the following fact:

(1 +
√
−5)(1 −

√
−5) = 6 = 3 · 2.

This looks suspiciously like a failure of unique factorization, but what is the
ring? We’re going to develop some rather advanced ideas to explain this,
and you may find this section a bit more difficult that what has come before
and what will come later, but the ideas will have important echos, and there
are some interesting stories to tell.

Definition 2.26. Let R be an integral domain. A polynomial P ∈ R[X] is
monic if the leading coefficient is 1, so it is of the form

P (X) = Xn + an−1X
n−1 + · · · + a1X + a0.

A complex number is an algebraic integer if it is a root of monic polyno-
mial in ZZ[X].

Before you’ve seen it, this is not an obvious way to define the notion of an
algebraic integer, and once you’ve seen it, it’s not at all clear that it’s “the
right” definition. It works well enough as a way of distinguishing ordinary
integers from other rational numbers. Any a ∈ ZZ is an algebraic integer
because it is a root of the monic polynomial X−a. On the other hand, if b/c
is a fraction in lowest terms with c > 1, then b/c is not an algebraic integer.
Specifically, for the monic polynomial P we have P (b/c) 6= 0 because if p
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is a prime factor of c, then it is not a factor of b, so the power of p in the
denominator of (b/c)n is greater than the power of p in cn−1, which is in
turn at least as large as the power of p in the denominator of

an−1(b/c)
n−1 + · · · + a1(b/c) + a0 =

an−1b
n−1 + · · · + a1bc

n−2 + a0c
n−1

cn−1

when this fraction is reduced to lowest terms.
But at first sight it seems strange to regard

3 +
√

5

2
and

3 −
√

5

2

as integers, even though they are the roots of the equation X2−3X+1 = 0.
Historically, the definition of an algebraic integer was eventually accepted,
primarily as a result of experience, because it led to a coherent theory and,
in many other respects, proved extremely fruitful. We’re going to explain
one crucial piece of this:

Theorem 2.27. If α and β are algebraic integers, then so are α + β and
αβ.

Corollary 2.28. The set of algebraic integers is an integral domain.

Proof. For any ring R, a nonempty subset S is a subring if it contains all
additive inverses, sums, and products of its elements. (Noting that 0 ∈ S
because 0 = −a + a for any a ∈ S, you should quickly check that Axioms
(R1)-(R6) are satisfied by S because they hold in R.) If, in addition, R is
an integral domain, then multiplication in S is commutative and S has no
zero divisors, so if 1 ∈ S, then S must also be an integral domain.

The set of algebraic integers is a subset of C that contains 1, obviously,
and sums and products of its elements. To see that it also contains negations
of its elements, observe that if α is an algebraic integer by virtue of being a
root of our monic polynomial P , then −α is a root of

Xn − an−1X
n−1 + · · · + (−1)n−1a1X + (−1)na0.

The proof of Theorem 2.27 provides an opportunity to introduce a very
general and important concept.

Definition 2.29. If R is a ring with unit, a left R-module is a commu-
tative group M (with the group operation written additively) for which there
is a binary operation R×M →M (written multiplicatively) such that:
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(a) 1m = m for all m ∈M ;

(b) r(m1 +m2) = rm1 + rm2 for all m1,m2 ∈M and all r ∈ R;

(c) (r1 + r2)m = r1m+ r2m for all m ∈M and r1, r2 ∈ R;

(d) r(sm) = (rs)m for all m ∈M and r, s ∈ R.

Right R-modules are defined similarly. When R is commutative, the
distinction between left and right R-modules is purely typographical, and
they are usually described simply as modules. In some books some modules
are written as right modules, but we will always have scalars act from the
left.

There are many different types of modules, and they are the central
objects of interest in numerous areas of mathematics. If R is a field, then an
R-module is called a vector space. Vector spaces are enormously important
in themselves, and Chapter 4 is devoted to the most basic facts about them.
Even now, before having done much of anything, it is easy to list several
other examples:

(a) There is a trivial R-module whose only element is 0.

(b) Any ideal of R (including R itself) is an R-module.

(c) For any set S there is an R-module structure on FR(S) given by defin-
ing rf : S → R, for f ∈ FR(S), to be the function s 7→ rf(s). For any
integer k ≥ 1 we can regard Rk as an R-module by identifying it with
FR({1, . . . , k}).

(d) If R is a subring of S, then S is an R-module. If we wish to call
attention to the R-module structure of S, we say that S is an R-

algebra. In particular, R[X] is an R-algebra if we identify R with the
subring of constant polynomials in R[X].

Possibly you already sense what is coming next. There will be homomor-
phisms, a category, submodules, kernels, and quotient modules. The basic
facts about these things will be straightforward, and quite similar to what
we have seen in connection with groups and rings. The only problematic
aspect of this is that, insofar as none of it is the least bit problematic, there
is really no better approach than just plowing through it, which will make
for a patch of rather dull reading.

Definition 2.30. If M and N are R-modules, a function ϕ : M → N is an
R-module homomorphism if:
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(a) ϕ(m1 +m2) = ϕ(m1) + ϕ(m2) for all m1,m2 ∈M (i.e., ϕ is a homo-
morphism of the underlying commutative groups);

(b) ϕ(rm) = rϕ(m) for all m ∈M and r ∈ R.

If ϕ is bijective, then it is an R-module isomorphism, and M and N are
said to be isomorphic.

If ϕ is an R-module isomorphism, then so is ϕ−1. The proof is an
extension of analogous arguments we saw earlier. In our discussion of groups
we showed that the inverse of an isomorphism of groups is a homomorphism,
hence an isomorphism, so ϕ−1 is a homomorphism of the underlying abelian
groups. To see that ϕ−1 also satisfies (b) consider n ∈ N and r ∈ R, set
m := ϕ−1(n), and compute that

ϕ−1(rn) = ϕ−1(rϕ(m)) = ϕ−1(ϕ(rm)) = rm = rϕ−1(n).

In what is, by now, the “usual” sort of way with homomorphisms, if
M , N , and P are R-modules and ϕ : M → N and ψ : N → P are R-
module homomorphisms, then so is ψ ◦ ϕ because it is a homomorphism of
the underlying abelian groups and

ψ(ϕ(rm)) = ψ(rϕ(m)) = rψ(ϕ(m))

for all m ∈ M and r ∈ R. Composition of R-module homomorphisms
is associative because composition of functions is associative. In addition,
IdM is always an R-module isomorphism, and

ϕ ◦ IdM = ϕ = IdN ◦ ϕ.

Thus, most unsurprisingly, there is a category of R-modules and R-module
homomorphisms.

A submodule of an R-module M is a subset M ′ ⊂ M that is itself
an R-module. Concretely, M ′ ⊂ M is a submodule if: (a) it is nonempty;
(b) −m ∈ M ′ for all m ∈ M ′; (c) m + m′ ∈ M ′ for all m,m′ ∈ M ′ (so
0 = −m + m ∈ M ′); (d) rm ∈ M ′ for all m ∈ M ′ and r ∈ R. In this
circumstance M ′ is a subgroup of the underlying commutative group of M ,
and the quotient group M/M ′ can be regarded as an R-module if we define
the product of a ring element r with a coset m+M ′ = {m+m′ : m′ ∈M ′ }
to be

r(m+M ′) := rm+M ′.
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(Here r(m+M ′) may be a proper superset of { r(m+m′) : m′ ∈M ′ } if rM ′

is a proper subset of M ′.) Please check for yourself that (a)-(d) of Definition
2.29 hold.

It is always the case that {0} and M are submodules, and for any r ∈ R,
and m ∈M ,

rM = { rm : m ∈M } and Rm = { rm : r ∈ R }

are submodules. If A is any set and, for each α ∈ A, Mα is a submodule
of M , then

⋂

α∈AMα is a submodule. If M ′ and M ′′ are submodules of V ,
then so is

M ′ +M ′′ := {m′ +m′′ : m′ ∈M ′ and m′′ ∈M ′′ }.

The proof is trivial: if m′+m′′, m̃′ +m̃′′ ∈M ′+M ′′, then M ′ +M ′′ contains

−(m′ +m′′) = (−m′) + (−m′′)

and

(m′ +m′′) + (m̃′ + m̃′′) = (m′ + m̃′) + (m′′ + m̃′′),

and if, in addition, r ∈ R, then M ′ + M ′′ contains and r(m′ + m′′) =
(rm′) + (rm′′).

Suppose ϕ : M → N is an R-module homomorphism. The image ϕ(M)
of ϕ is a submodule of N because it is nonempty, it contains −n = ϕ(−m)
and n+ n′ = ϕ(m +m′) whenever n = ϕ(m) and n′ = ϕ(m′) are elements,
and it contains rn = ϕ(rm) whenever n = ϕ(m) is an element and r ∈ R.
If N ′ is a submodule of N , then ϕ−1(N ′) is a submodule of M : ϕ−1(N ′)
is a subgroup of M because ϕ is a homomorphism of groups, and ϕ(rm) =
rϕ(m) ∈ N ′ whenever m ∈ ϕ−1(N ′) and r ∈ R. The kernel of ϕ is

ker(ϕ) := ϕ−1(0).

Since {0} is a submodule of N , ker(ϕ) is a submodule of M . For any
submodule M ′ the map ϕ : m 7→ m + M ′ is an R-module homomorphism
from M to M/M ′ because

ϕ(m1 +m2) = (m1 +m2)+M ′ = (m1 +M ′)+ (m2 +M ′) = ϕ(m1)+ϕ(m2)

for all m1,m2 ∈M and

ϕ(rm) = rm+M ′ = r(m+M ′) = rϕ(m)
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for all m ∈ M and r ∈ R. Clearly ker(ϕ) = M ′, so this construction shows
that every submodule M ′ of M is the kernel of some R-module homomor-
phism.

The concept of an R-module is so general that one might expect that
there wouldn’t be much general theory, for more of less the same reason
that there is little to say about categories or functions in general. Actually,
things aren’t this simple, but in our work R will almost always either be ZZ
or a field. When a definition or argument can be phrased in general terms
we will do so, but this will be incidental to the main thrust of our discussion.

We now focus on ZZ-modules. The first point of interest is that scalar
multiplication in a ZZ-moduleM is determined by the group operation. That
is, for any m ∈M we have (−1)m = −m because

(−1)m = (−1)m+m−m = (−1 + 1)m−m = −m,

and for any positive integer r we have

rm = (1 + · · · + 1)m = m+ · · · +m

where the two sums involve r copies of 1 and m respectively. Moreover, any
commutative group can be made into a ZZ-module by defining multiplication
by elements of ZZ in this manner. In short, a ZZ-module is just a commutative
group, and vice versa.

At this point you might be wondering why we introduced the module
concept, and laid out all the standard associated formalities, when all we
really wanted to do was talk about commutative groups. There are sev-
eral reasons. Our discussion will emphasize the ZZ-module structure of the
groups considered below. Modules occur frequently, so the definition itself
conveys some useful sense of perspective. Most practically, if we didn’t do
the work here, we would have had to do it at the beginning of Chapter 4,
so the costs are actually rather low.

We now begin to explain what this all has to do with algebraic numbers
and integers.

Definition 2.31. If M is an R-module, a set G ⊂ M is a set of gener-

ators for M if every element of M is of the form r1g1 + · · · + rpgp where
r1, . . . , rp ∈ R and g1, . . . , gp ∈ G. We say that M is finitely generated if
it has a finite set of generators.

Theorem 2.32. A number α ∈ C is an algebraic integer if and only if the
module ZZ[α] is finitely generated.
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Proof. First suppose that α is an algebraic integer, so

αn + an−1α
n−1 + · · · + a1α+ a0 = 0

for some n and integers a0, . . . , an−1. We claim that 1, α, . . . , αn−1 is a set of
generators for ZZ[α]. Every element of ZZ[α] is P (α) for some polynomial P ∈
ZZ[X], so it suffices to show that the submodule generated by 1, α, . . . , αn−1

includes αm for any m ≥ 0. This is true automatically for m ≤ n − 1, and
for m ≥ n we have

αm = −an−1α
m−1 − · · · − a0α

m−n.

Now suppose that ZZ[α] is a finitely generated ZZ-module, so there are
polynomials P1, . . . , Pk ∈ ZZ[X] such that P1(α), . . . , Pk(α) is a set of gen-
erators for ZZ[α]. In particular, for any integer n there are b1, . . . , bk ∈ ZZ
such that

αn = b1P1(α) + · · · + bkPk(α).

If n is greater than any power of X appearing in P1, . . . , Pk, then α is a root
of the monic polynomial

Xn − b1P1 − · · · − bkPk,

so α is an algebraic integer.

If α and β are algebraic integers, then we can show that α + β and
αβ are also algebraic integers by showing that ZZ[α + β] and ZZ[αβ] are
finitely generated. Let ZZ[α, β] be the smallest subring3 of C containing ZZ,
α, and β. Suppose that 1, α, . . . , αk−1 is a set of generators for ZZ[α] while
1, β, . . . , βℓ−1 is a set of generators for ZZ[β]. Then

{αiβj : 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ ℓ− 1 }
3In general, if S is a commutative ring with unit, R is a subring of S with 1 ∈ R, and

A ⊂ S, then R[A] is the smallest subring of S that contains R and A. This definition
makes sense because the intersection of all subrings that contain R and A is a subring of
S that is contained in any subring of S that contains R and A. If R[A] = T , then we
say that A is a set of generators for T over R. When A = {α1, . . . , αk} is finite we
write R[α1, . . . , αk] rather than R[{α1, . . . , αk}], and we say that T is finitely generated
over R. This is a much weaker condition than T being finitely generated as an R-module,
it is important to be careful about distinguishing between the two concepts, and the
terminology is unfortunately not very helpful about this.
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is a set of generators for ZZ[α, β] because any polynomial in α and β can be
reduced, by the sorts of repeated substitutions we saw in the proof above,
to an expression of the form

k−1
∑

i=0

ℓ−1
∑

j=0

cijα
iβj .

Of course ZZ[α+ β] and ZZ[αβ] are submodules of ZZ[α, β], so Theorem
2.27 will follow from Theorem 2.32 if we can prove that:

Proposition 2.33. A submodule of a finitely generated ZZ-module is finitely
generated.

Is this true? The answer is “yes,” but perhaps not obviously so. Among
other things, there are commutative rings R for which finitely generated
R-modules can have submodules that are not finitely generated.

How should we think about trying to prove it? When you are getting
started on thinking about a proof, one important idea is to reduce to a
special case. We claim that in order to show that any submodule of a finitely
generated ZZ-module is finitely generated, it suffices to show that for any k,
any submodule of ZZk is finitely generated.

Let M be a finitely generated ZZ-module, say with generators g1, . . . , gk,
and let M ′ be a submodule. We will “pull the problem upstairs” to ZZk.
Consider the map ϕ : ZZk 7→M defined by the formula

ϕ(r1, . . . , rk) := r1g1 + · · · + rkgk.

The verification that ϕ is a ZZ-module homomorphism is straightforward.
For any (r1, . . . , rk) and (r′1, . . . , r

′
k) we have

ϕ((r1, . . . , rk) + (r′1, . . . , r
′
k)) = ϕ(r1 + r′1, . . . , rk + r′k)

= (r1 + r′1)g1 + · · · + (rk + r′k)gk

= (r1g1 + · · · + rkgk) + (r′1g1 + · · · + r′kgk)

= ϕ(r1, . . . , rk) + ϕ(r′1, . . . , r
′
k).

For any (r1, . . . , rk) and q ∈ ZZ we have

ϕ(q(r1, . . . , rk)) = ϕ(qr1, . . . , qrk) = qr1g1 + · · · + qrkgk

= q(r1g1 + · · · + rkgk) = qϕ(r1, . . . , rk).
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Since ϕ is a homomorphism, ϕ−1(M ′) is a submodule of ZZk. Suppose
that it has a finite system of generators, say h1, . . . , hℓ. Since M is generated
by g1, . . . , gk, ϕ is surjective, so ϕ(ϕ−1(M ′)) = M ′. Therefore

M ′ = ϕ(ϕ−1(M ′)) = ϕ
(

{ r1h1 + · · · + rℓhℓ : r1, . . . , rℓ ∈ R }
)

= { r1ϕ(h1) + · · · + rℓϕ(hℓ) : r1, . . . , rℓ ∈ R },
so ϕ(h1), . . . , ϕ(hℓ) generates M ′. Thus, if we can show that any submodule
of ZZk is finitely generated, it will follow that ϕ−1(M ′) is finitely generated,
and in turn this implies that M ′ is finitely generated.
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Figure 2.1

Another important way to think about proofs is to look at pictures.
Figure 2.1 shows a typical submodule of ZZ2 that is clearly generated by g1
and g2. It seems that if ZZ2 had a submodule that was not finitely generated,
you might have come across it before, so probably every submodule of ZZ2 is
finitely generated, and in fact it looks like any submodule of ZZ2 is generated
by two or fewer elements. Since Figure 2.1 looks simple, one is inclined to
guess that any submodule of ZZk has a system of generators with k or fewer
elements, and that this really shouldn’t be too hard to prove.

A third method of thinking about proofs is to look at the simplest special
cases. So consider the case k = 1. A submodule of ZZ is an ideal, and we
have proved that ZZ is a PID, so any submodule is generated by a single



2.5. ALGEBRAIC INTEGERS AND MODULES 69

element! So far, so good, but how to go forward from here? In this sort of
situation there are two fundamentally different approaches. We could try
to generalize the argument used to prove that ZZ is a PID, but this doesn’t
seem promising. Among other things, it is not clear how to generalize the
Euclidean hypothesis. The second method is to use induction on k, taking
advantage of the work we have already done to get the induction started.
This is what we do.

Once you’ve completed a proof, it’s a good idea to think about whether
you’ve really proved more than you set out to prove. Can the assumptions
be weakened or the conclusion strengthened. It turns out that the only fact
about ZZ used in the argument below is that it is a PID, so we strengthen
the statement accordingly.

Lemma 2.34. Let R be a PID. Suppose the R-module M has a system
of generators with k elements. Then any submodule M ′ has a system of
generators with at most k elements.

Proof. The argument we saw above (which works equally well with ZZ re-
placed by R) shows that it suffices to prove this in the special case M = Rk.
When k = 1 a submodule of M is, in effect, an ideal of R, so it is either
(0) or it is generated by a single element because R is a PID. By the prin-
ciple of induction, we may assume that it has already been shown that any
submodule of Rk−1 has a system of generators with at most k− 1 elements.

Let π : Rk → R be the function

π(r1, . . . , rk) := rk.

Perhaps you’re getting used to the standard maneuvers to the point that it
seems obvious that π is a R-module homomorphism, but we write out the
verification anyway:

π((r1, . . . , rk) + (r′1, . . . , r
′
k)) = π(r1 + r′1, . . . , rk + r′k)

= rk + r′k = π(r1, . . . , rk) + π(r′1, . . . , r
′
k)

and

ϕ(q(r1, . . . , rk)) = ϕ(qr1, . . . , qrk) = qrk = qϕ(r1, . . . , rk).

Let M ′ be a submodule of Rk. If M ′ ⊂ π−1(0) = Rk−1, then the
claim follows from the induction hypothesis, so we may assume that π(M ′)
is a nontrivial submodule (i.e., an ideal different from (0)) of R. Then
π(M ′) = (h1) for some nonzero h1 ∈ R, and we can choose g1 ∈ M ′ such
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that π(g1) = h1. Since ker(π) ∩M ′ is a submodule of ker(π) = Rk−1 it has
a system of generators g2, . . . , gℓ where ℓ ≤ k.

To prove that g1, . . . , gℓ is a system of generators for M ′ consider any
m ∈ M ′. For some r1 we have π(m) = r1h1. Since π(m − r1g1) = π(m) −
r1π(g1) = 0, there are r2, . . . , rℓ ∈ R such that m− r1g1 = r2g2 + · · · + rℓgℓ.
Thus, as desired, we have

m = r1g1 + r2g2 + · · · + rℓgℓ.

2.6 Fermat’s Last Theorem

At this point we’ve proved Theorem 2.27. Where does that leave us? The
first point is that if α is an algebraic integer, then Theorem 2.27 implies that
every element of ZZ[α] is an algebraic integer. More generally, if α1, . . . , αk
are algebraic integers, then ZZ[α1, . . . , αk] is finitely generated, so every el-
ement of this ring is an algebraic integer. As it happens, a result with the
exotic and suggestive name “The Theorem of the Primitive Element” im-
plies that for any algebraic integers α1, . . . , αk there is an algebraic integer
β such that

ZZ[α1, . . . , αk] = ZZ[β].

It can easily happen that ZZ[α] is not a UFD. To illustrate this we now
complete the explanation of the apparent failure of prime factorization given
by the calculation (1 +

√
−5)(1 −

√
−5) = 2 · 3. To begin with observe that

1 +
√
−5 and 1 −

√
−5 are algebraic integers because they are elements of

ZZ[
√
−5], and

√
−5 is an algebraic integer because it is a root of the monic

polynomial X2 + 5. For α = a+ b
√
−5 ∈ ZZ[

√
−5] let4

N−5(α) := a2 + 5b2.

This function is multiplicative: if β = c + d
√
−5 is another element of

4Those who already know about determinants can understand N−5(α) as the deter-

minant of the matrix

„

a −5b
b a

«

representing multiplication by α in the sense that if

γ = x+y
√
−5, then αγ = (ax−5by)+(ay+ bx)

√
−5 and

„

a −5b
b a

« „

x
y

«

=

„

ax− 5by
ay + bx

«

.
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ZZ[
√
−5], then

N−5(αβ) = N−5

(

(ac− 5bd) + (ad+ bc)
√
−5
)

= (ac− 5bd)2 + 5(ad + bc)2

= (a2c2 − 10abcd + 25b2d2) + (5a2d2 + 10abcd + 5b2c2)

= a2c2 + 5a2d2 + 5b2c2 + 25b2d2

= (a2 + 5b2)(c2 + 5d2)

= N−5(α)N−5(β).

Direct computation gives N−5(1+
√
−5) = N−5(1−

√
−5) = 6, N−5(2) =

4, and N−5(3) = 9. The only α ∈ ZZ[
√
−5] with N−5(α) = 1 are the units

1 and −1, and it is easy to see that 2 and 3 are not possible values of N−5.
Since N−5 is multiplicative, it follows that 1 +

√
−5, 1 −

√
−5, 2, and 3 are

all irreducible, and our example is indeed a failure of unique factorization.
From this we conclude that ZZ[

√
−5] is not a UFD, and consequently it

cannot be a PID.

We now arrive at one of the most famous stories in mathematics. Pierre
de Fermat (1601-1665) was a French lawyer who spent the bulk of his career
as a councillor at the local parliament at Toulouse, and devoted his leisure
time to mathematics. Although he made many important discoveries, much
of his work was unpublished in his lifetime, and was found after his death in
marginal annotations in his books. The most famous of these asserts that
for any integer n ≥ 3 there are no nonzero integers a, b, c such that

an + bn = cn,

going on to say that “I have a truly marvelous proof of this proposition
which this margin is too narrow to contain.” This assertion became known
as Fermat’s Last Theorem after all of his other proposed results were
either proved or refuted by counterexamples.

Possibly Fermat first discovered that the result was true for n = 3,
and his proof for the case n = 4 is extant. In 1753 Euler gave a proof of
the case n = 3 that was incorrect, but in a way that could be fixed, and
subsequently many distinguished mathematicians worked out special cases.
Sophie Germain (1776-1831) proved that for n < 100 the equation cannot
be satisfied when none of the numbers a, b, c is divisible by n. The remaining
case (exactly one of a, b, and c is divisible by n) for n = 5 splits into two
subcases for which proofs were given in 1825 by Lejeune Dirichlet (1805-
1859) and Legendre respectively. Dirichlet gave a proof for the case n = 14
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in 1832, and in 1839 Gabriel Lamé (1795-1870) gave a proof for the case
n = 7. (Since ars = (ar)s for any a, r, and s, the case n = 14 is the case
n = 7 with the additional restriction that a, b, and c are squares.)

Famously, in 1847 Lamé announced to the Paris Académie des Sciences
that he had proved Fermat’s Last Theorem in its entirety. Here we will
explain the starting point of his argument. If p is odd prime that is a factor
of n, then an = (an/p)p, and similarly for b and c, so a counterexample to
Fermat’s conjecture with exponent n yields a counterexample with exponent
p. Similarly, if the exponent is n = 2k for some k ≥ 2, then a counterexample
with exponent n yields a couterexample with exponent 4. Every integer
greater than 2 is either a power of 2 or is divisible by an odd prime, so to
establish Fermat’s last theorem it suffices to establish it when the exponent
is 4 (which Fermat did) or any odd prime p.

Let ζ be a pth root of unity: that is, ζ 6= 1 is a complex number such
that ζp = 1. Possibly you already know that exp(2πi/p) is a pth root of
unity; if you don’t now, you will after you read the next chapter. For the
discussion here it suffices to take the existence of such a ζ on faith. Since ζ
is a root of the monic polynomial Xp − 1, it is an algebraic integer.

Now consider the polynomial

P (X,Y ) := (X + Y )(X + ζY ) · · · (X + ζp−1Y ).

Expanding this using the distributive law gives

P (X,Y ) = Xp + cp−1X
p−1Y + · · · + c1XY

p−1 + c0Y
p

for some complex numbers c0, . . . , cp−1. We have c0 = ζe where5 e =
∑p−1

i=0 i = p(p − 1)/2, so c0 = ζp(p−1)/2 = 1(p−1)/2 = 1. Now observe that
if we substitute ζY for Y in the definition of P , then the factor X − Y
is replaced by the factor X − ζpY , but of course these are the same, so
P (X, ζY ) = P (X,Y ). Expanding Xp + Y p from both sides of this equation
gives

cp−1X
p−1Y + · · · + c1XY

p−1 = cp−1X
p−1(ζY ) + · · · + c1X(ζY )p−1,

which implies that cp−j = cp−jζ
j for each j = 1, . . . , p− 1. Since ζj 6= 1 for

each such j (why, precisely?) we have c1 = · · · = cp−1 = 0, and we conclude
that P (X,Y ) = Xp + Y p. In particular, for a counterexample to Fermat’s
conjecture with exponent p we have

cp = ap + bp = (a+ b)(a+ ζb) · · · (a+ ζp−1b).

5To see that 1+ 2+ · · ·+(k− 1) = k(k− 1)/2 we observe that this is true when k = 1,
and k(k − 1)/2 + k = (k + 1)k/2, so it follows from induction.
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Certainly this is a tantalizing beginning. I don’t know anything about
how Lamé’s argument proceeded from there except that it depended on an
assumption that ZZ[ζ] is a UFD, and eventually Ernst Kummer (1810-1893)
showed that this is not always true. These events gave enormous stimulation
to the development of algebraic number theory, which studies the ideals of
rings of algebraic integers and related matters, but although this field and
nearby areas of mathematics have been active topics of research ever since,
until recently there were no new methods that could be used to mount fresh
attacks.

In 1986 Kenneth Ribet proved that Fermat’s Last Theorem would fol-
low from certain cases of another open problem known as the Shimura-
Taniyama-Weil Conjecture. Upon learning about this, Andrew Wiles de-
cided to attempt the proof of these cases, and worked in secret on this
project for the next seven years. He disclosed his proof in a famous series of
three lectures at Cambridge University that culminated with the announce-
ment that Fermat’s Last Theorem had been proven. However, examination
of his argument uncovered one serious flaw, and in December 1993 Wiles
withdrew his claim to have a proof. Although the mathematical commu-
nity continued to believe that the parts of his argument that survived were
major contributions, Wiles’ disappointment must have been extraordinarily
intense.

Everybody makes mistakes. If this is true even for Lamé and Wiles,
what are ordinary mortals to do? In my experience the most effective guard
against error is to develop the habit of looking at the question or phe-
nomenon at issue from as many points of view as possible. The human mind
is well adapted to processing somewhat discordant bundles of information,
sensing apparent contradictions and seeking out resolutions. In mathematics
there are usually several ways to solve a problem, or perform a calculation.
Doing everything twice may sound like a waste of time, but sometimes one
turns up new insights in this way. People who approach mathematics by
focusing on learning a single method actually tend to calculate more slowly,
in part because they get into the habit of proceeding cautiously, as they
must, since one wrong step is fatal.

A second important idea is to work on expressing your reasoning clearly.
Proofs start from rough sketches, after which one works to fill in the missing
steps. A mistake that remains at the end is typically concealed by a piece
of vague, misleading, or lazy language. Working to make the expression of
the argument crystal clear will usually root out these sorts of errors.

In early 1994 Wiles invited his former student Richard Taylor (b. 1962)
to come from Harvard to Princeton to help him work on the problem. They
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tried various approaches, but in August 1994 Wiles announced that they
were no nearer to a solution than he had been nine months earlier. Shortly
thereafter Taylor suggested an attempt that Wiles was sure would fail, but
Wiles agreed to work on it anyway, mainly in order to convince Taylor
that it was hopeless. Two weeks later there was a flash of inspiration, and
in October they circulated a draft of a new argument that was eventually
accepted.

So, we can add two more items to our list of techniques for offsetting
human fallibility: a) don’t give up; b) have really smart friends.

2.7 Ordered Fields

After the adventures of the preceeding sections, we return to the main fo-
cus of this chapter, namely laying out an axiomatic description of the real
numbers. The next step is to introduce the notion of order.

Definition 2.35. An ordered field is a field (R,+, ·) with a binary relation
< (with the standard associated relations, so the symbols ‘>,’, ‘≤,’ and ‘≥’
have their usual meanings) such that:

(O1) For all x, y ∈ R, exactly one of x < y, x = y, and y < x holds.

(O2) For all x, y, z ∈ R, if x < y and y < z, then x < z.

(O3) For all x, y, z ∈ R, if x < y, then x+ z < y + z.

(O4) For all x, y, z ∈ R, if x < y and 0 < z, then xz < yz.

There is surprisingly little to say about these additional axioms, at least
in relation to the topics considered so far in this chapter. For any irrational
number α ∈ R, Q(α) is example of an ordered field, but seemingly not
a particularly interesting example. More precisely, on the surface there
doesn’t seem to be much interest in the interaction of the order axioms with
the algebraic properties of Q(α). As usual, at more advanced levels things
are much more complicated, but none of this needs to be discussed at the
beginning.

In real analysis textbooks it is common to have one or more pages de-
voted to proofs of little facts that everyone knows about inequalities. The
point of this is mainly to give some experience in the construction of detailed
proofs. (If you feel like a little challenge, try giving a proof, with each step
justified by an axiom, that if y > x > 0, then x−1 > y−1 > 0.) Exercises
of this sort are somewhat outside the spirit of this book, but we give one
example.
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Theorem 2.36. 1 > 0.

Proof. Axiom (F6) requires that 1 6= 0, so, by (O1), either the claim is
correct or 1 < 0. If 1 < 0, then (O3) implies that 0 = −1+1 < −1+0 = −1,
after which (O4) gives 0 = 0 · 0 < (−1) · (−1) = 1 after all.

Of course I would be quite surprised if you didn’t already know that the
absolute value of x ∈ R is denoted by |x|, and is x if x ≥ 0, and otherwise
it is −x. The following facts will be applied again and again.

Lemma 2.37. If x and y are elements of an ordered field R, then

|xy| = |x| |y| and |x+ y| ≤ |x| + |y|.

Proof. To prove that |xy| = |x| |y| there is really nothing easier than going
through each of the four cases. There would be no real point in writing it
out; as usual, you should make sure you understand it.

For any z ∈ R we have z ≤ |z| and −z ≤ |z|. The variant of (O3) in which
strict inequality is replaced by weak inequality holds because x+ z = y + z
when x = y. The asserted inequality is obtained by applying this four times:

x+ y ≤ |x| + y ≤ |x| + |y| and − x− y ≤ |x| − y ≤ |x| + |y|.

The characteristic of a field k is either the smallest integer p such that
0 = 1 + · · ·+ 1 (p summands) or (by convention) 0 if no such integer exists.
If the characteristic is p 6= 0, then p must be prime since if p = qr, where
q, r > 1, then the product of 1 + · · · + 1 (q summands) and 1 + · · · + 1
(r summands) would be zero, even though neither factor is zero. Fields of
nonzero characteristic play an important role in number theory, and have a
rich and interesting theory, but we won’t need to consider them here.

Lemma 2.38. If R is an ordered field, then the characteristic of R is zero.

Proof. If 1 + · · ·+ 1 = 0, then the fact that 0 < 1 and repeated applications
of (O4) would give

0 < 1 < 1 + 1 < . . . < 1 + · · · + 1 = 0,

and (O2) (transitivity) would imply that 0 < 0, contrary to (O1).
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We will need to know that Q has only one ordering satisfying (O1)-(O4).
Since 0 < 1, for every integer n (O3) implies that n < n+ 1, and since < is
transitive (that is, (O2)) it is clear that any two orderings satisfying (O1)-
(O4) order any two integers in the same way. Consider p/q, r/s ∈ Q, where
p, q, r, s ∈ ZZ with q and s positive, and suppose that ps < rq. If we knew
that 0 < 1/qs we could use (O4) to conclude that

p/q = ps(1/qs) < rq(1/qs) = r/s,

so that the ordering of p/q and r/s is determined by the ordering of the
integers ps and rq. But (O4) implies that 0 < qs, and in general, if 0 < z,
then 0 < 1/z because 1/z = 0 is impossible, and if 1/z < 0, we could apply
(O4) with x = 1/z and y = 0 to obtain 1 < 0, which we know to be false.
Thus the ordering of any two elements of Q is determined by the ordering
of the integers, and there is only one way to order the integers.

Let R be a field of characteristic zero. There is a unique homomorphism
ϕ : Q → R satisfying ϕ(1) = 1 that is defined by setting ϕ(0) := 0, ϕ(n) :=
1+ · · ·+1 (n summands) and ϕ(−n) := (−1)+ · · ·+(−1) (n summands) for
each positive integer n, and setting ϕ(m/n) := ϕ(m)/ϕ(n) for all nonzero
integers m and n. If R is an ordered field, we can define an ordering ≺ on Q

by specifying that r ≺ s if and only if ϕ(r) < ϕ(s), and it is easy to see that
since (O1)-(O4) are satisfied in R, ≺ is a relation on Q satisfying (O1)-(O4).
But there is only one such relation, so ≺ agrees with <, and consequently
ϕ must be order preserving in the sense that ϕ(r) < ϕ(s) if and only if
r < s. That is, there is only one way to embed Q in R as a subfield,
and this embedding respects the order. Instead of explicitly carrying the
homomorphism ϕ around, it is simpler to treat Q as a subfield of R, and we
will do so from now on.

2.8 The Least Upper Bound Axiom

We now introduce the property that distinguishes the set of real numbers
from all other ordered fields. Fix an ordered field R. If S ⊂ R and b ∈ R,
we say that b is an upper bound for S if b ≥ s for all s ∈ S.

Definition 2.39. A real number field is an ordered field (R,+, ·, <) that
also satisfies the least upper bound axiom:

(LUB) Every nonempty S ⊂ R that is bounded above has a least upper

bound: there is an upper bound b such that b ≤ b whenever b is an
upper bound for S.
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Roughly, (LUB) insures that a real number field has no “holes,” so that
when we go looking for a number to be in a particular place, we find one.
Below we’ll explain two of the most basic and important general manifes-
tations of this idea. Each of these is the seed of a circle of ideas that will
be developed much more fully in the next chapter, with important echoes
throughout mathematics.

In preparation for that we introduce some important notation. If a and
b are elements of R, then

[a, b] := { t ∈ R : a ≤ t ≤ b } and (a, b) := { t ∈ R : a < t < b }.

Sets like these are called closed and open intervals respectively. Half

open intervals are those of the forms

(a, b] := { t ∈ R : a < t ≤ b } and [a, b) := { t ∈ R : a ≤ t < b }.

There are also intervals that are unbounded in one direction:

[a,∞) := { t ∈ R : a ≤ t }; (a,∞) := { t ∈ R : a < t };

(−∞, b] := { t ∈ R : t ≤ b }; (−∞, b) := { t ∈ R : t < b }.
Fix a, b ∈ R with a < b, and let f : [a, b] → R be a function. Possibly

you already know what it means for f to be continuous, but in case you
don’t, here is the definition. We say that f is continuous if, for each
s ∈ [a, b] and each ε > 0, there is δ > 0 such that |f(s′) − f(s)| < ε for
all s′ ∈ (s − δ, s + δ) ∩ [a, b]. That is, for any s we can force f(s′) to be
as close to f(s) as we like by requiring that s′ be chosen from a sufficiently
small interval around s. A common visual intuition is that you can draw
the graph of f without lifting the pencil off the piece of paper.

s

f(s)

a bt
b b

b

b

b

Figure 2.2
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Theorem 2.40 (Intermediate Value Theorem). If R is a real number field,
f : [a, b] → R is continuous, f(a) < 0, and f(b) > 0, then there is some t
such that f(t) = 0.

Proof. Let

S := { s ∈ [a, b] : f(s) < 0 }.
Then S contains a and is bounded above to b, so it has a least upper bound
t. If f(t) < 0, then there is δ > 0 such that f(t′) < 0 for all t′ ∈ (t− δ, t+ δ),
contradicting the assumption that t is an upper bound on S. If f(t) > 0,
then there is δ > 0 such that f(t′) > 0 for all t′ ∈ (t− δ, t+ δ), contradicting
the assumption that t is the least upper bound on S. In view of (O1), the
only remaining possibility is that f(t) = 0.

In the rest of this book this theorem will be invoked many times, with
the following application being fairly typical. In our work up to this point
we’ve proved that

√
2 is irrational, and we had a few things to say about

the field Q(
√

2). But how do we know that 2 actually has a square root?

Theorem 2.41. If R is a real number field, then R contains a square root
of 2.

Proof. The claim follows if we can show that the hypotheses of the inter-
mediate value theorem are satisfied by the function f : [0, 2] → R given by
f(s) := s2 − 2. Of course f(0) = −2 < 0 and f(2) = 2 > 0. To show that
f is continuous we consider some s ∈ [0, 2] and ε > 0. Let δ := ε/4. Since
s′2 − s2 = (s′ − s)(s′ + s), if |s′ − s| < δ, then

|f(s′) − f(s)| ≤ |s′ − s| (|s′| + |s|) < (ε/4)(2 + 2) = ε.

The LUB axiom is often used to show that certain sequences have limits.
Technically, for any set X a sequence in X is a function from the natural
numbers (or, sometimes, the nonnegative integers) to X, but instead of
thinking of it as a function, we think of it as an infinite list x1, x2, x3, . . ..
To save space, we’ll often denote such a sequence by {xn}∞n=1 or just {xn}.

Fix an ordered field R, and let s1, s2, s3, . . . be a sequence in R. We say
that the sequence converges to a number s, and we write sn → s, if, for
any δ > 0, sn is in the interval (s − δ, s + δ) for all sufficiently large n. In
symbols,

(

∀δ > 0
)(

∃N ∈ N
)(

∀n > N
)

|s− sn| < δ.
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The sequence is convergent if it converges to some number; otherwise it is
divergent. (Sometimes you’ll see the notation “sn → ∞,” meaning that for
every ∆ > 0 there is a natural number N such that sn > ∆ whenever n > N ,
and you might hear someone say that {sn} “converges to infinity.” There
is no real harm in this, but it is more proper to say that {sn} “diverges to
infinity.”)

We say that {sn} is a Cauchy sequence if the distance between sm and
sn becomes arbitrarily small as min{m,n} becomes large. Put precisely,

(

∀δ > 0
)(

∃N ∈ N
)(

∀m,n > N
)

|sm − sn| < δ.

A Cauchy sequence “ought” to have a limit in a very practical sense: if
you were working with a system of numbers within which Cauchy sequences
might not have limits, there would be an irresistible temptation to create
“virtual” numbers that were their limits. These might be defined as equiv-
alence classes of Cauchy sequences, where two Cauchy sequences {sm} and
{tn} are equivalent if they are eventually arbitrarily close to each other:

(

∀δ > 0
)(

∃N ∈ N
)(

∀m,n > N
)

|sm − tn| < δ.

(This method of construction will be described in detail in Section 2.9, where
it is used to construct the real numbers, and again in a more general con-
text in Section 6.2.) Other methods might be used to define these virtual
numbers. But you would define them, and eventually you would treat them
as full fledged numbers. After all, when the discovery that

√
2 is irrational

threw the Pythagorean school of philosophy into crisis, it was logically pos-
sible for them to say that there actually is no number whose square is 2,
even if certain fancy constructions, e.g., continuing decimals, can mimic
the behavior you would expect from

√
2. But they must have known that

nobody would buy into such a convoluted and cumbersome way of doing
mathematics.

Since we would feel that an ordered field was incomplete if there was
a Cauchy sequence that didn’t have a limit, the following terminology is
natural.

Definition 2.42. The ordered field R is complete if each of its Cauchy
sequences is convergent.

Proposition 2.43. A real number field is complete.

Proof. Suppose that R is a real number field and {sn} is a Cauchy sequence
in R. Let S be the set of s ∈ R such that sn > s for infinitely many n. If
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|sm− sn| < 1 for all m,n > N , then sN+1 − 1 ∈ S and sN+1 + 1 is an upper
bound on S. Since S is nonempty and bounded above, it has a least upper
bound b.

Consider a number δ > 0. There cannot be infinitely many n such that
sn ≥ b + δ because that would imply that b + δ/2 ∈ S. There cannot be
infinitely many n such that sn ≤ b − δ because the existence of an N such
that |sm− sn| < δ/2 for all m,n > N would then imply that b− δ/2 was an
upper bound on S. Therefore b− δ < sn < b+ δ for all sufficiently large n.
Moreover, this is true for every δ > 0, which means that sn → b.

In preparation for the next section we’ll now develop one more conse-
quence of the least upper bound axiom which might seem rather surprising,
since at first sight it is hard to imagine that it might not be true automati-
cally.

Definition 2.44. We say that R is Archimedean if, for every s ∈ R with
s > 0, there is some q ∈ Q with 0 < q < s.

There are ordered fields that are not Archimedean, but they’re quite
exotic creatures.

Proposition 2.45. If R is a real number field, then R is Archimedean.

Proof. Let ∆ be the set of s ∈ R such that s > 0 and s ≤ q for all positive
q ∈ Q. Then ∆ is bounded above by (for example) 1, and if ∆ was nonempty
we could let δ be its least upper bound. If q was a rational number satisfying
δ ≤ q < 2δ, then 0 < q/2 < δ, so there could not be such a q, but this would
imply that δ was not an upper bound of ∆ since, for example, 3δ/2 ∈ ∆. In
view of this contradiction it must be the case that ∆ = ∅.

The next result gives a useful alternative characterization of real number
fields.

Theorem 2.46. An ordered field is a real number field if and only if it is
Archimedean and complete.

In the proof it will be necessary to distinguish between different kinds of
Cauchy sequences and different kinds of completeness. We say that {sn} is
a Q-Cauchy sequence if the distance between sm and sn becomes smaller
than any rational number as min{m,n} becomes large. That is,

(

∀k ∈ N
)(

∃N ∈ N
)(

∀m,n > N
)

|sm − sn| < 1/k.
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an ordered field R is Q-complete if each of its Q-Cauchy sequences is con-
vergent. Since a Cauchy sequence is a Q-Cauchy sequence, R is complete
whenever it is Q-complete. On the other hand, if R is Archimedean, then ev-
ery Q-Cauchy sequence is Cauchy, so if R is complete, then it is Q-complete.

Proof of Theorem 2.46. We’ve already seen that a real number field is Archi-
median and complete, so we need to show that if an ordered field R is
Archimedean and complete, then it is a real number field. Let S be a
nonempty subset of R that is bounded above. Choose x0 ∈ S, and let b0 be
an upper bound for S. We are going to hunt down the least upper bound
of S using repeated bisection, as implemented by a sequence s1, s2, . . . that
we define “inductively.” To begin the process set

s1 :=

{

x0 + (b0 − x0)/2, x ≥ x0 + (b0 − x0)/2 for some x ∈ S,

x0, otherwise.

The process continues according to the following rule: if we have already
constructed sn−1, then

sn :=

{

sn−1 + (b0 − x0)/2
n, x ≥ sn−1 + (b0 − x0)/2

n for some x ∈ S,

sn−1, otherwise.

We now use induction to show that for each n, sn + (b0 − x0)/2
n is an

upper bound for S and x ≥ sn for some x ∈ S. It is easy to see that this is
the case when n = 1, for both possibilities in the definition of s1. Suppose,
for some n ≥ 2, that we have shown that it is true with n replaced by n− 1.
Again, it is easy to see that this implies that it is also true for n, regardless
of which case occurs in the construction of sn.

The sequences {sn} and {sn+(b0 −x0)/2
n} are Q-Cauchy sequences, so

they are Cauchy sequences because R is Archimedean, and they have limits
because R is complete. The limit of the first sequence cannot be greater than
the limit of the second sequence, and the difference between the two limits
is less than any rational number, so (again because R is Archimedean) these
limits coincide. Let b be the common limit. Since each sn + (b0 − x0)/2

n is
an upper bound for S, b is an upper bound for S. For each n there an x ∈ S
with x ≥ sn, so S cannot have an upper bound that is less than b. We have
shown that S has a least upper bound.

By definition an ordered field R is a real number field if it satisfies (LUB),
and we have shown that this is the case if and only if it is complete and
Archimedean. Since a Q-complete ordered field is complete, the next result
gives a third chararacterization of real number fields.
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Proposition 2.47. If R is Q-complete, then R is Archimedean.

Proof. The sequence 1, 1/2, 1/3, . . . is Q-Cauchy, of course. Let δ be its
limit. If there was an ε > 0 with ε < q for all positive rational numbers q,
then δ ≥ ε. But it is impossible for the sequence to converge to a positive δ
because if 1/m is in the interval (δ/2, 3δ/2), then 1/n is outside this interval
for all n > 3m.

2.9 Constructing the Real Numbers

Does a real number field exist? Is there more than one real number field?
(What we are really asking here is whether any two real number fields are
necessarily isomorphic, where an isomorphism ι : R→ R′ of ordered fields R
and R′ is an isomorphism of fields that is order preserving in the sense that
for all r, s ∈ R, ι(r) < ι(s) if and only if r < s.) These are crucial questions
because they test the adequacy of our axiom system. If there were no real
number fields, our axiom system would be an axiomatization of nothing,
and obviously not a sound basis for mathematical reasoning. If there were
multiple (isomorphism types of) real number fields, we would need to add
additional axioms to finish the job of giving a complete description of the real
numbers, or at least there would be an unexpected opportunity to investigate
how the various real number fields differ from each other.

The two main approaches to constructing the real numbers, pioneered
by Cantor and Richard Dedekind (1831-1916), were both published in 1872.
Here we’ll focus on Cantor’s construction because it is both easier, from a
technical point of view, and applicable more generally, but first we’ll give a
brief description of Dedekind’s method.

A Dedekind cut is a pair (A,B) where A,B ⊂ Q are both nonempty,
A ∩ B = ∅, A ∪ B = Q, a < b for all a ∈ A and b ∈ B, and A has
no greatest element. The guiding intuition is that the function taking each
Dedekind cut (A,B) to the least upper bound of A is a bijection between the
set of Dedekind cuts and the set of real numbers. After defining the order
relation and arithmetic operations on the set of Dedekind cuts correctly,
one can show that the set of Dedekind cuts is a real number field, so a real
number field actually exists. One can then show that any real number field
is isomorphic to the one constructed in this manner. The main difficulty
with this approach is that the definition of multiplication has four cases,
according to the signs of the numbers being multiplied, and this makes
the proofs lengthy and unpleasant. However, this approach does have one
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significant advantage, namely that there is no need to appeal to the axiom
of choice.

Cantor’s construction uses equivalence classes of Cauchy sequences of
rational numbers. We will say that two Cauchy sequences {sn} and {tn} in
Q are equivalent if, for every rational δ > 0, there is an integer N such
that |sn − tn| < δ for all n > N . Obviously this relation is reflexive and
symmetric, and it is easy to show that it is transitive, hence an equivalence
relation: if {sn} and {tn} are equivalent, and {tn} and {un} are equivalent,
then for any δ > 0 there is N such that |sn − tn| < δ/2 and |tn − un| < δ/2
for all n > N , so that

|sn − un| ≤ |sn − tn| + |tn − un| < δ/2 + δ/2 = δ

for all such n. The equivalence class of {sn} is denoted by [{sn}].
Let R0 be the set of equivalence classes of Cauchy sequences in Q. By

identifying each r ∈ Q with the equivalence class of the sequence r, r, . . .
we may regard Q as a subset of R0. We define the relation [{sn}] < [{tn}]
to mean that there is a rational δ > 0 and a natural number N such that
sn + δ < tn for all n > N . This definition immediately implies that R0 is
Archimedean because whenever [{sn}] > 0 there is a rational δ with 0 <
δ/2 < [{sn}]. Addition and multiplication of equivalence classes of Cauchy
sequences is defined in the obvious way:

[{sn}] + [{tn}] := [{sn + tn}] and [{sn}] · [{tn}] := [{sntn}].
Of course there is some work to do to demonstrate that these definitions

don’t depend on the choice of representatives, and that {sn+ tn} and {sntn}
are Cauchy sequences whenever {sn} and {tn} are Cauchy sequences. It
would be quite repetitive to write out every argument, so we will just do
the verifications in connection with multiplication, expecting that you would
not have any difficulty extending the underlying methods to generate the
necessary arguments for order and addition, which are somewhat simpler.
Let {sn} and {tn} be Cauchy sequences. There are positive rational numbers
S and T such that |sn| < S and |tn| < T for all sufficiently large n. (For
example we can let S := sN+1+1 where N is large enough that |sm−sn| < 1
for all m,n > N .) For any rational δ > 0 we can choose N large enough
that |sm − sn| < 1

2δ/T and |tm − tn| < 1
2δ/S, so that

|smtm − sntn| = |sm(tm − tn) + (sm − sn)tn|
≤ |sm(tm − tn)| + |(sm − sn)tn|
= |sm| |tm − tn| + |sm − sn| |tn|
< S(1

2δ/S) + (1
2δ/T )T = δ.
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Therefore {sntn} is a Cauchy sequence. Suppose that {s′n} is equivalent to
{sn} and that {t′n} is equivalent to {tn}. Replacing T with a slightly larger
number, if need be, insures that |t′n| < T for all sufficiently large n. For
sufficiently large n we have |s′n − sn| < 1

2δ/T and |t′n − tn| < 1
2δ/S, so that

|s′nt′n − sntn| = |(s′n − sn)t
′
n + sn(t

′
n − tn)|

≤ |s′n − sn| |t′n| + |sn| |t′n − tn|
< (1

2δ/T )T + S(1
2δ/S) = δ.

Thus {s′nt′n} is equivalent to {sntn}, which shows that the definition of
multiplication doesn’t depend on the choice of representatives.

We now wish to show that R0 is a real ordered field, which means that we
have to show that it satisfies (F1)-(F9), (O1)-(O4), and (LUB). If you want
to practice writing some simple proofs, you can do some of this explicitly,
but mostly the ideas will be very clear without belaboring the details, so
we will describe how this works in general terms. It is easy to see that R0

satisfies (F1)-(F9) because these axioms are satisfied by Q. For example,
for any [{sn}] and [{tn}] we have

[{sn}] + [{tn}] = [{sn + tn}] = [{tn + sn}] = [{tn}] + [{sn}],

which verifies (F4).
Only (F7) (existence of inverses) presents any difficulties at all. Suppose

that [{sn}] 6= 0. Then s1, s2, . . . is not equivalent to 0, 0, . . ., so there is some
δ > 0 such that for any N there is an n > N such that |sn| ≥ δ. If N is
sufficiently large we have |sm− sn| < δ/2 for all m,n > N , and in particular
|sn| > δ/2 for all n > N . It works to set [{sn}]−1 = [{tn}] where {tn} is a
sequence with tn = 1/sn for all n > N , provided that we can show that such
a {tn} is a Cauchy sequence. But for any rational ε > 0 there is M ≥ N
such that |sm − sn| < ε/4δ2 for all m,n > M , in which case

∣

∣

∣

1

sm
− 1

sn

∣

∣

∣
=

|sm − sn|
|sm| |sn|

<
ε/4δ2

(δ/2)(δ/2)
= ε.

We’ll prove (O1), but not (O2)-(O4) because you should have no diffi-
culty seeing that these are straightforward consequences of the definition of
the order relation on R0. Consider two elements [{sn}] and [{tn}] of R0. If
you review the definition of inequality you will easily see that at most one of
the three relations [{sn}] < [{tn}], [{sn}] = [{tn}], and [{tn}] < [{sn}] holds.
We want to show that at least one holds, so we may begin the argument by
supposing that it is not the case that [{sn}] < [{tn}], nor is it the case that
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[{tn}] < [{sn}]. Then for any rational δ > 0 and any N there are m,n > N
such that tm ≤ sm+ δ and sn ≤ tn + δ. By choosing N large enough we can
also insure that |sp− sq| < δ and |tp− tq| < δ for all p, q > N . Then for any
p > N we have |sp − tp| < 3δ because

sp < sn + δ ≤ tn + 2δ < tp + 3δ and tp < tm + δ ≤ sm + 2δ < sp + 3δ.

This is true for every positive rational δ, so {sn} and {tn} are equivalent,
which means that [{sn}] = [{tn}].

Proving that R0 satisfies (LUB) is a bit more complicated.

Theorem 2.48. R0 is a real number field.

Proof. If we regard (F1)-(F9) and (O1)-(O4) as established, it only remains
to show that (LUB) is satisfied. Moreover, R0 is Archimedean, so in view
of Theorem 2.46 it suffices to show that R0 is complete.

Let u1, u2, . . . be a Cauchy sequence in R0, where ui = [{sin}]. We will
show that this sequence has a limit in R0 by picking out a suitable Cauchy
sequence from the various numbers sin. Specifically, for each k = 1, 2, . . . let
tk = siknk

where ik is large enough that |um − un| < 1/3k for all m,n ≥ ik

and nk is large enough that |sikm − sikm′ | < 1/3k for all m,m′ ≥ nk. Noting
that |tk − uik | ≤ 1/3k, if m,n ≥ k we have

|tm − tn| ≤ |tm − uim | + |uim − uin | + |uin − tn| ≤ 1/k.

Therefore {tk} is a Cauchy sequence in Q. Let u := [{tk}]. Clearly
∣

∣tk−u
∣

∣ ≤
1/k, so

∣

∣uik − u
∣

∣ ≤
∣

∣uik − tk
∣

∣+
∣

∣tk − u
∣

∣ ≤ 4/3k

for all k. Since R0 is Archimedean, this implies that ui → u.

We’ve shown that a real number field exists, because R0 is such a field.
The second step of our program is to show that there is (up to isomorphism)
only one real number field. Specifically, we will show that any real number
field R is isomorphic to R0. Since R is Archimedean and complete, it is
Q-complete, so any Cauchy sequence {sn} in Q has a limit in R. If {sn}
and {tn} are equivalent Cauchy sequences, then the absolute value of the
difference between their limits must be smaller than any positive rational
number, and since R is Archimedean this means that the two limits must
be the same. Therefore we can define a function ι : R0 → R by setting

ι
(

[{sn}]
)

:= lim
n→∞

sn.

We will show that ι is an order preserving isomorphism.
We now need the following elementary facts about convergent sequences.
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Lemma 2.49. If {sn} and {tn} are convergent sequences in R with sn → s
and tn → t, then

sn + tn → s+ t and sntn → st.

Proof. The definition of convergence implies that for any δ > 0 there is N
such that |sn − s| < δ/2 and |tn − t| < δ/2 whenever n > N . The first
asserted convergence follows easily from this.

For the second equation there are four cases. If s = 0 = t, then for any
δ > 0 there is N such that |sn| < δ and |tn| < 1 for all n > N , so that

|sntn − st| = |sntn| = |sn| |tn| < δ. (∗)

If s = 0 and t 6= 0, then for any δ > 0 there is N such that |sn| < δ/2|t| and
|tn| < 2|t| whenever n > N , so that again (∗) holds. A similar argument
works when s 6= 0 and t = 0. If s 6= 0 6= t, then for any δ > 0 there is N
such that |sn| < 2|s|, |tn− t| < δ/4|s|, and |sn−s| < δ/2|t| whenever n > N ,
in which case

|sntn − st| = |sn(tn − t) + (sn − s)t| ≤ |sn| |tn − t| + |sn − s| |t| < δ.

It is now easy to see that ι is a homomorphism: for any [{sn}] and [{tn}]
we have

ι
(

[{sn}] + [{tn}]
)

= ι
(

[{sn + tn}]
)

= lim
n→∞

sn + tn

= lim
n→∞

sn + lim
n→∞

tn = ι
(

[{sn}]
)

+ ι
(

[{tn}]
)

and

ι
(

[{sn}] · [{tn}]
)

= ι
(

[{sn · tn}]
)

= lim
n→∞

sn · tn

= ( lim
n→∞

sn) · ( lim
n→∞

tn) = ι
(

[{sn}]
)

· ι
(

[{tn}]
)

.

In each case the first equality is the definition of the operation in R0, the
second and final equality is the definition of ι, and the remaining equality is
from the result above.

When [{sn}] < [{tn}] there is a rational number δ > 0 and a natural
number N such that sn + δ < tn for all n > N , so

ι
(

[{sn}]
)

+ δ = lim
n→∞

sn + δ ≤ lim
n→∞

tn = ι
(

[{tn}]
)
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and consequently ι
(

[{sn}]
)

< ι
(

[{tn}]
)

. That is, ι is order preserving, and
in addition it is injective.

The only thing left to do is to show that ι is surjective. Fix u ∈ R. For
each n there is a rational number tn ∈ (u, u + 1/n). (For example, some
integer multiple of 1/2n lies in this interval.) Of course {tn} is a Cauchy
sequence, and its limit cannot be different from u because R is Archimedean.
Therefore ι

(

[{tn}]
)

= u.

Finally, after arguments that were much harder (or at least more de-
tailed) than anything that came before, and almost anything we will see
later, we are entitled to let R denote the unique (up to order preserving
isomorphism) real number field, and to call it the set of real numbers. This
is fundamental to all the work we do from here on because any property
of the real numbers is a logical consequence of (F1)-(F9), (O1)-(O4), and
(LUB). When we work with the real numbers, we know exactly what we
are talking about, and the axioms, and any of their logical consequences
that might have been proven earlier, are always what we start with when
we want to prove a theorem involving real numbers. In this sense we have a
logically secure foundation for that part of mathematics (namely almost all
of it) that is built on top of R.



Chapter 3

Limits and Continuity

It’s a bit hard to say just why continuity is such an important concept in
mathematics, perhaps because there are so many reasons. Actually, the
number of reasons has grown enormously in response to the abstract formu-
lations of the concept that we’ll describe in this chapter.

When one is first exposed to the concept of continuity, typically it is
explained in terms of one or both of the following definitions.

Definition 3.1. A function f : R → R is continuous at t ∈ R if f(tn) →
f(t) whenever {tn} is a sequence in R that converges to t.

Definition 3.2. A function f : R → R is continuous at t ∈ R if, for every
ε > 0, there is δ > 0 such that |f(t′) − f(t)| < ε for all t′ ∈ (t− δ, t+ δ).

In either case we say that f is continuous if it is continuous at each t ∈ R.
First of all we need to show that these definitions are equivalent. It is

a good idea to think about this visually, using our intuitive “definition” of
a continuous function as one whose graph can be drawn without lifting the
pencil off the paper. But however much intuition one develops, it remains
the case that both of these definitions are, in a purely logical sense, rather
complicated.

There is a trick for dealing with such concepts. The negation of a propo-
sition of the form ‘(∀x)P (x)’ is ‘(∃x)¬P (x),’ and the negation of a proposi-
tion of the form ‘(∃y)Q(y)’ is ‘(∀y)¬Q(y).’ When one has a proposition in
which a sequence of logical quantifiers (that is, clauses of the form ‘∀x’ and
‘∃y’) precede some unquantified proposition, a “zero thought” procedure for
formulating its negation is to apply these transformations repeatedly. This
amounts to replacing each ‘∀’ with ‘∃’ and each ‘∃’ with ‘∀,’ then negat-
ing the unquantified proposition. Applying this procedure, we find that the

88
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meaning of f(tn) 6→ f(t) is that

(∃ε > 0)(∀N ∈ N)(∃n > N) |f(tn) − f(t)| ≥ ε. (∗)

Let’s apply this procedure again, this time to the second definition of
continuity. It turns out that failure of this definition means that

(∃ε > 0)(∀δ > 0)(∃t′ ∈ (t− δ, t+ δ)) |f(t′) − f(t)| ≥ ε. (∗∗)

If you want more practice, try applying this procedure to (∗) and (∗∗),
thereby recovering the meaning of f(tn) → f(t) and Definition 3.2.

We now turn to the proof of equivalence. Since this is a matter of showing
that each definition implies the other, the proof has two parts, and for each
part it is simplest to use reductio ad absurdum, arguing that a failure of one
definition implies that the other also fails to hold.

• First suppose that f(tn) 6→ f(t) for some sequence {tn} converging to
t. Then (∗) holds, and we need to show that (∗∗) holds. But (∗) gives
us ε, and for any δ > 0 we can choose N such that |tn − t| < δ for all
n > N , then choose n > N such that |f(tn) − f(t)| ≥ ε. That is, for
any δ > 0 we can find n such that t′ = tn satisfies t′ ∈ (t − δ, t + δ)
and |f(t′) − f(t)| ≥ ε.

• Now suppose that Definition 3.2 fails. Then (∗∗) gives an ε such that
for each n ∈ N we choose tn ∈ (t − 1

n , t + 1
n) with |f(tn) − f(t)| ≥ ε.

Then tn → t and f(tn) 6→ f(t).

This illustrates some important aspects of “doing” mathematics. Roughly,
we can think of the process of proving something as having two parts: a)
figuring out what needs to be done, in the sense of finding an overall plan for
the argument; b) filling in the details. Although the culture of mathematics
celebrates the exceptions, in the everyday work of a mathematician, and for
students doing problem sets, b) is typically easy. In addition, although a) is
often “truly hard” in some irreducible sense, there are systematic mechanical
methods for analyzing this task. Paradoxically, the way to become “quick
and clever” is to be a bit slower and more methodical than seems necessary
when doing part a). Extra care tends to reveal the hidden nuances, and the
quirky, counterintuitive, or paradoxical qualities of a concept. If these are
fully absorbed, later your mind will be able to instantly grasp things that
others have to work through one step at a time.

Returning from this little digression, how good is our understanding of
continuity? From the point of view of functions from R to R, all is well. The
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two definitions express a clear understanding of the meaning of continuity,
and we are free to apply either, according to convenience. The problem is
that there are lots of other settings in which a function might or might not
be continuous. Most obviously, the domain or range may be Rm, or the
domain might be some subset of Rm. Let C([0, 1]) be the set of continuous
functions f : [0, 1] → R. For any t ∈ [0, 1] there is a function f 7→ f(t) from
C([0, 1]) to R that sure looks like it would be continuous if we could endow
the notion of ‘continuity’ with some relevant meaning. Etc., etc.

This chapter describes abstractions of the two definitions of continu-
ity above. These two concepts, and related notions, constitute the central
subject matter of the field of topology, which is both an important field of
research in its own right, and a defining feature of the spirit and character of
20th century mathematics. This is another illustration of the general princi-
ple that abstractions introduced to formalize important preexisting concepts
often become objects of study themselves.

3.1 Metric Spaces

This section describes a general concept of distance. In order to talk about
the distance between two things, say x and y, one should have a space,
say X, in which they both live. The distance between x and y should be
nonnegative, and it is natural to require that the distance from x to y should
be the same as the distance from y to x, and that this quantity should be
zero when x = y and not otherwise.

If we only impose these requirements some unpleasant things can happen.
For example, we might have two sequences {xn} and {yn} and a point z
such that the distance from xn to yn and the distance from yn to z both
go to zero as n → ∞, but the distance from xn to z stays away from zero.
The final condition in the following definition, which is called the triangle

inequality, prevents this sort of thing. It can be motivated by saying that
the length of a trip from x to z should never be decreased by constraining the
traveller to choose a route that passes by y, but to be honest, explanations of
why the big definitions in mathematics “ought” to impose some requirement
have a fictional ex post facto quality. These definitions emerged from some
process of trial and error, and became popular because in actual experience
they gave rise to useful and interesting mathematics.

Definition 3.3. A metric space is a pair (X, d) in which X is a set and

d : X ×X → [0,∞)
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is a function, called a metric, such that for all x, y, z ∈ X:

(a) d(x, y) = 0 if and only if x = y;

(b) d(x, y) = d(y, x);

(c) d(x, z) ≤ d(x, y) + d(y, z).

Here are three simple but very important examples.

Example 3.4. For any set X the discrete metric is defined by setting

d(x, y) :=

{

0, x = y,

1, otherwise.

Example 3.5. Let d : R × R → [0,∞) be the function d(x, y) := |x − y|.
Then d(x, y) = 0 if and only if x = y because 0 is the only number whose
absolute value is zero. Clearly

d(x, y) = |x− y| = |y − x| = d(y, x),

and to prove the triangle inequality we apply Lemma 2.37:

d(x, z) = |(x− y) + (y − z)| ≤ |x− y| + |y − z| = d(x, y) + d(y, z).

Example 3.6. If (X, d) is a metric space and A ⊂ X, then (A, d|A×A) is
a metric space. Among many other possibilities, it is worth noting that any
subfield of R, such as Q, inherits a metric from R.

The definitions of convergence and continuity generalize to metric spaces
in a straightforward manner. Let (X, dX ) be a metric space. If x ∈ X and
r > 0, the open ball of radius r around x is

Ur(x) := {x′ ∈ X : dX(x, x′) < r }.

A sequence {xn} in X converges to a point x if, for any δ > 0, the sequence
is eventually inside Uδ(x). That is:

(∀δ > 0)(∃N ∈ N)(∀n > N) xn ∈ Uδ(x).

We indicate this by writing xn → x.
Let (Y, dY ) be another metric space, let f : X → Y be a function, and

consider a point x ∈ X. As before, we can define what it means for f
to be continuous at x in two different ways. First, we can say that f is
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continuous at x if f(xn) → f(x) whenever {xn} is a sequence converging
to x. Alternatively, we can say that f is continuous at x if, for every ε > 0,
there is δ > 0 such that f(Uδ(x)) ⊂ Uε(f(x)). The proof that the two
definitions of continuity at a point are equivalent is not in any significant
sense different from the proof of this given earlier for functions from R to
R, so we won’t repeat it. (It wouldn’t be a bad idea to review it in order to
see for yourself.) As before, we say that f is continuous if it is continuous
at every point of X.

Of course metric spaces wouldn’t be as important as they are if the
Pythagorean distance

√
∑m

i=1(yi − xi)2 between two points x and y in Rm

wasn’t a metric. That it is is intuitively obvious, since in this context the
triangle inequality amounts to an assertion that a straight line is the shortest
path between x and y, but we still need to prove it. This turns out to be less
simple than one might expect, but in a rewarding way, in part because it
provides an opportunity to introduce several important definitions, including
the one below, and in part because the heart of the proof, the Cauchy-
Schwartz inequality, is extremely important.

In this context the most salient feature of Rm is that it is an R-module.
In general, as we saw in the last chapter, if R is a commutative ring with
unit and k is a natural number, then Rk is an R-module. In our system of
definitions we defined an R-module structure on the set FR(S) of R-valued
functions on a general set S, then identified Rk with FR({1, . . . , k}). But
instead of recalling how all this worked it is simpler to just define the module
operations directly:

w + z = (w1 + z1, . . . , wk + zk) and βw = (βw1, . . . , βwk)

for w, z ∈ Rk and β ∈ R.

The Pythagorean distance is “invariant under translation.” That is, for
any a, x, y ∈ Rm the distance between x and y is the same as the distance
between a+x and a+y. A metric with this property is completely determined
by the function taking each x to its distance from the origin. As we’ll explain
in the proof of Lemma 3.8, properties (a) and (c) in the definition of a metric
correspond exactly to (i) and (iii) in the next definition, and (b) corresponds
to (ii) with α = −1.

Definition 3.7. A norm on an R-module V is a function

‖ · ‖ : V → [0,∞)

such that:
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(i) for all x ∈ V , ‖x‖ = 0 if and only if x = 0;

(ii) ‖αx‖ = |α| · ‖x‖ for all x ∈ V and all α ∈ R;

(iii) ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ V .

The prototypical example is the Euclidean norm on Rm, which is
defined by setting

‖x‖2 :=
√

x2
1 + · · · + x2

m.

Since squares and square roots of positive numbers are positive, that (i)
holds is obvious. It is almost as obvious that (ii) holds, but we’ll write out
the calculation anyway:

‖αx‖2 =
(

|αx1|2 + · · · + |αxm|2
)1/2

=
(

|α|2(|x1|2 + · · · + |xm|2)
)1/2

= |α| · ‖x‖2.

That it also satisfies (iii) is the main point of our work over the next few
pages.

After ‖ · ‖2, the most important norms on Rm are

‖x‖1 := |x1| + · · · + |xm|

and

‖x‖∞ := max{|x1|, . . . , |xm|}.

It is easy to see that these also satisfy (i) and (ii). For (iii) we have the
calculations

‖x+ y‖1 = |x1 + y1| + · · · + |xm + ym|
≤ |x1| + |y1| + · · · + |xm| + |ym| = ‖x‖1 + ‖y‖1

and

‖x+ y‖∞ = max{|x1 + y1|, . . . , |xm + ym|}
≤ max{|x1| + |y1|, . . . , |xm| + |ym|}
≤ max{|x1|, . . . , |xm|} + max{|y1|, . . . , |ym|}
= ‖x‖∞ + ‖y‖∞.

Especially for infinite dimensional spaces, norms are interesting for sev-
eral reasons. But for us the only important point is:
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Lemma 3.8. If ‖ · ‖ is a norm on V , then there is a metric d‖·‖ on V
defined by setting

d‖·‖(x, y) := ‖x− y‖.

Proof. We must show that d‖·‖ satisfies (a)-(c) of the definition of a metric
space. Property (a) corresponds directly to (i), and for (b) we have

d‖·‖(y, x) = ‖y − x‖ = ‖ − (x− y)‖ = | − 1| · ‖x− y‖ = d‖·‖(x, y).

The triangle inequality is a simple consequence of (iii):

d‖·‖(x, z) = ‖(x− y) + (y − z)‖ ≤ ‖x− y‖+ ‖y − z‖ = d‖·‖(x, y) + d‖·‖(y, z).

Our proof that ‖ · ‖2 satisfies (iii) involves another extremely important
geometric concept. The inner product of two points x and y in Rm is

x1y1 + · · · + xmym.

It is denoted by either x·y (in which case it is often called the “dot product”)
or 〈x, y〉. For all x, y, z ∈ Rm and all α ∈ R we have:

〈x, y〉 = 〈y, x〉;

〈x+ y, z〉 = 〈x, z〉 + 〈y, z〉;
〈αx, y〉 = α〈x, y〉;
〈x, x〉1/2 = ‖x‖2.

Each of these is simple enough that I don’t think there is any need for an
explicit proof, but make sure that you understand why they are true. One
reason these properties are so important is that the first three constitute
the definition of an abstract inner product, which is a concept with many
important applications. The method of passing from an inner product to
a norm expressed by the fourth equation works for any inner product, for
reasons we’ll explain at the end of the section.

The following result is one of the most important basic facts of mathe-
matics.

Theorem 3.9 (Cauchy-Schwartz Inequality). For all x, y ∈ Rm,

|〈x, y〉| ≤ ‖x‖2 · ‖y‖2.

If y 6= 0, then this holds with equality if and only if x = αy for some α ∈ R.
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The following calculation uses the properties of the inner product, and
the Cauchy-Schwartz inequality, to show that ‖ · ‖2 satisfies condition (iii)
of Definition 3.7:

‖x+ y‖2
2 = 〈x+ y, x+ y〉

= 〈x, x〉 + 〈x, y〉 + 〈y, x〉 + 〈y, y〉
= ‖x‖2

2 + 2〈x, y〉 + ‖y‖2
2

≤ ‖x‖2
2 + 2‖x‖2 · ‖y‖2 + ‖y‖2

2 =
(

‖x‖2 + ‖y‖2

)2
.

That is, the Cauchy-Schwartz inequality implies that ‖ · ‖2 is a norm.
On the way to proving the Cauchy-Schwartz inequality, we introduce one

more geometric concept. Two points w and z in Rm are said to be per-

pendicular or orthogonal if 〈w, z〉 = 0. Often we express this by writing
w ⊥ z. At first it might seem that “〈w, z〉 = 0 implies w ⊥ z” is something
we should prove, but our general approach is to define geometric concepts
algebraically, then validate these definitions by showing that expected geo-
metric relations hold. In this case we should expect that if w ⊥ z, then the
origin, w, and z should be the vertices of a right triangle whose hypotenuse is
the line segment between w and z, and indeed the Pythagorean relationship
between the side lengths does hold:

‖w − z‖2
2 = 〈w − z,w − z〉

= 〈w,w〉 − 〈w, z〉 − 〈z,w〉 + 〈z, z〉
= 〈w,w〉 + 〈z, z〉
= ‖w‖2

2 + ‖z‖2
2.

b

b

x

y

αy

0

ℓ

Figure 3.1
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The Cauchy-Schwartz inequality holds automatically when x ⊥ y, simply
because ‖x‖ and ‖y‖ are both nonnegative. Let’s see what happens when we
apply this special case to x−αy and y with α chosen so that (x− αy) ⊥ y.
(Such an α exists because when y 6= 0 we can set α := 〈x, y〉/〈y, y〉, and any
α is satisfactory when y = 0.) We have

〈x− αy, y〉 = 0 ≤ ‖x− αy‖ · ‖y‖.

Expanding the squares of the two sides of this inequality gives

〈x− αy, y〉2 =
(

〈x, y〉 − α〈y, y〉
)2

= 〈x, y〉2 − 2α〈x, y〉〈y, y〉 + α2〈y, y〉2

and
〈x− αy, x− αy〉〈y, y〉 =

(

〈x, x〉 − 2α〈x, y〉 + α2〈y, y〉
)

〈y, y〉
= 〈x, x〉〈y, y〉 − 2α〈x, y〉〈y, y〉 + α2〈y, y〉2.

Therefore

0 ≤
(

‖x− αy‖ · ‖y‖
)2 − 〈x− αy, y〉2 = 〈x, x〉〈y, y〉 − 〈x, y〉2.

We now have 〈x, y〉2 ≤ 〈x, x〉〈y, y〉, and if we take the square root on both
sides we have the Cauchy-Schwartz inequality! In addition, we see that the
inequality holds with equality precisely when ‖x − αy‖ = 0, so if it holds
with equality, then x is a scalar multiple of y. But the converse is also true:
if y 6= 0, x is a scalar multiple of y, and x− αy ⊥ y, then x− αy = 0.

Above we gave four “simple” properties of the inner product, the first
three of which could be taken as the definition of an abstract inner product
for R-modules. Our proof of the Cauchy-Schwartz inequality relied on these
four equations, without making any reference to the definition 〈x, y〉 :=
∑

i xiyi, as you can (and should) see for yourself by reviewing the discussion
above. Consequently the Cauchy-Schwartz is a property of abstract inner
products. In turn, our proof that ‖·‖2 is a norm depended only on the fourth
equation ‖x‖2 =

√

〈x, x〉, the basic properties of the inner product, and the
Cauchy-Schwartz inequality. The upshot of this is that the fourth equation
defines a norm whenever we have an abstract inner product satisfying the
first three equations.

3.2 Topological Spaces

Although occasionally one deals with situations where it is important that
a function is continuous at a particular point and possibly not elsewhere,
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mostly one is concerned with functions that are continuous everywhere. If
we restrict attention in this way, then the second definition of continuity in
the last section can be rephrased in a simple and illuminating manner.

Definition 3.10. If (X, d) is a metric space, a set U ⊂ X is open if it
contains an open ball around each of its points:

(∀x ∈ U)(∃δ > 0) Uδ(x) ⊂ U.

Proposition 3.11. A function f : X → Y between metric spaces X and Y
is continuous if and only if f−1(V ) is open whenever V ⊂ Y is open.

The proof involves a point that deserves special emphasis, so we treat it
separately. As much as anything else, the following fact is why the “right”
definition of a metric space involves the triangle inequality.

Lemma 3.12. If (X, d) is a metric space, x ∈ X, and δ > 0, then Uδ(x) is
open.

Proof. For any point x′ ∈ Uδ(x) we have Uδ−d(x,x′)(x
′) ⊂ Uδ(x) because if

d(x′, x′′) < δ − d(x, x′), then the triangle inequality gives

d(x, x′′) ≤ d(x, x′) + d(x′, x′′) < δ.

Proof of Proposition 3.11. First suppose that f is continuous. Let V ⊂ Y
be open, and consider an arbitrary x ∈ f−1(V ). Since V is open, there is
some ε > 0 such that Uε(f(x)) ⊂ V . Since f is continuous, there is some
δ > 0 such that f(Uδ(x)) ⊂ Uε(f(x)), so that

Uδ(x) ⊂ f−1(Uε(f(x))) ⊂ f−1(V ).

Since x was arbitrary, this shows that f−1(V ) is open.

Now suppose that f−1(V ) is open whenever V ⊂ Y is open. Consider a
point x ∈ X and a number ε > 0. Since Uε(f(x)) is open, f−1(Uε(f(x)))
is open, and there is some δ > 0 such that Uδ(x) ⊂ f−1(Uε(f(x))), i.e.,
f(Uδ(x)) ⊂ Uε(f(x)). Since x and ε were arbitrary, this shows that f is
continuous.

Whether or not f : X → Y is continuous is a matter of which subsets of
X and Y are open, but it can easily happen that two different metrics give
rise to the same system of open sets. Specifically, suppose that d and d′ are
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two metrics on X. If, for every x and δ > 0, there is some δ′ > 0 such that
the open ball of radius δ′ around x in (X, d′) is contained in the open ball
of radius δ around x in (X, d), then every set that is open in (X, d) is also
open in (X, d′). It is not at all unusual that this is the case and that, at the
same time, every set that is open in (X, d′) is also open in (X, d).

B1 := {x : ‖x‖1 < 1} B2 := {x : ‖x‖2 < 1} B∞ := {x : ‖x‖∞ < 1}

Figure 3.2

In Figure 3.2 we see the open balls of radius one centered at the origin
in R2 for the metrics derived from ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞. It is visually
obvious that B1 ⊂ B2 ⊂ B∞, and this is an algebraic consequence of the
inequalities

|x1| + |x2| =
√

|x1|2 + 2|x1| |x2| + |x2|2 ≥
√

x2
1 + x2

2 ≥ max{|x1|, |x2|}.

In addition we have the inequality

max{|x1|, |x2|} ≥ 1
2 (|x1| + |x2|).

Therefore
B1 ⊂ B2 ⊂ B∞ ⊂ 2B1.

More generally, for any x ∈ R2 and any δ > 0 we have

x+ δB1 ⊂ x+ δB2 ⊂ x+ δB∞ ⊂ x+ 2δB1.

Thus the metrics derived from ‖ ·‖1, ‖ ·‖2, and ‖ ·‖∞ all determine the same
system of open sets for R2.

If f : X → Y is a function between spaces X and Y that are endowed
with “systems of open sets,” then we can define continuity to mean that
f−1(V ) is an open subset of X whenever V is an open subset of Y . The
question then becomes: what conditions should we impose on the systems
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of open sets? Ideally we would like to impose conditions that are restrictive
enough to give us a coherent and meaningful theory, and are also loose
enough to encompass all, or at least most, of the interesting applications.
It turns out that the open sets of a metric space (X, d) have a great many
properties, but three of them are pretty much indispensable to any useful
theory of convergence and continuity.

Definition 3.13. A topology for a set X is a collection τ of subsets of X
with the following properties:

(T1) ∅,X ∈ τ ;

(T2) for all U1, U2 ∈ τ , U1 ∩ U2 ∈ τ ;

(T3)
⋃

α∈A Uα ∈ τ whenever A is a set and, for each α ∈ A, Uα ∈ τ .

Elements of τ are called open sets. A topological space is a pair (X, τ)
in which X is a set and τ is a topology for X.

It is easy to see that the open sets of a metric space (X, d) have these
properties. The entire space X is open because Ur(x) ⊂ X for any x and
r > 0, and ∅ is open because it has no points and consequently contains a
ball around each of its points “trivially.” If U1 and U2 are open subsets of
X, then so is U1 ∩ U2 because for any x ∈ U1 ∩ U2 we have

Umin{δ1,δ2}(x) ⊂ U1 ∩ U2

whenever Uδ1(x) ⊂ U1 and Uδ2(x) ⊂ U2. If {Uα}α∈A is any collection of
open subsets of X, then U :=

⋃

α Uα is open because for any x ∈ U there is
some α with x ∈ Uα and some δ > 0 such that Uδ(x) ⊂ Uα ⊂ U .

Something approximating Definition 3.13 first appeared in a 1914 paper
by Felix Hausdorff (1868-1942), and a 1909 paper by Frigyes Riesz (1880-
1956) is an important precursor. Given the dates, the people involved,
and the nature of the definition itself, it is clear that it should be seen as
one of the fruits of the set theory revolution. One might guess that this
formulation emerged from experience with numerous applications, but the
actual historical process was quite different. In one field after another since
that time topologies have been noticed, studied, and incorporated into the
field’s basic organizing principles. In some cases, such as the one we describe
in Section 3.4, the topology in question seemed bizarre at first, but proved
quite useful in spite of this. Of all the concepts of mathematics, the notion
of a topological space might be the one whose significance is most mystical.
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It would now be possible to give a great many simple and useful defini-
tions and results concerning topological spaces and functions between them.
Instead of doing this, for the most part we will introduce basic topological
concepts as we need them, and even in the end our coverage of the basics
will be woefully incomplete. We restrict the discussion in the rest of this
section to a quick exposition of some definitions and facts that are among
the most crucial and fundamental.

Definition 3.14. If (X, τX) and (Y, τY ) are topological spaces, a function
f : X → Y is continuous if f−1(V ) is open in X whenever V is an open
subset of Y .

The equivalence between the two definitions of continuity for functions
between metric spaces does not carry through to this level of generality. To
help explain this, and because it is extremely useful in many other circum-
stances, we introduce the following terminology. A set A ⊂ X is said to be a
neighborhood of a point x if it contains an open set that in turn contains
x. Note that A need not be open itself, so we will need to use the longer
phrase “open neighborhood” when that is what we want.

Definition 3.15. If (X, τ) is a topological space, {xn} is a sequence in X,
and x ∈ X, then we say that {xn} converges to x, and write xn → x, if
{xn} is eventually inside every open neighborhood of x:

(∀U ∈ τ)
[

x ∈ U ⇒ (∃N ∈ N)(∀n > N) xn ∈ U
]

.

Proposition 3.16. If (X, τX ) and (Y, τY ) are topological spaces, f : X →
Y is continuous, and {xn} is a sequence in X that converges to x, then
f(xn) → f(x).

Proof. For any open V ⊂ Y that contains f(x), f−1(V ) is open, so it con-
tains xn for all sufficiently large n, and consequently V contains f(xn) for
all sufficiently large n.

It can happen that f is not continuous even though f(xn) → f(x) when-
ever {xn} is a sequence in X converging to x. Roughly speaking, it is
possible that a point x ∈ X has open neighborhoods that are so “diverse”
that it is impossible for a single sequence {xn} to eventually get inside, and
stay inside, all of them unless there is an N such that xn = x for all n > N .
In this case the requirement that f(xn) → f(x) whenever xn → x has no
bite, even though continuity can still impose nonvacuous restrictions on the
relationship between f(x) and the values of f at other points.
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Proposition 3.17. If (X, τX), (Y, τY ), and (Z, τZ) are topological spaces,
and f : X → Y and g : Y → Z are continuous, then g ◦ f is continuous.

Proof. If W ⊂ Z is open, then (g ◦ f)−1(W ) is open because the continuity
of g implies that g−1(W ) is open, after which the continuity of f implies
that f−1(g−1(W )) is open.

Theorem 3.18. There is a category whose objects are topological spaces and
whose morphisms are the continuous functions between them.

Proof. As usual, everything is trivial. We have just shown that composi-
tions of continuous functions are continuous, and composition of continuous
functions is an associative operation because this is a general property of
composition of functions. It is obvious that the identity function from any
topological space to itself is continuous, and IdY ◦f = f = f ◦ IdX whenever
(X, τX) and (Y, τY ) are topological spaces and f : X → Y is continuous,
again simply because this a property of functions in general.

After composition, perhaps the second most fundamental and important
operation on functions is restriction to a subspace of the domain. It is also
possible to restrict to a superset of the image in the range. In both cases
we need to impose a topology on a subset of a topological space, and there
is a natural (indeed, almost inevitable) way to do this.

Proposition 3.19. If (X, τ) is a topological space and A ⊂ X, then

τ |A := {U ∩A : U ∈ τ }

is a topology on A.

Proof. We show that τ |A satisfies (T1)-(T3). First of all, ∅ and A itself are
open because ∅ = ∅ ∩ A and A = X ∩ A. To show that the intersection of
two open sets is open suppose that V1 = U1 ∩ A and V2 = U2 ∩ A for some
U1, U2 ∈ τ . Then

V1 ∩ V2 = (U1 ∩A) ∩ (U2 ∩A) = (U1 ∩ U2) ∩A,

so V1∩V2 ∈ τ |A. Finally suppose that I is a set and, for each i ∈ I, Vi ∈ τ |A,
so that there is some Ui ∈ τ such that Vi = Ui∩A. Then

⋃

i Vi ∈ τ |A because

⋃

i

Vi =
⋃

i

(Ui ∩A) =
(

⋃

i

Ui

)

∩A.
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We call τ |A the subspace topology, the relative topology, or (less
frequently) the induced topology of A. Often A is open, in which case
there are no new open sets: if V ⊂ A is open in X, then it is relatively
open because V = V ∩A, while if V is relatively open, for instance because
V = U ∩ A where U is open in X, then V is open in X because U and A
are both open.

The following basic fact about the relative topology is applied so fre-
quently that it is usually taken for granted.

Proposition 3.20. If (X, τX) and (Y, τY ) are topological spaces, f : X → Y
is continuous, A ⊂ X, and f(A) ⊂ B ⊂ Y , then

f |A : A→ B

is continuous when A and B have their subspace topologies.

Proof. Our task is to show that if W is open in B, then (f |A)−1(W ) is open
in A. The definition of the topology of B implies that W = V ∩B for some
open V ⊂ Y , and since f(A) ⊂ B, (f |A)−1(W ) = (f |A)−1(V ). Of course
(f |A)−1(V ) = f−1(V )∩A, and f−1(V ) is open in X because f is continuous,
so f−1(V ) ∩A is open in A.

Mathematicians often say that a property of a space, or a function, or
perhaps some other type of object, is local. What they mean by this is that
the space (or function, or whatever) has this property whenever each point
in the space (or the domain of the function, or ...) has a neighborhood with
this property. The most useful way of expressing this involves the following
important concept: an open cover of a topological space X is a collection
{Uα}α∈A where A is some index set, each Uα is an open subset of X, and
⋃

α∈A Uα = X. A property is local if a space (or function, or ...) has the
property whenever every element of some open cover (or the restriction of
the function to every element of some open cover, or ...) has the property.

Proposition 3.21. Continuity is a local property.

Proof. Suppose X and Y are topological spaces, f : X → Y is a function,
{Uα}α∈A is an open cover of X, and each f |Uα is continuous. If V ⊂ Y is
open, then

f−1(V ) =
⋃

α∈A

(f |Uα)−1(V ).

Each (f |Uα)−1(V ) is open in the relative topology of Uα, so it is open in X
because Uα is open, and consequently f−1(V ) is open because it is a union
of open sets.
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3.3 Closed Sets

If (X, τ) is a topological space, a set C ⊂ X is closed if X \C is open. The
systems of closed and open sets are the yin and yang of a topological space.
We have described a topology in terms of the properties of its open sets,
but it should also be possible to give a description in terms of the properties
of closed sets, and indeed this is easy. Since union (intersection) of open
sets corresponds to intersection (union) of the complementary closed sets, a
collection χ of subsets of X is the system of closed sets of a topology if:

(a) ∅,X ∈ χ;

(b) C1 ∪C2 ∈ χ whenever C1, C2 ∈ χ;

(c)
⋂

αCα ∈ χ whenever A is a set and, for each α ∈ A, Cα ∈ χ.

To get a more direct and intuitive way of thinking about closed sets we
introduce some more terminology, which (in the collective experience of the
mathematical community) has proven very useful. If A ⊂ X, a point x ∈ X
is an accumulation point of A if every neighborhood of x has a nonempty
intersection with A. Since any neighborhood of x contains x itself, x is an
accumulation point of A if it is an element of A.

A A = B B

Figure 3.4

The closure of A, denoted by A, is the set of all accumulation points
of A. As we just mentioned, A ⊂ A. If a sequence in A converges to a
point x, then (by the definition of convergence) x ∈ A. If X is a metric
space, then the converse is true: if x is an accumulation point of A, then
U1/r(x)∩A 6= ∅ for every integer r, so we can construct a sequence x1, x2, . . .
in A that converges to x by choosing xr ∈ U1/r(x). (This construction

applies the axiom of choice!) In a general topological space A contains all
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the limits of sequences in A, but A can also have an accumulation point x
that is not the limit of any sequence in A, roughly because x has so many
neighborhoods that no sequence {xn} can eventually be inside all of them
unless xn = x for all large n. Nonetheless, for “practical purposes” the most
direct intuition for, and visualization of, this concept is that the closure of
a set in a metric space is the set of all limits of sequences in the set.

In this system of terminology it is not really proper to treat ‘close’ as a
verb (you are allowed to “take the closure” of a set) but if it were we could
say that “a closed set is one that has already been closed:”

Lemma 3.22. A set C ⊂ X is closed if and only if C = C.

Proof. Suppose C is closed. As noted above, C ⊂ C. On the other hand, all
the points of X \C are contained in an open set (namely X \C itself) whose
intersection with C is empty, so none of them are accumulation points of C.
Therefore X \ C ⊂ X \ C, so C ⊂ C.

Now suppose that C = C, and consider x ∈ X \ C. Since x isn’t an
accumulation point of C, it has an open neighborhood Vx with Vx ∩ C = ∅.
We have

X \ C =
⋃

x∈X\C

Vx,

so X \ C is open, and consequently C is closed.

Many of the basic facts of topology can be stated either in terms of
open sets or in terms of closed sets, and a collection of reformulations is
useful because it often happens in proofs that an application of a result
described in terms of open (closed) sets would be indirect and confusing,
while the same idea expressed in terms of closed (open) sets seems direct
and straightforward. Without trying to be exhaustive, we now give some of
the rephrasings that come up most frequently.

Lemma 3.23. If (X, τ) is a topological space and A ⊂ X, then C ⊂ A is
closed in the relative topology of A if and only if there is a closed D ⊂ X
such that C = D ∩A.

Proof. We have (a) ⇔ (b) ⇔ (c) ⇔ (d) where:

(a) C is closed in the relative topology of A;

(b) A \ C is open in the relative topology of A;

(c) A \ C = U ∩A for some open U ⊂ X;
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(d) C = D ∩A for some closed D ⊂ X.

Since a set is open if it is a neighborhood of each of its points, openness is
a local property. This feels too obvious to state as an explicit formal result,
but the flip side of this is somehow a bit less intuitive.

Proposition 3.24. Closedness is a local property: if C ⊂ X, {Uα}α∈A is
an open cover of X, and each C ∩ Uα is closed in the relative topology of
Uα, then C is closed.

Proof. Each Uα \C is relatively open, hence open in X because Uα is open,
so X \ C =

⋃

α∈A(Uα \ C) is open.

Continuity has a symmetric characterization in terms of closed sets.

Proposition 3.25. A function f : X → Y is continuous if and only if
f−1(D) is closed whenever D ⊂ Y is closed.

Proof. We have (a) ⇔ (b) ⇔ (c) ⇔ (d) where:

(a) f−1(V ) is open whenever V ⊂ Y is open;

(b) X \ f−1(V ) is closed whenever V ⊂ Y is open;

(c) f−1(Y \ V ) is closed whenever V ⊂ Y is open;

(d) f−1(D) is closed whenever D ⊂ Y is closed.

Proving that a function is continuous is one of the commonest tasks in
mathematics. It is usually the case that the simplest and easiest arguments
use set theoretic manipulations to show that the preimage of any open set
is open, or that the preimage of any closed set is closed. Eventually such
arguments seem clear and natural, but they take some getting used to be-
cause such a proof usually does not give a visual description of why the
function is continuous. The following result, which is a sort of complement
to Proposition 3.21 (but in this case the cover must be finite) illustrates
these ideas.

Proposition 3.26. Suppose f : X → Y is a function, where X and Y
are topological spaces, and X =

⋃m
j=1Cj, where each Cj is closed. If each

restriction f |Cj is continuous, then f is continuous.
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In thinking about why this should be true one might imagine a sequence
x1, x2, . . . in X converging to a point x. A subsequence is a sequence of the
form xi1, xi2 , . . . where i1 < i2 < · · · . If f(x1), f(x2), . . . did not converge
to f(x) there would be an open V ⊂ Y containing f(x) but not containing
f(xi) for every sufficiently large i, so there would be a subsequence with
f(xih) /∈ V for all h. Since there are only finitely many Cj, there would
have to be some j with xih ∈ Cj for infinitely many h, and by replacing our
subsequence with a further subsequence of itself we could make it the case
that xih ∈ Cj for all h. If a sequence converges to a point, then so does any
of its subsequences, obviously, so xih → x. Therefore x is an accumulation
point of the set {xi1 , xi2 , . . .}, so x ∈ Cj because Cj is closed. But f |Cj is
continuous, so f(xih) → f(x) and consequently f(xih) ∈ V for all sufficiently
large h after all. This contradiction shows that f(xi) → f(x).

Since we are working with general topological spaces, to prove that f is
continuous it is not enough to show that f(xi) → f(x) whenever xi → x,
so this “explanation” of Proposition 3.26 is not a valid proof. But even
if it were, for those with a certain amount of experience the following is
preferable because it is brief and direct.

Proof. We apply Proposition 3.25 and Lemma 3.23. It suffices to show that
f−1(D) is closed for any given closed set D ⊂ Y . For each j = 1, . . . ,m,
(f |Cj )

−1(D) is closed in the relative topology of Cj , so it is the intersection
of Cj (which is closed) with a closed subset of X, and consequently it is
closed in X. Therefore

f−1(D) =

m
⋃

j=1

(f |Cj )
−1(D)

is closed because it is a finite union of closed sets.

3.4 The Zariski Topology

It’s extremely easy to give an example of a topology that is not derived from
a metric. Let Xn = {1, . . . , n}, and let τn = {U0, . . . , Un} where

U0 = ∅, U1 = {1}, U2 = {1, 2}, . . . , Un−1 = {1, . . . , n− 1}, Un = X.

For any collection {Uiα}α∈A of open sets and any pair of open sets Ui1 and
Ui2 we have

⋃

α∈A

Uiα = Umaxα iα and Ui1 ∩ Ui2 = Umin{i1,i2},
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so τn satisfies (T1)-(T3).
To show that this topology is not derived from a metric we introduce

the following important concept: a Hausdorff space is a topological space
(X, τ) such that for any two distinct points x, y ∈ X there are open sets U
and V such that x ∈ U , y ∈ V , and U ∩ V = ∅. Any metric space (X, d) is
a Hausdorff space because

Ud(x,y)/2(x) and Ud(x,y)/2(y)

are open and disjoint (due to the triangle inequality) whenever x and y are
distinct points in X. But any two nonempty elements of τn have a nonempty
intersection, so (Xn, τn) isn’t a Hausdorff space if n ≥ 2.

As an example of a topology that is not Hausdorff, and therefore not
derived from a metric, (Xn, τn) suffers from the fact that it’s trivial, giving
no sense of why such a topology might be interesting or useful. So, for the
sake of giving a better example, and also just because the topic is interesting,
in this section we are going to describe a rather remarkable topology. The
main result that we need, the Hilbert basis theorem, is relatively advanced,
with a proof that’s a bit more complicated than most of what we’ve seen so
far. If it seems a bit difficult, well, that’s because it is, but you shouldn’t
worry too much: the hard parts of this section won’t be needed later in the
book.

Fix a field k and an integer n. In the last chapter we saw the ring R[X]
of polynomials in a single variable with coefficients in a commutative ring R,
and we paid particular attention to the ring k[X]. Now we’ll be working with
k[X1, . . . ,Xn], which is the ring of polynomials, like 1 + 2X1X

2
2 −X5

3 , in n
variables with coefficients in k. To drive home the point that this is not really
a new concept (and to prepare for an inductive argument below) observe
that we can build this ring up one step at a time, treating k[X1, . . . ,Xn] as
k[X1, . . . ,Xn−1][Xn].

Affine n-space over k, denoted by An(k), is the n-fold cartesian product
of k with itself, i.e., the set of ordered n-tuples of elements of k. (That is,
An(k) is just kn, but regarded as a quite particular geometric object.) For
any polynomial f ∈ k[X1, . . . ,Xn] there is an associated function, which
we also denote by f , from An(k) to k, with the obvious definition: if, for
example, f = 1 + 2X1X

2
2 − X5

3 , then f(a1, a2, a3) = 1 + 2a1a
2
2 − a5

3. An
affine algebraic set is a set of the form

V (S) = { a ∈ An(k) : f(a) = 0 for all f ∈ S }

where S may be any subset of k[X1, . . . ,Xn]. (If S = {f1, . . . , fk} is finite we
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usually write V (f1, . . . , fk) in place of the more cumbersome V ({f1, . . . , fk}).)
When k = R these are familiar objects of the sort shown in Figure 3.3.

V
(

X2 −X3
1 +X1

)

V
(

X2 −X2
1 + 2

)

V
(

(2X2 −X1)(2X1 +X2)
)

Figure 3.3

A first definition of the field of mathematics called algebraic geometry

is that it studies algebraic sets. (Actually this field has redefined its fun-
damental objects of study several times during its history, becoming highly
abstract in the process, so this is very far from being a final or satisfactory
description.) In the most important topology in algebraic geometry, called
the Zariski topology, the closed sets of An(k) are the affine algebraic sets.
(Oscar Zariski (1899-1986) did important work on the algebraic foundations
of algebraic geometry.)

Let’s check that these sets have the properties of the system of closed
sets of a topology. If 0 and 1 denote the polynomials whose only terms are
the corresponding constants, then ∅ = V (1) and An(k) = V (∅) = V (0). If
S1, S2 ⊂ k[X1, . . . ,Xn], then we claim that V (S1)∪ V (S2) is closed because

V (S1) ∪ V (S2) = V ({ fg : f ∈ S1, g ∈ S2}).

In concrete detail:

(i) if a ∈ V (S1) ∪ V (S2), then fg(a) = 0 whenever f ∈ S1 and g ∈ S2;

(ii) if a ∈ An(k) \ (V (S1) ∪ V (S2)), then there is an f ∈ S1 such that
f(a) 6= 0 and a g ∈ S2 such that g(a) 6= 0, so fg(a) 6= 0.

If, for each α ∈ A, Sα ⊂ k[X1, . . . ,Xn], then it is easy to see that

⋂

α

V (Sα) = V
(

⋃

a

Sα
)

.

So, we do have a topology.
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We will show that the Zariski topology is not a Hausdorff topology when
k is infinite, with the next result giving the key idea of the argument. First
we need a bit of terminology. For any commutative ring R, if

f = cdX
d + · · · + c1X + c0 ∈ R[X]

with cd 6= 0, then cdX
d is the leading term of f , cd is the leading coeffi-

cient, and d is the degree.

Proposition 3.27. If k is infinite, f ∈ k[X1, . . . ,Xn], and the function
from An(k) to k defined by f is identically zero, then f = 0.

We first deal with the case n = 1.

Lemma 3.28. A nonzero polynomial f ∈ k[X] of degree d has at most d
distinct roots.

Proof. Certainly this is true when d = 0, since f is then a nonzero constant.
Arguing by induction, suppose that the result has been established for poly-
nomials of degree d − 1, and that f has degree d. For any r ∈ k division
with remainder gives f = (X − r) · g + q where g is a polynomial of degree
d− 1 and q ∈ k. If r is a root of f , then q = 0, so f = (X − r) · g, and the
roots of f are d and the roots of g.

Proof of Proposition 3.27. The lemma establishes the claim in the case n =
1. Now suppose that n > 1, and that the result has already been established
with n − 1 in place of n. Let f = cdX

d
n + · · · + c1Xn + c0 where the

coefficients are now elements of k[X1, . . . ,Xn−1]. If the function defined
by f vanishes everywhere in An(k), then the univariate polynomial derived
from any particular values of X1, . . . ,Xn−1 must be zero for all values of Xn,
so the lemma imples that it is the zero polynomial. Therefore each of the
functions defined by the coefficients vanishes everywhere in kn−1, so each of
the coefficients is the zero polynomial. Thus f = 0.

Our application of Proposition 3.27 involves the following fact.

Lemma 3.29. k[X1, . . . ,Xn] is an integral domain.

Proof. Obviously k[X1, . . . ,Xn] is a commutative ring with unit, so the claim
boils down to it not having any zero divisors. Let f and g be nonzero
elements of k[X1, . . . ,Xn]. If we think of f and g as univariate polynomials
in the variable Xn with coefficients in k[X1, . . . ,Xn−1], then the leading
term of fg is the product of the leading term of f and the leading term
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of g, and it suffices to show that it is nonzero. This follows by induction:
when n = 1 the leading term of fg is a product of two nonzero elements of
k; when n > 1 the leading term of fg is a product of two nonzero elements
of k[X1, . . . ,Xn−1], and we may assume that the result has already been
established with k[X1, . . . ,Xn−1] in place of k[X1, . . . ,Xn].

To show that the Zariski topology is not Hausdorff we need to find dis-
tinct points x, y ∈ An(k) that do not have disjoint neighborhoods, but we
will actually prove something stronger, namely that either U = ∅ or V = ∅
whenever U and V are open sets with U ∩ V = ∅. This is the same as:

Proposition 3.30. If k is infinite, C and D are closed subset of An(k),
and C ∪D = An(k), then either C = An(k) or D = An(k).

Proof. Suppose that C = V (SC) and D = V (SD). Then, as we saw above,

C ∪D = V
(

{ fg : f ∈ SC and g ∈ SD }
)

,

so fg vanishes on all of An(k) whenever f ∈ SC and g ∈ SD. Since k is
infinite, it follows that fg = 0, and since k[X1, . . . ,Xn] doesn’t have zero
divisors, either f = 0 or g = 0. That is, there do not exist nonzero f ∈ SC
and g ∈ SD, so either SC ⊂ {0} or SD ⊂ {0}.

The power of the Zariski topology is harnessed by creating a suitable
category. If A ⊂ Am and B ⊂ An(k) are affine algebraic sets, a regular

function from A to B is a function ϕ : A→ B for which there exist

f1, . . . , fn ∈ k[X1, . . . ,Xm]

such that
ϕ(a) = (f1(a), . . . , fn(a))

for all a ∈ A. Clearly IdA is a regular function, since we can set f1 =
X1, . . . , fm = Xm. Compositions of regular functions are regular because a
composition of polynomial functions is the function given by the polynomials
we obtain by substituting and expanding. (For example, if y1 = x2

1 + x2,
y2 = x2

2, and z = 2y1 + y2
2, then z = 2(x2

1 + x2) + (x2
2)

2 = 2x2
1 + 2x2 + x4

2.)
As usual, composition of regular functions is associative, and IdB ◦ϕ = ϕ =
ϕ ◦ IdA, because these are properties of functions in general. Thus there is
a category of affine algebraic sets and regular functions.

We endow each affine algebraic set A ⊂ Am with the subspace topology
it inherits as a subset of Am. In effect this means that the closed sets in A
are just the Zariski-closed subsets of Am that happen to be contained in A.
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Theorem 3.31. If A ⊂ Am(k) and B ⊂ An(k) are affine algebraic sets
and ϕ : A→ B is a regular function, then ϕ is continuous.

Proof. Choose f1, . . . , fn ∈ k[X1, . . . ,Xm] such that

ϕ(a) = (f1(a), . . . , fn(a))

for all a ∈ A, and let A = V (SA). If C = V (SC) is a closed subset of B,
then

ϕ−1(C) = V
(

SA ∪ {h ◦ (f1, . . . , fn) : h ∈ SC }
)

is Zariski-closed.

Up to this point we haven’t done anything profound. The only property
of polynomial functions that we used in the verification that the Zariski
topology is a topology is that the product of any two polynomial functions
is a polynomial function, and the proof above depends only on the fact that a
composition of polynomial functions is a polynomial function. The following
result is much deeper.

Theorem 3.32. For any S ⊂ k[X1, . . . ,Xn] there is a finite system of
polynomials f1, . . . , fs ∈ k[X1, . . . ,Xn] such that

V (S) = V (f1, . . . , fs).

There is a slightly different way of thinking about things, that would
be more natural for an algebraic geometer, in which this is a result about
the Zariski topology. As we defined the notion above, an affine algebraic
set is the set of common zeros of any set of polynomials. However, if we
had defined an affine algebraic set to be the set of common zeros of a finite
system of polynomials, this result would then be interpreted as saying that
the Zariski topology is, in fact, a topology, because arbitrary intersections
of closed sets are closed.

One might visualize a category as a collection of electrodes (the objects)
connected by wires (the morphisms). The Zariski topology gives a sense
in which the morphisms of the category of affine algebraic sets and regular
functions are continuous, so one gets some sense of how the Zariski topology
provides a powerful tool for turning algebraic facts into useful geometric
information flowing effortlessly through this vast network. But actually this
image expresses only a small part of the influence the Zariski topology has
had on algebraic geometry.

To a rather surprising extent mathematical research is guided by rea-
soning by analogy. Suppose we have two categories, one of which is well
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understood. If the second category exhibits phenomena that seem analo-
gous to properties of the first, it is natural to attempt to develop theories
in the second category that parallel successful existing theories in the first.
Algebraic geometry studies objects that are very special, and have a great
deal of structure. For this reason the categories studied in many other areas
of mathematics have subcategories of algebraic objects, or have features that
are, perhaps in a rough sense, mirrored in the categories studied in algebraic
geometry. Historically, the development of the formal methods of algebraic
geometry was largely a matter of importing ideas and methods from other
subfields, and the Zariski topology was the heart and soul of this process.

The remainder of this section is devoted to the proof of Theorem 3.32.
At first it seems remarkable that one could prove something like this. Given
an arbitrary S, how could one sensibly search for suitable f1, . . . , fr? Instead
of lunging head-on at the problem, let’s first cultivate an appreciation of the
relevant abstractions.

For any S ⊂ k[X1, . . . ,Xn] we let I(S) denote the ideal of k[X1, . . . ,Xn]
generated by the elements of S. That is, I(S) is the smallest ideal that
contains all the elements of S. Alternatively, I(S) is the set of elements of
k[X1, . . . ,Xn] of the form

g1f1 + · · · + gsfs

where f1, . . . , fs ∈ S and g1, . . . , gs ∈ k[X1, . . . ,Xn]. Concretely, any ideal
containing S has to contain every g1f1 + · · · + gsfs, and the set of all such
g1f1 + · · ·+gsfs is easily seen to be closed under addition and multiplication
by elements of k[X1, . . . ,Xn], hence an ideal.

Lemma 3.33. For any S ⊂ k[X1, . . . ,Xn], V (S) = V (I(S)).

Proof. Of course V (I(S)) ⊂ V (S) because S is a subset of I(S). For the
reverse inclusion observe that if a ∈ V (S), then for any f1, . . . , fs ∈ S and
g1, . . . , gs ∈ k[X1, . . . ,Xn] we have

g1(a)f1(a) + · · · + gs(a)fs(a) = 0

because f1(a) = · · · = fs(a) = 0, so a ∈ V (I(S)).

Let R be any commutative ring with unit. Recall that in Chapter 2 we
defined the principal ideal generated by f ∈ R to be (f) := { rf : r ∈ R }.
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We now extend this notation: if f1, . . . , fs ∈ R, let

(f1, . . . , fs) := { r1f1 + · · · + rsfs : r1, . . . , rs ∈ R }1.

It is easy to see that (f1, . . . , fs) contains all sums and additive inverses
of its elements, and it contains rg whenever if contains g and r ∈ R, so
it is an ideal. An ideal I ⊂ R is finitely generated if I = (f1, . . . , fs)
for some f1, . . . , fs, in which case we say that f1, . . . , fs is a system of

generators for I. That is, I is finitely generated if it is finitely generated
as an R-module.

We started with the goal of showing that for any S ⊂ k[X1, . . . ,Xn] there
are f1, . . . , fs such that V (S) = V (f1, . . . , fs), and the last result tells us that
this is the same as V (I(S)) = V ((f1, . . . , fs)), so we are done if we can show
that I(S) = (f1, . . . , fs) for some f1, . . . , fs. Therefore it is enough to show
every ideal of k[X1, . . . ,Xn] is finitely generated, which at first sounds a
bit too good to be true. But S could be any ideal of k[X1, . . . ,Xn], so we
actually can’t avoid proving something at least this strong.

In general it is always the case that the only way to prove something is
to prove something else that is at least as powerful, in the sense of having
the desired proposition as an implication. We have proceeded through a
sequence of propositions, each of which implies its predecessor, which is
what mathematicians do when trying to prove something. Mathematical
talent is largely a matter of good sense, incisive insight, and inspiration,
concerning which of the propositions, among those implying some desired
conclusion, is likely to be both true and provable. As laid out above, the
process might have seemed rather straightforward, but we have now arrived
at a pivotal concept in abstract algebra whose importance was initially far
from obvious.

A commutative ring R is said to be Noetherian if each of its ideals
is finitely generated. This terminology honors Emmy Noether (1882-1935)
who (in addition to other very important contributions, including a pro-
found theorem of physics) transformed the field of mathematics known as
commutative algebra by using the Noetherian ring concept to recast the
foundations of certain key results, simultaneously extending their scope and
simplifying their proofs. Reexpressed in this terminology, our target is:

Theorem 3.34. k[X1, . . . ,Xn] is Noetherian.

1This notation burdens the reader with the task of determining, from context, whether
(f1, . . . , fs) is an ideal or an element of Rs. In practice there is no real difficulty, so this
is a small price to pay if we can avoid notational monstrosities like I({f1, . . . , fs}).
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There are several ways of thinking about Noetherian rings:

Lemma 3.35. For a commutative ring with unit R the following are equiv-
alent:

(a) R is Noetherian;

(b) every increasing sequence of ideals I1 ⊂ I2 ⊂ . . . “stabilizes”: there is
some K such that Ik = IK for all k ≥ K;

(c) any collection of ideals of R has an element that is maximal in the
sense of not being a subset of some other element of the collection.

Proof. Suppose that (a) holds, and let I1 ⊂ I2 ⊂ . . . be an increasing se-
quence of ideals. Then (as in the proof of Proposition 2.23)

⋃

i≥1 Ii is an
ideal, so it must have a finite set of generators, and there must be an integer
K such that all the generators are contained in IK . Thus (a) implies (b).

Suppose (b) holds. If there was collection of ideals without a maximal
element we could create an increasing sequence that did not stabilize by
letting I1 be an arbitrary element of the collection, letting I2 be an element
of the collection that was a proper superset of I1, letting I3 be an element
of the collection that was a proper superset of I2, and so forth. Thus (b)
implies (c).

Suppose (c) holds, and let I be an ideal. The collection of finitely gener-
ated ideals contained in I has a maximal element, and the maximal element
cannot be a proper subset of I because we could obtain a contradiction of
maximality by appending another generator, so the maximal element must
be I. Thus (c) implies (a).

We now come to another major contribution of Hilbert.

Theorem 3.36 (Hilbert Basis Theorem). If R is a Noetherian ring, then
so is R[X].

The only ideals of the field k are {0} and k itself, so k is Noetherian.
Applying the Hilbert Basis Theorem inductively shows that

k[X1, . . . ,Xn] = k[X1, . . . ,Xn−1][Xn]

is Noetherian for all n. Therefore the Hilbert Basis Theorem implies Theo-
rem 3.34.

Let’s think about what a proof of the Hilbert Basis Theorem might look
like. An ideal I will be given to us, and we will need to find f1, . . . , fs ∈ I
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such that the ideal I ′ = (f1, . . . , fs) is equal to I. This means that for any
f ∈ I we will need to be able to find g1, . . . , gs ∈ R[X] such that

f = g1f1 + · · · + gsfs.

Breaking things down a bit more, it suffices to be able to find g1, . . . , gs such
that the degree of f − g1f1 − · · · − gsfs is less than the degree of f , since
we can repeat this procedure until we get f − g1f1 − · · · − gsfs = 0. We
can now see what kind of polynomials we need in I ′. First of all, it should
be the case that for every polynomial f ∈ I there should be a polynomial
f ′ ∈ I ′ that has the same leading coefficient as f . But we need a bit more
than this, insofar as our reduction technique requires that the degree of f ′

be no greater than the degree of f .

Proof of the Hilbert Basis Theorem. Let I be an ideal of R[X]. For each
d = 0, 1, 2, . . . let Jd be the union of {0} and the set of leading coefficients
of elements of I of degree d. To see that Jd is an ideal of R observe that:

(i) if f1 and f2 are polynomials in I of degree d, then the sum of the
leading coefficients of f1 and f2 is either 0 or the leading coefficient of
f1 + f2;

(ii) if the degree of f ∈ I is d and r ∈ R, then r times the leading coefficient
of f is either 0 (this might happen even when r 6= 0, because R might
have zero divisors) or the leading coefficient of rf .

If d < d′, then Jd ⊂ Jd′ because if f ∈ I has degree d, then its leading
coefficient is the leading coefficient of Xd′−df . Therefore J0 ⊂ J1 ⊂ J2 ⊂ . . .,
and since R is Noetherian, there is a d such that Jd = Jd for all d ≥
d. In addition, for each 0 ≤ d ≤ d there are finitely many polynomials
f1,d, . . . , fsd,d ∈ I of degree d whose leading coefficients generate Jd. For
each d ≤ d let Id := (f1,d, . . . , fsd,d), and let

I ′ = (f1,0, . . . , fs0,0, . . . , f1,d, . . . , fsd,d
).

Of course I ′ ⊂ I, and we claim that I ′ = I. Aiming at a contradiction,
let f be an element of I \ I ′ of lowest degree, say d, and let c ∈ Jd be the
leading coefficient of f . If d ≤ d and c1, . . . , csd

are the leading coefficients
of f1,d, . . . , fsd,d, then c = a1c1 + · · · + asd

csd
for some a1, . . . , asd

∈ R, so
f − (a1f1 + · · · + asd

fsd,d) is an element of I \ I ′ of lower degree than f .
If d > d and c1, . . . , csd

are the leading coefficients of f1,d, . . . , fsd,d
, then

c = a1c1 + · · · + asd
csd

for some a1, . . . , asd
∈ R because Jd = Jd, and again

f − (a1f1 + · · · + asd
fsd,d

)Xd−d is an element of I \ I ′ of lower degree than

f . In either case we have contradicted the choice of f .
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3.5 Compact Sets

The next definition is just weird. A topological space X is compact if,
whenever {Uα}α∈A is an open cover of X, there is a finite subcollection
Uα1 , . . . , Uαk

such that Uα1 ∪ . . . ∪ Uαk
= X. The mantra of compactness

is “every open cover has a finite subcover.” Say this over and over until
it sinks in. Compactness was unknown in the 19th century, but is now a
fundamental idea that plays a role in a large percentage of proofs in most
subfields of mathematics2. Throughout this book we discuss many topics
that are then dropped, never to appear again, but compactness won’t be like
that. The results in this section and the next will be applied many times,
and you’ll probably need to review the material here more than once.

Our explanation begins with a simple observation that allows us to ex-
pand the usage of the term ‘compact.’ We will say that a subset K ⊂ X
is compact if the relative topology it inherits from X makes it a com-
pact space. Extending another piece of terminology a little bit, we will say
that a collection {Uα}α∈A of open subsets of X is an open cover of K if
K ⊂ ⋃

α∈A Uα. Then K is compact if and only if every open cover has a
finite subcover. The proof that this is so has two parts.

First suppose that K is compact, and let {Uα}α∈A be an open cover ofK.
Then each Uα∩K is open in the relative topology of K, so {Uα∩K}α∈A is a
cover of K by relatively open subsets, and consequently there are α1, . . . , αk
such that

K ⊂ (Uα1 ∩K) ∪ . . . ∪ (Uαk
∩K) ⊂ Uα1 ∪ . . . ∪ Uαk

.

Now suppose that every open cover ofK has a finite subcover. If {Vα}α∈A
is a collection of relatively open subsets of K that cover K, then for each
α we can choose an open (in X) Uα such that Vα = Uα ∩ K. There are
α1, . . . , αk such that K ⊂ Uα1 ∪ · · · ∪ Uαk

, and clearly this implies that
K ⊂ Vα1 ∪ · · · ∪ Vαk

. Thus K with its relative topology is a compact space.
What kinds of sets are compact? Of course any finite set is compact, but

the concept wouldn’t be worth anything if that was all there was to it. We
will focus on compact spaces that are subsets (with their relative topologies)
of R and Rn. Here is the key example.

2Ironically, compactness is not a useful concept in algebraic geometry because every

subset of An(k) is Zariski-compact! Specifically, suppose that B ⊂ S

α∈A Uα ⊂ An(k)
where for each α there is Sα ⊂ k[X1, . . . , Xn] such that Uα = An(k) \V (Sα). The Hilbert
basis theorem implies that the ideal generated by

S

Sα has a finite system of generators,
and each generator is of the form g1f1 + · · ·+ gmfm where each fi is an element of some
Sα. Consequently there are α1, . . . , αk such that Sα1 ∪ · · · ∪ Sαk

generates the same ideal
as

S

α Sα, so
T

V (Sα) = V (Sα1) ∩ · · · ∩ V (Sαk
) and B ⊂ Uα1 ∪ · · · ∪ Uαk

.
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Lemma 3.37. For any numbers a, b ∈ R with a ≤ b the interval [a, b] is
compact.

Proof. Let {Uα}α∈A be an open cover of [a, b], and let S be the set of numbers
s ∈ [a, b] such that [a, s] has a finite subcover. Then S is nonempty because
it contains a, and it is bounded above by b, so it has a least upper bound
s, and there is an index β such that s ∈ Uβ. Since Uβ contains an open
interval around s, s = a is impossible, and there is an s < s with [s, s] ⊂ Uβ.
Combining Uβ with a finite subcover of [a, s] gives a finite subcover of [a, s],
so s ∈ S, and if s is less than b, then this is a finite subcover of [a, s′] for
some s′ > s, contradicting the definition of s, so s = b. Thus b ∈ S.

The next result now gives a rich supply of compact subsets of R.

Theorem 3.38. If K is a compact subset of a topological space X and
C ⊂ K is closed in the relative topology of K (this is necessarily the case,
by Lemma 3.23, when C is closed in X) then C is compact.

Proof. Let {Uα}α∈A be a collection of open subsets ofX that covers C. Since
K \C is relatively open, there is an open U ⊂ X such that K \C = K ∩U .
Then {U} ∪ {Uα}α∈A is a collection of open subsets of X that covers K,
and K must have a finite subcover. If U is in this subcover we can throw it
away, thereby obtaining a finite subset of {Uα}α∈A that covers C.

b b

b bb b b b

b bb b b b b b b b

I0

I1

I2
...

Figure 3.5

There is an example that illustrates the diversity of compact subsets of
R rather vividly, and is also quite famous for many reasons. Start by setting
I0 := [0, 1]. Form

I1 := [0, 1
3 ] ∪ [23 , 1] = I0 \ (1

3 ,
2
3)

by removing the open “middle third” of the interval. Then I1 consists of
two closed intervals, and we form

I2 := [0, 1
9 ] ∪ [29 ,

1
3 ] ∪ [23 ,

7
9 ] ∪ [89 , 1] = I1 \

(

(1
9 ,

2
9) ∪ (7

9 ,
8
9)
)
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by removing each of their middle thirds. Continue in this manner: if In =
[a1, b1] ∪ . . . ∪ [a2n , b2n ] where

a1 < b1 < a2 < b2 < · · · < a2n < b2n ,

form In+1 by removing the middle third of each of the intervals [ai, bi]:

In+1 :=
2n
⋃

i=1

[ai,
2
3ai +

1
3bi] ∪ [13ai +

2
3bi, bi] = In \

2n
⋃

i=1

(2
3ai +

1
3bi,

1
3ai +

2
3bi).

Finally, the Cantor Set is the infinite intersection

C := I0 ∩ I1 ∩ I2 ∩ . . . .

Each In is a closed set, so C is closed because it is the intersection of a
collection of closed sets. Since it is a subset of [0, 1], it is compact. Each
endpoint of an interval in In is also an endpoint of an interval in In+1, so
each such endpoint is an element of C, and in particular C is nonempty.
Does C contain any other points? Before answering this question we will
show that C is, in a certain sense, quite small.

There is a standard method of measuring the one dimensional “volume”
of sets like C that is beyond the scope of this book, but without going into
any great detail we can see that any reasonable method of measuring volume
cannot ascribe a positive volume to C. By “reasonable” we mean that: a)
the volume of a disjoint union of finitely many intervals is the sum of their
lengths, and b) if A ⊂ B, and the theory attributes a volume to both of
these sets, then the volume of A cannot be greater than the volume of B.
By induction, the volume of In is (2/3)n, so if a reasonable theory assigns a
volume to C, that volume must be zero.

In spite of C being small in this sense, it turns out that the cardinality
of C is the same as the cardinality of [0, 1]! To show this we use the base
2 and base 3 decimal expansions of numbers in [0, 1]. The key point is that
every sum

s = 1
3b1 + 1

9b2 + · · · + 1
3n bn

with b1, . . . , bn ∈ {0, 2} is a lower endpoint of one of the intervals constituting
In. It is easy to see this by arguing inductively: 0 is the lower endpoint of
I0, and if s is the lower endpoint of the interval [s, s + 1/3n], then s and
s+2/3n+1 are the lower endpoints of the two intervals obtained by removing
the middle third.

Now consider the map

f : 1
2a1 + 1

4a2 + 1
8a3 + · · · 7→ 2

3a1 + 2
9a2 + 2

27a3 + · · ·
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taking a point in [0, 1], written in base 2 as 0.a1a2a3 . . ., to a point written in
base 3 using only 0’s and 2’s. There is a bit of ambiguity here insofar as, for
example, in base 2 we have 0.01011111 . . . = 0.01100000 . . ., but this isn’t a
problem: when two base 2 expansions are possible we always take the one
with a tail consisting of 1’s. If two base 3 decimal expansions represent the
same number, then one ends with a tail of 2’s and the other ends with a tail
of 0’s, and the latter is not an image of this map, so this map is injective. Of
course the sequence of partial sums 2a1/3 + · · ·+ 2an/3

n converges because
it’s Cauchy, and its limit is in C because C is closed.

At this point we have defined an injective map f : [0, 1] → C. Let
g : C → [0, 1] be the inclusion. (Whenever A ⊂ X, the function i : A → X
taking each a ∈ A to itself is called the inclusion.) Of course g is injective,
so it sure seems like C and [0, 1] ought to have the same cardinality. Never-
theless, to prove this we still need to actually produce a suitable bijection.
Depending on your mood, this is either an annoying picayune detail or an
opportunity to learn an important result from set theory with a cute proof.

Theorem 3.39 (Schroeder-Bernstein Theorem). If f : X → Y and g : Y →
X are injections, then there is a bijection h : X → Y .

Proof. Let A0 := X \ g(Y ), define A1, A2, . . . inductively by setting Aj+1 :=
g(f(Aj)), and let B :=

⋃∞
j=0Aj . Then

g(Y \ f(B)) = g(Y ) \ g(f(B))

because g is injective, so

g(Y \ f(B)) = (X \A0) \ g(f(A0 ∪A1 ∪ . . .)) = (X \ A0) \
∞
⋃

j=0

g(f(Aj))

= X \ (A0 ∪A1 ∪A2 ∪ . . .) = X \B.
Therefore g restricts to a bijection between Y \ f(B) and X \ B, and of
course f restricts to a bijection between B and f(B), so we can define h by
setting h(a) := f(a) if a ∈ B and h(a) := g−1(a) if a ∈ X \B.

Cantor proved a version of this result that is weaker, insofar as his
“proof” used the axiom of choice. In recognition of this it has recently be-
come fashionable to call this result the Cantor-Schroeder-Bernstein theorem.
I don’t know whether the analogous result with ‘injection’ replaced with ‘sur-
jection’ can be proved without the axiom of choice, but if we have the axiom
of choice, then it follows easily. Suppose F : X → Y and G : Y → X are
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surjections. Then each F−1(y) is nonempty, so the axiom of choice gives us
a function g : Y → X with g(y) ∈ F−1(y) for all y. Of course g is injective:
if y 6= y′, then g(y) 6= g(y′) because F (g(y)) 6= F (g(y′)). Similarly, there is
an injection f : X → Y with f(x) ∈ G−1(x) for all x, and we can apply the
result above to f and g.

We can now give a precise argument showing that C contains points
other than the endpoints in the intervals in the sets In. Let S be the set
of such endpoints. The set of rational numbers is countable. (The set
of nonzero rationals is a union of countably many disjoint countable sets
because it is the union over all j = 1, 2, . . . of the set of nonzero rationals
that have denominator j when reduced to lowest terms.) Every element of S
is rational, so there is an injection from S to the set of natural numbers, and
we can obviously construct an injection from the set of natural numbers to
S, so the Cantor-Schroeder-Bernstein theorem implies that S is countable.
Since C has the same cardinality as [0, 1], and is consequently uncountable,
the inclusion mapping S into C cannot be a bijection.

Theorems are basically assertions that certain things can’t happen. The
other side of the coin are examples showing the certain things are possible,
e.g., a subset of R with the cardinality of the continuum can have zero
volume. In fact a large number of examples in analysis begin with the
Cantor set or some variant, to the point where a good rule is that if you are
looking for an example of some seemingly bizarre phenomenon, first think
about whether you can use the Cantor set to construct one.

3.6 More on Compactness

In the last section we saw that, in order to be a compact set, it suffices to
be a closed set that is “small,” in the somewhat circular sense of being a
relatively closed subset of some other compact set. Are all compact subsets
of X closed? In general no, but the majority of spaces that we care about
are Hausdorff, so the answer is yes “for practical purposes:”

Theorem 3.40. If X is a Hausdorff space and K is a compact subset of
X, then K is closed.

Proof. We’ll show that X \ K is open because an arbitrary x ∈ X \ K
has a neighborhood U that doesn’t intersect K. Since X is Hausdorff, for
each y ∈ K there are disjoint open neighborhoods Uy and Vy of x and y.
Since K is compact, there are y1, . . . , yk such that K ⊂ Vy1 ∪ · · · ∪ Vyk

. Set
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U := Uy1 ∩ · · · ∩ Uyk
, and observe that x ∈ U , U is open, and

U ∩K ⊂
(

k
⋂

i=1

Uyi

)

∩
(

k
⋃

i=1

Vyi

)

=
k
⋃

i=1

(

(

k
⋂

i=1

Uyi

)

∩Vyi

)

⊂
k
⋃

i=1

(

Uyi ∩Vyi

)

= ∅.

In particular, any compact subset of Rn must be closed. The sets
U1(0),U2(0), . . . cover Rn, so any compact subset of Rn must have a fi-
nite subcover, which means that it is contained in Ur(0) for sufficiently
large r > 0. A set with this property is said to bounded. Our next goal
is to show that “closed and bounded” is an exact characterization of the
compact subsets of Rn: not only is every compact set necessarily closed
and bounded, as we have shown, but also every closed and bounded set is
compact.

Any closed bounded K ⊂ Rn is contained in a rectangle

[a1, b1] × · · · × [an, bn],

and if we can show that this rectangle is compact, then (by Theorem 3.38)
any closed subset such as K is compact. The proof that the rectangle is
compact is best undertaken in full generality, by showing that any cartesian
product of compact sets is compact. Before we can say what we mean by
this, we need a topology on the cartesian product X × Y of two topological
spaces X and Y , and the most natural such topology on is the product

topology, which is defined by specifying that W ⊂ X × Y is open if, for
each (x, y) ∈W , there are open sets U ⊂ X and V ⊂ Y such that

(x, y) ⊂ U × V ⊂W.

b

b b

x

y

U

V

W

X

Y

Figure 3.6
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We need to check that this system of sets actually is a topology. It is easy
to see that it contains ∅, X × Y , and any union of its elements. To see that
W1 ∩W2 is open whenever W1 and W2 are open subsets of X × Y , consider
a particular point (x, y) ∈ W1 ∩W2. There are open sets U1, U2 ⊂ X and
V1, V2 ⊂ Y such that (x, y) ∈ U1 × V1 ⊂ W1 and (x, y) ∈ U2 × V2 ⊂ W2.
Then

(x, y) ∈ (U1 ∩ U2) × (V1 ∩ V2) = (U1 × V1) ∩ (U2 × V2) ⊂W1 ∩W2.

It is straightforward to extend our definition to a finite cartesian product

X1 × · · · ×Xn.

One may do this directly by specifying that W ⊂ X1 × · · · ×Xn is open if,
for each (x1, . . . , xn) ∈ W , there are open sets U1 ⊂ X1, . . . , Un ⊂ Xn such
that

(x1, . . . , xn) ∈ U1 × · · · × Un ⊂W.

Alternatively, one may proceed inductively, endowing X1 × · · · × Xn with
the product topology of the cartesian product of X1 × · · · ×Xn−1 and Xn.

Here is a fact that comes up frequently, and is often treated as too
obvious to mention explicitly.

Lemma 3.41. If f1 : X1 → Y1, . . . , fn : Xn → Yn are continuous functions,
then the function f : X1 × · · ·Xn → Y1 × · · · × Yn given by

f(x1, . . . , xn) := (f1(x1), . . . , fn(xn))

is continuous.

Proof. Every open set in Y1 × · · · × Yn is a union of products V1 × · · · × Vn
where V1 ⊂ Y1, . . . , Vn ⊂ Yn are open, and

f−1(V1 × · · · × Vn) = f−1
1 (V1) × · · · × f−1

n (Vn)

is open in X1 × · · · ×Xn.

It is visually obvious that a subset of R2 is open in the product topology
if and only if it contains a ball around each of its points, but we will belabor
the point a bit, in part to prepare for Chapter 6 where the general idea will
be important. A set W ⊂ R2 is open in the product topology if, for each
(x, y) ∈W , we can find numbers a, b, c, d such that

(x, y) ∈ (a, b) × (c, d) ⊂W.
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(Unfortunately the notation here is potentially confusing: (x, y) is an el-
ement of R2, but (a, b) and (c, d) are open intervals.) If this is the case,
then W is open in the topology induced by the norm ‖ · ‖∞ because in this
circumstance we have (x, y) + δB∞ ⊂W where

δ := min{x− a, b− x, y − c, d− y}

and B∞ = { (x, y) ∈ R2 : ‖(x, y)‖∞ < 1 }. Conversely, if (x, y) + δB∞ ⊂W ,
then

(x, y) ∈ (x− δ, x + δ) × (y − δ, y + δ) ⊂W,

so W is open in the product topology whenever it is open in the topology
induced by ‖ · ‖∞. Thus the product topology on R2 = R × R is the
topology induced by ‖ · ‖∞. We pointed out earlier that ‖ · ‖∞, ‖ · ‖1, and
‖ · ‖2 all induce the same topology, so the product topology on R2 is the
“usual” topology on this space. Nothing here depends on there being only
two dimensions: for any finite n the product topology on Rn is induced by
‖ · ‖∞, so it coincides with the “usual” topology induced by ‖ · ‖2.

In general it is quite uncommon to endow a finite cartesian product with
any topology other than the product topology. The Zariski topology is,
perhaps, the most prominent example. Any Zariski-closed subset of A1 is
the set of roots of a finite collection of polynomials. Except for A1 itself
(which is the set of roots of the zero polynomial) any such set is finite. Each
c ∈ A1 is a root of X − c, and finite unions of closed sets are closed, so any
finite set is closed. Thus the closed subsets of A1 are ∅, A1 itself, and the
finite subsets. The complement of a finite set is said to be cofinite, and the
open subsets of A1 are ∅, A1 itself, and the cofinite sets.

We claim that the general form of an open set in the product topology
of A1 ×A1 is (C1 ×C2) \ F where C1, C2 ⊂ A1 are cofinite and F is finite.
The verification of this is a bit tedious, both to write out and to read, and
thinking through the details would be a good way to review and solidify
your understanding, so we leave it as an exercise. The main point is that
an affine algebraic set such as V (X2 −X2

1 ) is closed in the Zariski topology
of A2, by virtue of the definition of that topology, but not in the product
topology of A1 × A1 unless the given field k is finite.

The product topology is important for many reasons, but our motivation
for introducing it here is:

Theorem 3.42. If X and Y are topological spaces and K ⊂ X and L ⊂ Y
are compact, then K × L is a compact subset of X × Y when this space is
endowed with the product topology.
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Proof. Suppose {Wα}α∈A is an open cover of K × L. For each (x, y) ∈
K × L choose α(x, y) ∈ A such that (x, y) ∈ Wα(x,y), and choose open
neighborhoods U(x,y) and V(x,y) of x and y such that

U(x,y) × V(x,y) ⊂Wα(x,y).

For each y ∈ L, {U(x,y) : x ∈ K } is an open cover of K, so it has a
finite subcover, say {U(x,y) : x ∈ Fy } where Fy ⊂ K is finite. If we set
Vy :=

⋂

x∈Fy
V(x,y), then

K × {y} ⊂ K × Vy ⊂
⋃

x∈Fy

U(x,y) × V(x,y),

and the open cover {Vy : y ∈ L } of L has a finite subcover, say Vy1 , . . . , Vyℓ
.

Obviously {Wα(x,yi) : i = 1, . . . , ℓ, x ∈ Fyi } is a finite cover of K × L.

We have assembled all of the required tools. The proof below simply
recaps the relevant parts of the discussion to this point.

Theorem 3.43 (Heine-Borel). A set K ⊂ Rn is compact if and only if it
is closed and bounded.

Proof. We have already shown that K is closed and bounded if it is com-
pact. Suppose that K is closed and bounded. Then K is contained in some
rectangle [a1, b1]×· · ·× [an, bn]. Lemma 3.37 implies that each [ai, bi] is com-
pact, so [a1, b1] × · · · × [an, bn] is compact by Theorem 3.42, and Theorem
3.38 then implies that K is compact.

Up to this point our work has focused on passing from the abstract
definition of compactness to a concrete description of which subsets of Rn

are compact. But we still don’t have much insight into why compact sets
are useful. There are diverse reasons, some of which are matters of certain
types of objects existing.

Theorem 3.44. If x1, x2, . . . is a sequence in a compact metric space (X, d),
then there is a convergent subsequence xi1 , xi2 , . . ..

Proof. It cannot be the case that every y ∈ X is contained in an open set
Uy that contains xi for only finitely many i because there would be a finite
subcover Uy1 , . . . , Uyk

, from which we would arrive at the absurd conclusion
that xi ∈ X for only finitely many i. Therefore there is an x such that for
every ε > 0 the ball Uε(x) contains xi for infinitely many i. Choose i1 such
that xi1 ∈ U1(x), choose i2 > i1 such that xi2 ∈ U1/2(x), choose i3 > i2
such that xi3 ∈ U1/3(x), and so forth.
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The following special case of Theorem 3.44 is famous (and you should
know the name) presumably because it was discovered in the 19th century
before metric spaces had been invented.

Theorem 3.45 (Bolzano-Weierstrass). If B ⊂ Rn is bounded (so its closure
is compact) then every sequence in B has a convergent subsequence.

We have already introduced Cauchy sequences of real numbers, but this
is really a metric space concept: a sequence x1, x2, . . . in a metric space
(X, d) is a Cauchy sequence if, for every δ > 0, there is a natural number
N such that d(xm, xn) < δ for all m,n > N . The space (X, d) is complete

if each of its Cauchy sequences is convergent. Any limit of a subsequence of
a Cauchy sequence is a limit of the sequence itself, so Theorem 3.44 implies
that

Proposition 3.46. A compact metric space (X, d) is complete.

For an example of how this result is applied in practice, consider a con-
tinuous function f : K → R where K ⊂ Rn is compact. We will prove that
the image f(K) of f is bounded above. Aiming at a contradiction, con-
sider the alternative, which is that for each natural number n there is some
xn ∈ K with f(xn) > n. Then the sequence x1, x2, . . . has a subsequence
xi1, xi2 , . . . that converges to a point x ∈ K. For any ε > 0 there is δ > 0
such that

f(x) − ε < f(x′) < f(x) + ε

for all x′ ∈ Uδ(x), and this gives the desired contradiction because xij ∈
Uδ(x) and ij > f(x) + ε for sufficiently large j.

As it happens, another very useful property of compact sets gives an
approach to the boundedness of f that is superior, with greater generality
and simpler proofs.

Theorem 3.47. If X and Y are topological spaces, f : X → Y is continu-
ous, and K ⊂ X compact, then f(K) is compact.

Proof. Let {Vα}α∈A be an open cover of f(K). Then {f−1(Vα)}α∈A is an
open (by continuity) cover of K, so there are α1, . . . , αk such that

K ⊂ f−1(Vα1) ∪ . . . ∪ f−1(Vαk
) = f−1(Vα1 ∪ . . . ∪ Vαk

),

whence f(K) ⊂ Vα1 ∪ . . . ∪ Vαk
.
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Since the preimages f−1(V ) and f−1(D) of open sets V ⊂ Y and closed
sets D ⊂ Y are (by virtue of the definition of continuity) open and closed
respectively, this result is the reverse of what we might naively expect. Here
is some related terminology. An open mapping is a continuous function
f : X → Y such that f(U) is open whenever U ⊂ X is open, and a closed

mapping is a continuous function f : X → Y such that f(C) is closed
whenever C ⊂ X is closed. For reasons that are rooted neither in consistency
nor any particular logic I am aware of, if f : X → Y is continuous and f−1(L)
is compact whenever L ⊂ Y is compact, then f is said to be proper.

Because the case of Y = R in the last result is so important, we collect
what we have learned about it in the following result.

Theorem 3.48. If X is a compact topological space and f : X → R is
continuous, then f(X) is compact. In particular, f(X) is bounded, and
(provided X 6= ∅) there are points x, x ∈ X such that for all x ∈ X,

f(x) ≤ f(x) ≤ f(x).

Proof. Since f(X) is compact, it is bounded above, and if it is nonempty it
has a least upper bound t. In addition f(X) is closed, so it contains t, which
means that f(x) = t for some x ∈ X. A similar argument gives x.

There is some important related terminology and notation. If f : X → R

is a function, where X may be any sort of nonempty set, the supremum of
f , which is denoted by

sup
x∈X

f(x),

is the least upper bound of { f(x) : x ∈ X } if this set is bounded, or ∞ if it
is unbounded. The maximum of f , denoted by

max
x∈X

f(x),

is another term for the supremum of f , but it is used only in contexts in
which there is a guarantee that there is some x∗ ∈ X such that f(x∗) =
supx∈X f(x). That is, writing “M = maxx∈X f(x)” asserts both that M is
the supremum of f and that there is some x∗ ∈ X such that f(x∗) = M .
Less frequently you will see the symbol

argmax
x∈X

f(x) := {x∗ ∈ X : f(x∗) = max
x∈X

f(x) }

used to denote the set of maximizers of f ; except when there is an explicit
mention of the possibility that this set might be empty, generally there is
an implicit assertion that it is nonempty.
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Symmetrically, the infimum of f , denoted by infx∈X f(x), is the greatest
lower bound of the image of f if the image is bounded, and −∞ otherwise.
The minimum of f is the infimum in a context in which there is known to
be at least one x∗ ∈ X such that f(x∗) = infx∈X f(x), and argminx∈X f(x)
is the set of minimizers.

3.7 Sequences and Series of Functions

In one sense the rest of the chapter is devoted to the proof of the fundamen-
tal theorem of algebra, with the central portion of the argument explained
in the next section. But this work will involve several topics of considerable
interest—sequences and series of functions, the exponential and trigonomet-
ric functions, an important topological concept called connectedness—and
these are hardly less important. We now start down this road, studying
convergence of infinite series a0 +a1 +a2 + · · · of complex numbers, and the
senses in which a series of complex valued functions f0, f1, f2, . . . might con-
verge, aiming ultimately at an understanding of infinite series of functions
g0 + g1 + g2 + · · · .

Before anything else we need to impose a metric on C. The modulus

or absolute value of a complex number z = x+ iy is

|z| :=
√

x2 + y2.

That is, |z| is just the Euclidean norm ‖(x, y)‖2 of z under the identification
of C with R2, so there is an associated metric d(z,w) := |z −w|. Recalling
our discussion of the Cauchy-Schwartz inequality, we see immediately that
the triangle inequality

|w + z| ≤ |w| + |z|
holds for all w, z ∈ C, with strict inequality unless w = 0 or z = tw for
some nonnegative real number t. We endow C with the topology derived
from the metric d, and we endow Cn with the product topology, which is,
of course, the topology derived from the identification of Cn with R2n.

The complex conjugate of z is

z := x− iy.

Geometrically, complex conjugation amounts to reflection across the x axis.
Complex conjugation commutes with addition (that is, if w = u+ iv, then
w + z = w + z) obviously, and also with multiplication:

wz = (u+ iv)(x+ iy) = (ux− vy) + i(uy + vx)
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= (ux− vy) − i(uy + vx) = (u− iv)(x − iy) = w z.

Together with the fact that

|z| =
√

x2 + y2 =
√

(x+ iy)(x− iy) =
√
zz,

this gives a simple proof that taking the modulus commutes with multipli-
cation:

|wz| =
√
wzwz =

√
ww ·

√
zz = |w|·|z|.

For any natural number n and a0, . . . , an, z ∈ C the inequality above and
this equation give the inequality

|anzn + · · · + a1z + a0| ≤ |anzn| + · · · + |a1z| + |a0|

= |an| |z|n + · · · + |a1| |z| + |a0|,
which will be applied many times later on.

A series a0 + a1 + a2 + · · · of complex numbers is said to converge

absolutely if
|a0| + |a1| + |a2| + · · · <∞.

When this is the case the sequence of partial sums a1 + · · ·+ am is Cauchy:
if m < n then

∣

∣(a1 + · · · am) − (a1 + · · · + an)
∣

∣ ≤ |am+1| + |am+2| + · · · ,

and the right hand side goes to 0 as m→ ∞. The word ‘absolute’ is meant
to convey the idea that the limit does not depend on the order of summation.
To see what is meant by this suppose that φ : {0, 1, 2, . . .} → {0, 1, 2, . . .} is
a bijection; we claim that

lim
m→∞

a0 + · · · + am = lim
m→∞

aφ(0) + · · · + aφ(m).

Since φ is bijective, for any integer N , we have {0, . . . , N} ⊂ {φ(0), . . . , φ(m)}
when m is sufficiently large, in which case

{1, . . . ,m} \ {φ(0), . . . , φ(m)} and {φ(0), . . . , φ(m)} \ {1, . . . ,m}

are disjoint subsets of {N + 1, N + 2, . . .}, and

∣

∣(a0 + · · · + am) − (aφ(0) + · · · + aφ(m))
∣

∣ ≤ |aN+1| + |aN+2| + · · · .

Since the sequence of partial sums a0 + · · ·+am is Cauchy, so is the sequence
aφ(0) + · · · + aφ(m), and the two sequences have the same limit.
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If a0 + a1 + a2 + · · · and b0 + b1 + b2 + · · · are two absolutely convergent
series, then

∑

m

∑

n

|ambn| =
∑

m

∑

n

|am| |bn| =
(

∑

m

|am|
)(

∑

n

|bn|
)

<∞.

Therefore the double summation
∑

m

∑

n ambn is defined and (by virtue
of an argument like the one above) independent of the order of summation.
The following double summation formula obtained by reordering is often
useful:

(

∞
∑

m=0

am
)(

∞
∑

n=0

bn
)

=
∞
∑

k=0

k
∑

i=0

aibk−i.

We now discuss convergence of sequences of functions. Much of what we
have to say makes sense in a fairly general setting, so to start off with let X
and Y be topological spaces. The most obvious notion of convergence is:

Definition 3.49. A sequence of functions f1, f2, . . . from X to Y converges

pointwise to f : X → Y if, for each x ∈ X,

lim
ℓ→∞

fℓ(x) = f(x).

b

bbc

f1

f2
f3

· · ·

Figure 3.7

A simple example shows how a sequence of continuous functions can
have a discontinuous pointwise limit. For ℓ = 1, 2, . . . let fℓ : R → R be the
function

fℓ(t) :=











0, t ≤ 0,

ℓt, 0 ≤ t ≤ 1/ℓ,

1, 1/ℓ ≤ t.
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Then the sequence {fℓ} converges pointwise to the function

f(t) :=

{

0, t ≤ 0,

1, 0 < t.

Examples like this suggest that pointwise convergence is too permissive, and
in fact it is not a very useful concept.

One possible reaction to this example is that although there is conver-
gence at each point, the “true” distance between fℓ and f is always one. In
response we would like to develop a notion in which we can say that fℓ is
converging to f “simultaneously” at every point in X. There are ways to
do this in a purely topological setting, but they’re rather fancy. The basic
idea can be expressed very clearly if we assume that (Y, d) is a metric space,
which it will be in all our applications, so we will assume that this is the
case from now on.

Definition 3.50. A sequence of functions f1, f2, . . . from X to Y converges

uniformly to f : X → Y if, for each ε > 0, there is some L such that for
all ℓ > L,

sup
x∈X

d(fℓ(x), f(x)) < ε.

This convergence notion has an extremely pleasant and useful property.

Proposition 3.51. If {fℓ} converges uniformly to f and each fℓ is contin-
uous, then f is continuous.

Proof. Fix x0 ∈ X and ε > 0. Choose ℓ such that supx∈X d(fℓ(x), f(x)) <
ε/3. Since fℓ is continuous we can choose a neighborhood U of x0 such that
d(fℓ(x), fℓ(x0)) < ε/3 whenever x ∈ U . Then for x ∈ U we have

d(f(x), f(x0)) ≤ d(f(x), fℓ(x)) + d(fℓ(x), fℓ(x0)) + d(fℓ(x0), f(x0)) < ε.

The problem with uniform convergence is that it is too restrictive: if
fℓ : C → C is the function fℓ(z) := 1 + z + 1

2z
2 + · · · + 1

ℓ!z
ℓ, then {fℓ}

does not converge uniformly to the exponential function (which is defined,
in terms of this sequence, and analyzed in Section 3.9) because, for any
ℓ, fℓ(z) and exp(z) are far apart when |z| is large. As we mentioned in
Section 3.2, continuity is a local concept (Proposition 3.21) in the sense
that a function is continuous if it is continuous on a neighborhood of each
point in the domain. A concept of convergence that only requires uniform
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convergence on some neighborhood of each point will still have the property
that the limit of a sequence of continuous functions is continuous. The
definition that is popular with analysts is superficially a bit different, but
works out to the same thing in practice, as we explain below.

Definition 3.52. A sequence of functions f1, f2, . . . from X to Y converges

to f : X → Y uniformly on compacta if, for each compact D ⊂ X,
{fℓ|D} converges uniformly to f |D.

Uniform convergence on compacta is, for our purposes, a “Goldilocks” con-
cept, neither too weak nor too demanding.

Proposition 3.53. If f and f1, f2, . . . are Y -valued functions on X and
each x ∈ X has a neighborhood U such that {fℓ|U} converges uniformly to
f |U , then {fℓ} converges uniformly on compacta to f .

Proof. Suppose that D is compact. The open sets on which {fℓ} converges
uniformly to f are an open cover ofD, so there is a finite subcover U1, . . . , Us.
For any ε > 0 we have

sup
x∈D

d(fℓ(x), f(x)) ≤ sup
x∈U1∪...∪Us

d(fℓ(x), f(x)) < ε

when ℓ is large enough that supx∈Uj
d(fℓ(x), f(x)) < ε for each j.

Thus uniform convergence on a neighborhood of each point implies uni-
form convergence on compacta. What about the converse? A topological
space is locally compact if each neighborhood of each point in the space
contains a compact neighborhood, and of course if X is locally compact,
and {fℓ} converges to f uniformly on compacta, then {fℓ} converges to f
uniformly on some neighborhood of each point in X. The spaces that are
the center of attention in this book—most notably Rn and Cn— are all
locally compact.

Having talked about convergence of series of numbers and sequences of
functions, we can now discuss the series of functions of greatest interest. A
power series centered at a ∈ C is an infinite sum of the form

∞
∑

n=0

cn(z − a)n

where a and the coefficients c0, c1, c2, . . . are given complex numbers. In
a rough sense it is clear that the asymptotic behavior of the sequence



132 CHAPTER 3. LIMITS AND CONTINUITY

|c0|, |c1|, |c2|, . . . determines whether or not this series converges absolutely
at any particular z.

The precise quantitative expression of this intuition uses a pair of techni-
cal tools that are designed to handle situations in which a sequence s1, s2, s3, . . .
of real numbers may not converge, but certain information about its asymp-
totic behavior is still important. The limit inferior of {sn}, denoted by

lim inf
n→∞

sn,

is the least upper bound of the set of numbers ℓ such that ℓ < sn for
all but finitely many n, if the set of such ℓ is nonempty and bounded
above. Otherwise there are two possibilities: (a) no such ℓ exists, in which
case lim infn→∞ sn := −∞; (b) the sequence diverges to ∞, in which case
lim infn→∞ sn := ∞. Similarly, the limit superior of {sn}, denoted by

lim sup
n→∞

sn,

is −∞ if the sequence diverges to −∞ and ∞ if there is a subsequence
diverging to ∞, and otherwise it is the greatest lower bound of the set of
numbers u such that sn < u for all but finitely many n. For example the
limits inferior of the sequences

1
2 ,

2
3 ,

1
4 ,

4
5 ,

1
6 ,

6
7 ,

1
8 ,

8
9 , . . . and − 1

2 ,
4
3 ,−1

4 ,
6
5 ,−1

6 ,
8
7 ,−1

8 ,
10
9 , . . .

are both 0, and their limits superior are both 1.
The radius of convergence of the series

∑∞
n=0 cn(z − a)n is

R := lim inf
n→∞

1
n
√

|cn|
.

This terminology is justified by the following result and Lemma 3.56 below.

Lemma 3.54. If 0 < r < R, then for all sufficiently large N it is the case
that

∞
∑

n=N

|cn(z − a)n| ≤ (r/R)N/2

1 − (r/R)1/2

for all z such that |z − a| ≤ r.

Proof. Of course
√
rR < R, so

√
rR < |cn|−1/n and |cn| < (rR)−n/2 for all

but finitely many n, and for all n ≥ N if N is large, in which case

|cn(z − a)n| = |cn| |z − a|n ≤ |cn|rn < (r/R)n/2.

The claim follows from the formula tN + tN+1 + tN+2 + · · · = tN/(1− t) for
the sum of a convergent geometric series.
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Thus the power series converges absolutely at each point in the open
disk of radius R centered at a. A compact subset of this disk contains a
point of maximum distance from a (Theorem 3.48) so it is contained in the
closed ball of radius r centered at a for some r < R, and on this ball the
convergence is uniform. We have shown that:

Proposition 3.55. If R := lim infn→∞ 1/ n
√

|cn| is the radius of convergence
of the power series

∑∞
n=0 cn(z − a)n, then the series converges absolutely at

each point of the disk

D := { z ∈ C : |z − a| < R }.

The convergence is uniform on compacta, so (Proposition 3.51) the function
defined by the power series is continuous.

In Chapter 7 we will see that there may be sensible ways to extend the
function defined by the power series to points outside of D, but this cannot
be done by simply evaluating the infinite sums given by the series.

Lemma 3.56. If r := |z − a| > R, then
∑∞

n=0 cn(z − a)n does not converge
absolutely.

Proof. There are infinitely many n such that 1/ n
√

|cn| <
√
rR and thus

|cn(z − a)n| > (r/R)n/2, so that
∑

n |cn(z − a)n| = ∞.

A function f : U → C, where U ⊂ C is open, is said to be holomor-

phic, or complex analytic, if, for each a ∈ U , there is a power series
centered at a that has a positive radius of convergence and that agrees with
f on a neighborhood of a. An entire function is a holomorphic function
f : C → C. Holomorphic functions are extremely well behaved, with many
interesting properties, and they are important to many subfields of mathe-
matics. (The theory of holomorphic functions was developed in large part
by Bernhard Riemann (1826-1866) whose work we’ll feature in Chapters 8
and 9.) A basic issue in this theory is whether the function defined by the
power series

∑∞
n=0 cn(z− a)n is holomorphic. That is, is it the case that for

any b ∈ D there is a power series
∑∞

n=0 c
′
n(z− b)n that has a positive radius

of convergence and agrees with the function defined by
∑∞

n=0 cn(z − a)n on
a neighborhood of b? The answer is affirmative (this is Theorem 7.11) but
it makes sense to defer the proof until Section 7.4 where we treat it in the
context of related issues. However, there is a special case that we will need
in the next section:

Lemma 3.57. A polynomial function z 7→ anz
n + · · · + a1z + a0 is entire.
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Proof. Fix a ∈ C. We claim that there are complex numbers c0, c1, . . . , cn
such that

p(z) = c0 + c1(z − a) + c2(z − a)2 + · · · + cn(z − a)n.

When n = 0 we can simply set c0 := a0, so, by induction, we may assume
that the claim has already been established with n − 1 in place of n. In
particular, if q(z) := p(z) − an(z − a)n, then

q(z) = c0 + c1(z − a) + · · · + cn−1(z − a)n−1

for some c0, c1, . . . , cn−1, and we can set cn := an.

There is a property of holomorphic functions called the maximum

modulus principle that plays a role in many of the proofs in complex
analysis, and which is at the heart of our proof of the fundamental theorem
of algebra in the next section. Suppose f : D → C is defined by the power
series

∑∞
n=0 cn(z−a)n. One possibility is that cn = 0 for all n ≥ 1, in which

case f is a constant function. Otherwise we can write

f(z) = c0 + ck(z − a)k + ck+1(z − a)k+1 + · · ·

where ck 6= 0. The key insight is that if |z−a| is very small, but z 6= a, then
|ck(z−a)k| will be much larger than

∣

∣

∑∞
j=k+1 cj(z−a)j

∣

∣, so f(z) will be well

approximated by c0+ck(z−a)k. By choosing z appropriately we can arrange
for it to be the case that |f(a)| < |f(z)| because |c0 + ck(z − a)k| > |c0|.
In addition, if c0 6= 0 we can use the same method to find z near a with
|f(z)| < |f(a)|.

The proof of this depends on the following fact:

Proposition 3.58. For any c ∈ C and any integer k ≥ 1 there is w ∈ C

such that wk = c.

Although this is fairly simple, at least if you have some acquaintance with
basic properties of the complex numbers, our proof of it, in the last two
sections of this chapter, will be a drawn out affair. Instead of lunging at
the quickest possible proof, we will use the task as a springboard for an
exposition of several interesting concepts.

Theorem 3.59 (Maximum Modulus Principle). Let f : U → C be holo-
morphic, where U ⊂ C is open, and let a be an element of U . If f is not
constant on any neighborhood of a, then |f(a)| < supz∈U |f(z)|. If f(a) 6= 0,
then |f(a)| > infz∈U |f(z)|.
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Proof. Since f is holomorphic there is a power series
∑∞

k=0 ck(z − a)k that
agrees with f in some neighborhood of a. There must be some k ≥ 1 with
ck 6= 0 because f is not constant near a, so this series has the form

c0 + ck(z − a)k + ck+1(z − a)k+1 + · · ·

where ck 6= 0. Let r > 0 be a number less than the radius of convergence
such that f agrees with this series on the closed ball of radius r centered at
a. The definition of the radius of convergence implies that |cn| < r−n for all
but finitely many n, so we can choose A > 0 large enough that |cn| < Ar−n

for all n.
If c0 = 0 and 0 < t < r, then

|f(a+ t)| =
∣

∣

∞
∑

n=k

ckt
k
∣

∣ ≥ |ck|tk −
∞
∑

n=k+1

(Ar−n)tn = |ck|tk −
A(t/r)k+1

1 − t/r
,

and the final quantity is positive when t is sufficiently small. For the re-
mainder of the proof we assume that f(a) = c0 6= 0.

The last result gives a w ∈ C with wk = c0/ck. If t > 0 is small enough
that |tw| < r, then c0 + ck(tw)k = c0(1 + tk) and

∣

∣f(a+ tw)
∣

∣ =
∣

∣c0 + ck(tw)k +

∞
∑

n=k+1

cn(tw)n
∣

∣ ≥ |c0|(1 + tk)−
∞
∑

n=k+1

|cn| |tw|n

≥ |c0|(1 + tk) −A

∞
∑

n=k+1

(|tw|/r)n = |c0|(1 + tk) −A
(|tw|/r)k+1

1 − |tw|/r ,

and the final expression is greater than |f(a)| = |c0| when t > 0 is sufficiently
small.

The last result also gives w ∈ C with wk = −c0/ck, and a similar
calculation shows that if |tw| < r and 0 < t < 1, then

∣

∣f(a+ tw)
∣

∣ ≤ |c0|(1 − tk) +A
(|tw|/r)k+1

1 − |tw|/r ,

which is less than |f(a)| = |c0| when c0 6= 0 and t > 0 is sufficiently small.

To explain how the maximum modulus principle is often understood
we now introduce some more (quite important!) terminology from general
topology. If X is a topological space and A is a subset of X, the interior

of A is the union of all the open subsets of X that are contained in A. This
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union is itself open, so, in a well defined sense, the interior of A is the largest
open set contained in A. A point is in the interior of A if and only if it is not
an accumulation point of X \ A, so, if you feel like being a bit convoluted,
you can say that the interior of A is the complement of the closure of the
complement of A. The boundary of A is the set of points in the closure of
A that are not in the interior of A. It is the intersection of the closure of A
and the closure of the complement of A. Equivalently, it is the complement
of the union of the interiors of A and A’s complement3.

Now suppose that U ⊂ C is open, f : U → C is holomorphic, and
K ⊂ U is compact and nonempty. Let

∣

∣f |K
∣

∣ : K → [0,∞) be the function
z 7→ |f(z)|. One common way of thinking about the maximum modulus
principle is that

∣

∣f |K
∣

∣ attains its maximum, and any maximizer is either an
element of the boundary of K or has a neighborhood on which f is constant.
Expressed in this fashion, the maximum modulus principle seems rather
remarkable. In some sense I suppose this is true, but the sense of surprise is
largely derived from compactness: the basic facts about maximization of a
continuous real valued function on a compact set (Theorem 3.48) guarantee
that the maximum is achieved somewhere, and the result above implies that
it can’t be attained at a point in the interior of K unless f is constant near
that point.

3.8 The Fundamental Theorem of Algebra

A field k is algebraically complete if every polynomial

p = anX
n + · · · + a1X + a0 ∈ k[X]

that is not constant (because n > 0 and an 6= 0) has a root in k. The
fundamental theorem of algebra asserts that the field C of complex numbers
is algebraically complete. This result, more than any other, is what makes
C the central object of mathematics, both in quantitative analysis and from
the point of view of number theory.

To get a better understanding of algebraic completeness observe that for
any r ∈ k one can use division with remainder to obtain q ∈ k[X] and c ∈ k
such that

p = (X − r)q + c.

3A standard exercise in real analysis, which you might enjoy, is to find all the (pos-
sibly) distinct sets that can be obtained from A using closure, complementation, union,
intersection, and set difference.
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If r is a root of p, then necessarily c = 0, and if k is algebraically complete
then q must also have a root if it is not constant. Continuing in this fashion,
one finds that algebraic completeness implies that p can be written as a
product

p = an(X − r1) · · · (X − rn)

of linear factors where r1, . . . , rn are all the roots of p. Thus k is algebraically
complete if and only if each polynomial with coefficients in k is a product
of linear elements of k[X].

The fundamental theorem of algebra gave the mathematicians of the 18th

century a great deal of trouble. Incomplete proofs were published by Jean
le Rond d’Alembert (1717-1783), Daviet de Foncenex (1734-1798), Euler,
Joseph Louis Lagrange (1736-1813), Pierre-Simon Laplace (1749-1827), and
Gauss. The first fully complete proof was published by Jean-Robert Argand
(1768-1822) in 1806. (A key breakthrough in Argand’s work was his repre-
sentation of C as a two dimensional plane4, and the geometric properties of
the modulus describe in the last section.) Given such a star-studded cast,
one might expect the proof below to be lengthy, with subtle details, but in
fact it is straightforward and easily understood.

To some extent the difficulties experienced by our forebears might be
due to the lack of clear definitions and solid foundations. Specifically, the
construction of C has two steps, the first being to append a square root
i of −1 to Q, while the second is the passage from Q[i] to C which we
now understand as the topological operation of completion, i.e., appending
limits of all Cauchy sequences. (The application of this procedure to a
general metric space will be explained in Section 6.1.) Completion was not
well understood at the time, so one might imagine that this was the source
of the difficulty. However, our proof really uses completeness only insofar as
it ultimately depends on the following simple fact.

Lemma 3.60. For any r ≥ 0 and any integer n > 0 there is a unique
number s ≥ 0 (which will be denoted by n

√
r, of course) such that sn = r.

Proof. The function t 7→ tn is continuous, with 0n = 0 and tn → ∞ as
t→ ∞. The intermediate value function implies that a suitable s exists, and
there can be only one such s because the function is strictly increasing.

Even though the understanding of continuity in the 18th century was (at
least from our perspective) imperfect, the intermediate value theorem was
known, and this consequence of it was certainly uncontroversial.

4What is now known as the Argand plane was actually first described by Caspar
Wessel (1745-1818) in a 1799 paper that was unnoticed at the time.
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Proposition 3.58 (that is, the special case of the fundamental theorem of
algebra for the equationXk = c) is another key ingredient in our proof. We’ll
prove it in the next two sections using the special case above, properties of
the exponential and trigonometric functions, and topological reasoning. Al-
though the argument won’t be terribly complicated, some of the ingredients
are modern, which might suggest that incomplete understanding of the roots
of the equation Xn = c was the critical stumbling block for mathematicians
prior to Argand, but Euler certainly knew that this equation had solutions
in C.

Not being an historian of mathematics, I am hesitant to venture a guess
about the critical impediment. Euler, Laplace, Lagrange, and Gauss were,
shall we say, not exactly stupid people, and they thought about complex
numbers a lot, so each of them presumably had a bag of tricks for dealing
with them. The facts about the Argand plane given in the last section are
now pretty much the first things people learn about C, so it’s hard for us
to imagine how complex numbers were understood before these facts were
known.

What we can say with confidence is that the mathematicians of the
18th century did not know about the application of compactness via the
minimization maneuver in the proof below, which is familiar to any modern
mathematician.

Theorem 3.61 (Fundamental Theorem of Algebra). C is algebraically com-
plete.

We separate out one step of the argument because it is computationally
intensive. The intuition is simple—as |z| becomes large, the leading term of
p dominates the sum of all the other terms—and if you think the main idea
is clear you can skim, or just skip, the details.

Lemma 3.62. If p = anX
n + · · · + a1X + a0 ∈ C[X] is a nonconstant

polynomial, then for any M > 0 there is R > 0 such that |p(z)| ≥ M
whenever |z| ≥ R.

Proof. When z 6= 0 the basic facts about the modulus and the triangle
inequality allow us to compute that

|p(z)| ≥ |anzn| − |an−1z
n−1 + · · · + a1z + a0|

≥ |an| |z|n −
(

|an−1| |z|n−1 + · · · + |a0|
)

= |z|n
(

|an| −
( |an−1|

|z| + · · · + |a0|
|z|n

))

.
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If R is large enough, then

|an−1|
R

+ · · · + |a0|
Rn

≤ 1
2 |an|,

so that when |z| ≥ R ≥ n
√

2M/|an| we have

|p(z)| ≥ Rn
(

|an| −
( |an−1|

R
+ · · · + |a0|

Rn

))

≥ 1
2R

n|an| ≥M.

Proof of the Fundmental Theorem of Algebra. Let

p = anX
n + · · · + a1X + a0 ∈ C[X]

be a nonconstant polynomial. Regarded as a function on C, p is entire
(Lemma 3.57) and consequently continuous (Proposition 3.55). The function
z 7→ |z| is continuous (due to the triangle inequality for the modulus) so the
function z 7→ |p(z)| is continuous. For any R > 0 the disk

BR(0) := { z ∈ C : |z| ≤ R }

is closed and bounded, hence compact, so Theorem 3.48 implies that there
is z0 ∈ BR(0) such that |p(z0)| ≤ |p(z)| for all z ∈ BR(0). If p has no roots,
then the maximum modulus principle (Theorem 3.59) implies that there are
two possibilities. The first is that p is constant on some neighborhood of z0,
which is impossible because it would imply that p is a constant polynomial,
contrary to hypothesis. (In somewhat pedantic detail, the equation p(z) =
p(z0) has a most n solutions, and any neighborhood of z0 contains infinitely
many points.) The second possibility is that z0 is in the boundary of BR(0),
but the last result implies that if R > 0 large enough, then |p(z)| > |a0|
whenever |z| ≥ R, so that we have the contradictory inequality |p(z0)| >
|a0| = |p(0)| ≥ |p(z0)|. This contradiction completes the proof.

3.9 The Exponential and Trigonometric Functions

Our proof of the fundamental theorem of algebra has one remaining loose
end, namely Proposition 3.58. This will be proved in Section 3.10 by com-
bining an important topological concept with the basic properties of the
exponential and trigonometric functions

exp(z) := ez :=
∞
∑

n=0

zn

n!
, cos z :=

∞
∑

n=0

(−1)nz2n

(2n)!
, sin z :=

∞
∑

n=0

(−1)nz2n+1

(2n + 1)!
,
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which are developed in this section. The analysis has a quite different charac-
ter from most of the material in this book, with many “heavy” computations
which for some people (e.g., yours truly) makes for slower and more tedious
reading. On the other hand, the theory developed here is, of course, beau-
tiful and extremely important mathematics, so I think it’s worth an extra
effort.

To begin with observe that 1/ n
√

1/n! = n
√
n! → ∞5, so the series defin-

ing the exponential and trigonometric functions have infinite radii of conver-
gence and are consequently everywhere absolutely convergent, and uniformly
convergent on compacta. Consequently we can perform algebraic manipu-
lations without worrying about divergence or the possibility that the order
of summation might matter. For example, the binomial theorem and the
double summation formula give

exp(w + z) =

∞
∑

k=0

(w + z)k

k!
=

∞
∑

k=0

1

k!

k
∑

i=0

(

k

i

)

wizk−i

=

∞
∑

k=0

k
∑

i=0

1

i!
wi

1

(k − i)!
zk−i

=
(

∞
∑

m=0

wm

m!

)(

∞
∑

n=0

zn

n!

)

= exp(w) exp(z).

Euler’s famous equation is a matter of splitting the relevant sum into two
parts:

exp(iy) =
∞
∑

n=0

inyn

n!
=

∞
∑

m=0

( i2my2m

(2m)!
+
i2m+1y2m+1

(2m+ 1)!

)

=

∞
∑

m=0

(−1)my2m

(2m)!
+ i

∞
∑

m=0

(−1)my2m+1

(2m+ 1)!
= cos y + i sin y.

Together the last two equations give

cos(φ+ θ) + i sin(φ+ θ) = exp(i(φ+ θ)) = exp(iφ) exp(iθ)

= (cosφ+ i sinφ)(cos θ + i sin θ),

from which we obtain the angle addition formulas:

cos(φ+ θ) = cosφ cos θ − sinφ sin θ, sin(φ+ θ) = cosφ sin θ + sinφ cos θ.

The following famous formula has a bulkier verification.

5When n is even we have n
√

n! > n
p

(n/2 + 1) · · ·n > n
p

(n/2)n/2 =
p

n/2, and it is
obvious that similar, messier, inequalities pertain when n is odd.
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Proposition 3.63. For all z ∈ C, cos2 z + sin2 z = 1.

Proof. Using the double summation formula, we compute that

cos2 z =

(

∞
∑

m=0

(−1)mz2m

(2m)!

)(

∞
∑

n=0

(−1)nz2n

(2n)!

)

=
∞
∑

k=0

k
∑

i=0

(−1)iz2i

(2i)!
· (−1)k−iz2(k−i)

(2k − 2i)!

= 1 +

∞
∑

k=1

(

(−1)k
k
∑

i=0

1

(2i)!
· 1

(2k − 2i)!

)

z2k

= 1 +

∞
∑

k=1

((−1)k

(2k)!

k
∑

i=0

(

2k

2i

)

)

z2k

and

sin2 z =

(

∞
∑

m=0

(−1)mz2m+1

(2m+ 1)!

)(

∞
∑

n=0

(−1)nz2n+1

(2n+ 1)!

)

=

∞
∑

k=0

k
∑

i=0

(−1)iz2i+1

(2i+ 1)!
· (−1)k−iz2(k−i)+1

(2k − 2i+ 1)!

=

∞
∑

k=0

(

(−1)k
k
∑

i=0

1

(2i+ 1)!
· 1

(2k − 2i+ 1)!

)

z2(k+1)

=
∞
∑

k=0

( (−1)k

(2k + 2)!

k
∑

i=0

(

2k + 2

2i+ 1

)

)

z2(k+1)

= −
∞
∑

k=1

((−1)k

(2k)!

k−1
∑

i=0

(

2k

2i+ 1

)

)

z2k.

We now apply the binomial theorem to compute that, for each k ≥ 1,

k
∑

i=0

(

2k

2i

)

−
k−1
∑

i=0

(

2k

2i+ 1

)

=

2k
∑

ℓ=0

(−1)ℓ
(

2k

ℓ

)

= (1 + (−1))2k = 0.

3.10 Connectedness

Let’s take stock, bearing in mind the goal of proving Proposition 3.58. The
main idea is to show that any c ∈ C is r exp(iθ) for some r ≥ 0 and θ ∈ R,
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after which Lemma 3.60 gives a kth root of r, and k
√
r exp(iθ/k) is a kth root

of c, which is what Proposition 3.58 asks us to produce. Let

C = { z ∈ C : |z| = 1 }

be the unit circle in C. The map z 7→ (|z|, z/|z|) from C∗ to (0,∞)×C has
the inverse (r, c) 7→ rc, so any point in C is rc for some r ≥ 0 and c ∈ C.
Therefore Proposition 3.58 will follow if we can show that every c ∈ C is
exp(iθ) for some θ ∈ R.

The equation |wz| = |w| |z| implies that products and inverses of ele-
ments of C are contained in C, and of course 1 ∈ C, so C is a subgroup of
C∗. Because the coefficients in the power series defining the exponential and
trigonometric functions are all real, these functions map R into R. There-
fore the equations exp(iθ) = cos θ+ i sin θ and cos2 θ+sin2 θ = 1 imply that
the function θ 7→ exp(iθ) maps R into C. The equation

exp(i(θ + φ)) = exp(iθ) exp(iφ)

states that this function is actually a homomorphism from R (thought of as
a group with addition as the group operation) to C, and the image of any
homomorphism is a subgroup of the range. We would like to use these facts
to show that the image is all of C, but C has many subgroups, e.g. {1,−1}
or {1, ω, ω2} where ω = 1

2(−1+ i
√

3) is a cube root of 1, so in itself this isn’t
quite enough to give us what we want.

This sort of situation comes up fairly frequently in the analysis of foun-
dational questions. We “know” something is true, but it still needs to be
proved. It seems like it ought to be easy, but somehow it isn’t, and it’s a bit
confusing to think about because it’s hard to keep track of what we can and
can’t use in a proof. For the question at hand various types of “brute force”
arguments might work, but that would feel like an admission of defeat.

It turns out that there is another important idea from topology that can
be applied. A subset A of a topological space X is disconnected if there are
open sets U1, U2 ⊂ X with U1∩U2 = ∅, A ⊂ U1∪U2, and U1∩A 6= ∅ 6= U2∩A.
That is, A decomposes into two nonempty pieces that are, in a certain sense,
topologically separated from each other. We say that A is connected if it
is not disconnected. Connectedness means pretty much what you might
expect, based on the ordinary usage of the work ‘connected,’ to the point
where a figure would be superfluous: a circle is a connected (as we’ll prove
below) subset of R2 but a subset consisting of two nonintersecting circles is
not.
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It’s probably not immediately evident how one might use this definition
to prove that a space is connected, but after you’ve seen a couple arguments
the typical pattern—assume that it’s not connected and derive consequences
until a contradiction emerges—becomes clear. In contrast, the following
proof is a bit less indirect.

Proposition 3.64. If {Yα}α∈A is a collection of connected subsets of X
with

⋂

α∈A Yα 6= ∅, then Y :=
⋃

α∈A Yα is connected.

Proof. Suppose that U1 and U2 are disjoint open subsets of X with Y ⊂
U1 ∪ U2. Fixing a point x ∈ ⋂α∈A Yα, suppose that x ∈ U1. For each α we
have Yα ⊂ Y ⊂ U1 ∪ U2 and x ∈ Yα ∩ U1, so Yα ∩ U2 = ∅ because Yα is
connected. Therefore Y ∩ U2 = ∅.

For each x ∈ X the union of all connected subsets of X containing x
is the connected component of X containing x. The last result implies
that it is connected, so it is the largest connected set containing x. The
connected components cover X, and the intersection of any two of them is
empty, so they constitute a partition of X.

Intervals in R are the prototypical connected sets. Although the concept
of a (possibly open, closed, half open, bounded, or unbounded) interval
is presumably well understood, for the following proof we need a formal
definition. We’ll say that A ⊂ R is an interval if [r, t] ⊂ A whenever
r, t ∈ A and r ≤ t.

Lemma 3.65. Let A be a subset of R. Then A is connected if and only if
it is an interval.

Proof. If A is not an interval there are numbers r < s < t with r, t ∈ A
and s /∈ A. Setting U1 := (−∞, s) and U2 := (s,∞) shows that A is
disconnected.

Now let A be an interval. Aiming at a contradiction, suppose A is
disconnected: there are open sets U1, U2 with U1 ∩ U2 = ∅, A ⊂ U1 ∪ U2,
and U1 ∩ A 6= ∅ 6= U2 ∩ A. Choose r ∈ U1 ∩ A and t ∈ U2 ∩ A. We can
interchange U1 and U2, so we may assume that r < t. Then U1 ∩ [r, t] is
nonempty and bounded above; let s be its least upper bound. Of course
s ∈ A because A is an interval, and s /∈ U2 because U2 is open and there
are elements of U1 arbitrarily close to s, so s ∈ U1 and s < t. But since U1

is open, [s, s + δ] ⊂ U1 ∩ A for sufficiently small δ > 0, contradicting the
definition of s.

The next result is one of the most common vehicles for deriving useful
consequences of connectedness.
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Proposition 3.66. If X and Y are topological spaces, X is connected, and
f : X → Y is continuous, then the image of f is connected.

Proof. Suppose the assertion is false: then there exist open sets V1, V2 ⊂ Y
with V1 ∩ V2 = ∅, f(X) ⊂ V1 ∪ V2, and V1 ∩ f(X) 6= ∅ 6= V2 ∩ f(X). For
i = 1, 2 let Ui := f−1(Vi). Then U1 and U2 are open because f is continuous,
U1 ∩U2 = ∅ because V1 and V2 are disjoint, X = U1 ∪U2, and U1 6= ∅ 6= U2,
contrary to the assumption that X is connected.

We have shown that R is connected, and (by Proposition 3.55) the ex-
ponential function is continuous, so the last result implies that the image of
θ 7→ eiθ is connected. Using the power series for cos θ and sin θ (as in the
proof of the maximum modulus principle) one can easily show that eiθ 6= 1
when θ 6= 0 and |θ| is very small, so the image of θ 7→ eiθ is a connected
subgroup of C that is different from {1}. The following result implies that it
is C (so we have shown that C is connected!) thereby completing the proofs
of Proposition 3.58 and the fundamental theorem of algebra.

Proposition 3.67. If G is a connected proper subgroup of C, then G = {1}.

Proof. Let z = x + iy be an element of C that is not in G. Then z−1 /∈ G
because G contains the inverse of each of its elements, and z−1 = z because
C = {w ∈ C : ww = 1 }. Let U1 be the set of elements of C with real part
less than x, and let U2 be the set of elements of C with real part greater
than x. Clearly U1 and U2 are open and disjoint, and G ⊂ U1 ∪ U2 because
z and z are the only elements of C with real part x. Since 1 ∈ U2 and
G is connected, U1 ∩ G must be empty, and in particular −1 = eiπ /∈ G.
Since G is a subgroup, −1 can’t have an nth root in G for any n. Repeating
our argument with eiπ/n in place of z shows that the real part of every
element of G is greater than cos π/n for every n. Since (by Proposition
3.55) the cosine function is continuous, 1 is the only element of C satisfying
this condition.



Chapter 4

Linear Algebra

For the system of equations

3x+ 4y + 5z = 7,

4x+ 2y + 3z = 6,

2x+ 3y + 2z = 4,

determine whether there are no solutions, a unique solution, or
infinitely many solutions. If there is a unique solution, find it.

If you’ve had a linear algebra course it’s quite likely that you think of the
subject as all about problems like this. Pretty boring, no?

Linear systems of equations arise in pretty much every part of mathe-
matics, and systematic ways of dealing with them can be seen in Chinese
texts from 2000 years ago. At the same time the approach taken here is dis-
tinctly modern, with concepts that didn’t exist two hundred years ago. It
emphasizes generality and axiomatics, placing the actual process of finding
a solution in the background. But to a certain extent it isn’t new mathe-
matics, just a new way of talking about ideas that have been understood for
a long time.

And this chapter actually is a bit boring. In studying mathematics, and
especially the sorts of fundamental topics described in this book, it is easy to
get the feeling that the effort is entirely a matter of building infrastructure
in preparation for the “real” mathematics that will come later. (Later one
learns that the mathematics that is the most interesting, conceptually, and
in relation to other subfields, is to a large extent precisely the material that
eventually becomes part of the subject’s infrastructure.) For some topics
the infrastructure involves results that are themselves significant theorems,
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but we won’t see anything like that here. Mostly it will be nuts-and-bolts
definitions, with a few simple results describing basic facts. In an attempt
to endow it with it with some independent interest we will emphasize two
themes: a) coordinate-free notation; b) classification. In the remainder of
the introduction we’ll say a little about the first of these.

At the elementary level people are usually taught to think of vectors as
tuples of numbers like (1.5, 3.2, 4.7), and we’re taught certain operations on
these tuples that amount to recombining the components to get new tuples
of numbers, or just a number, or perhaps an answer to some geometric
question. The idea of representing points in the plane by pairs of numbers,
or points in space with triples of numbers, is due to René Descartes (1596-
1650), and is arguably the most important advance in our understanding of
geometry since Euclid.

But when we apply Descartes’ idea, the coordinate system is something
we impose on the world, and for most purposes there are many different
coordinate systems that are equally valid. More to the point, it’s not how
we actually think about things. If, for example, you imagine throwing a
ball into the air, your brain is perfectly capable of creating a vivid and
accurate picture of what will happen without ever (consciously at least)
manipulating triples of numbers. Somehow you brain thinks about these
things in a manner that seems more direct, and considerably more effective.

The general idea of coordinate-free notation is to create languages that
express in some direct way the key operations of mathematical structures, or
physical theories, without referring to the underlying bundles of numbers.
We then study the formal properties of the language, thereby testing its
adequacy as a representation of the phenomenon of interest and, in the
event that it works well, developing useful concepts and theorems within
this framework.

This turns out to be an extraordinarily powerful and fruitful idea. Per-
haps this seems counterintuitive, since after all any one coordinate system is
adequate, and the ability to shift to another one, or to combine the numbers
in bundles that can be dealt with in more abstract ways, is a convenience
that doesn’t change the underlying reality. A computational analogy might
help here. In principle everything a computer does is a matter of manipu-
lating bits, and any piece of software can be written in a language consisting
of a few elementary procedures for computing a new bit from one or two
given bits. But as a practical matter the power of computers is amplified
across many orders of magnitude by high level programming languages that
allow people to talk to computers in terms that people understand, in terms
of abstractions.
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The development of abstract linear algebra is one of the more curious
chapters in the history of mathematics. Hermann Grassman (1809-1877)
did not excel in his studies when he was young to the same extent as other
mathematicians whose work we have described, and he taught in secondary
schools for much of his career and never obtained a university professorship.
His masterpiece, Die Lineale Ausdehnungslehre ein neuer Zweig der Mathe-
matik, describes the basic concepts of linear algebra along very modern lines
similar to the presentation below. First published in 1845, it received very
little recognition, and in 1862 Grassmann published a thoroughly rewritten
version, but again it was almost completely ignored during his life. In later
years he turned to historical linguistics, and received considerable recog-
nition for work in that field that is still remembered. Eventually other
mathematicians discovered and were influenced by his work, both in linear
algebra and in the foundations of arithmetic.

The human mind tends to resist abstractions in the absence of a com-
pelling case for their utility; it is easy to define a new abstraction, but
difficult to know in advance which of the many possible definitions will be
effective tools. August Möbius (1790-1868) (about whom we’ll hear more
later) encouraged Grassmann, but is also on record criticizing him for intro-
ducing abstract notions without giving the reader any intuition as to why
they were valuable. It did not help that Grassmann had a rather indirect
and florid prose style. In modern research a common test of a new concept
is to ask whether it helps to solve a single concrete problem, and perhaps
this was Grassmann’s greatest failing as a salesman of his work. Although
his concepts eventually proved enormously fruitful, it is probably correct
to say that this was more because they constituted a powerful language
and pointed in the direction of new classes of problems, and entirely new
perspectives, than because they resolved existing conundrums.

4.1 Vector Spaces

Addition of points v,w ∈ Rn, and multiplication of a point v ∈ Rn by a
number α ∈ R, are defined by the formulas

v + w = (v1 + w1, . . . , vn + wn) and αv = (αv1, . . . , αvn).

The general plan of our work is to define an abstract concept based on the
most obvious properties of these operations, then study the relation between
the abstract notion and the concrete phenomenon it models. Whereas the
notion of a topological space turned out to be much more general than the
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examples that motivated it, here the opposite will be the case: there will
be an exact correspondence between vector spaces and examples like Rn,
except that a vector space may not be finite dimensional.

Fix a field k. We are primarily interested in the cases k = R and
k = C, but there are numerous applications in which k is a different field. In
addition, it is important to understand that everything that happens below
depends only on the properties shared by all fields. In particular, although
many of the examples will have natural topologies, topological notions will
not figure in the analytic work of this chapter.

Definition 4.1. A vector space over k is a commutative group V whose
group operation is written additively and called vector addition, or just
addition, together with an operation (α, v) 7→ αv from k × V to V , called
scalar multiplication, satisfying:

(a) α(v + w) = (αv) + (αw) for all α ∈ k and all v,w ∈ V .

(b) (α+ β)v = (αv) + (βv) for all α, β ∈ k and all v ∈ V .

(c) (αβ)v = α(βv) for all α, β ∈ k and all v ∈ V .

(d) 1v = v for all v ∈ V .

This should look rather familiar: a vector space is just a k-module. Due
to its importance and relatively simple character, in comparison with the
general theory of modules, the theory of vector spaces is usually developed
without any mention of modules over other rings, and it has its own system
of terminology. In particular, in this context elements of k are usually called
scalars.

The rest of the section just presents a few examples.

To begin with, it’s possible that V = {0} with 0 + 0 = 0 and α0 = 0 for
all α ∈ k. Of course this possibility is trivial, but it comes up frequently in
proofs. It is worth emphasizing that, by requiring V to be a commutative
group, so that it is automatically nonempty, we arranged for ∅ to not be a
vector space.

Polynomials can be added and multiplied by scalars in the usual way.
Thus k[X1, . . . ,Xn] is a vector space. Functions taking values in k (including
the functions defined by evaluating polynomials) can be added and multi-
plied by scalars. Specifically, if S is any set and f, g ∈ Fk(S), then f + g is
the function

s 7→ f(s) + g(s),
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and for any α ∈ k, αf is the function

s 7→ αf(s).

(The sophisticated way to explain all this is to say that “vector addition
and scalar multiplication are defined pointwise.”)

If X is a metric space, C(X) ⊂ FR(X) is the space of continuous real
valued functions with domainX. Since f+g and αf are continuous whenever
f, g ∈ C(X) and α ∈ R, C(X) is a vector space over R. If all this is relatively
new to you it would be a good idea to make sure that you actually know
how to prove that, in fact, f + g and αf are continuous. Here is a hint: the
quantities ε/2 and min{δ1, δ2} figure in the proof for f + g, and ε/α (with
due attention to the case α = 0!) appears in the proof for αf .

There are many important vector spaces of infinite sequences. To begin
with, given sequences of real numbers s1, s2, . . . and t1, t2, . . ., we can form
the sum s1 + t1, s2 + t2, . . ., and for any real number α we can form the
sequence αs1, αs2, . . .. It is easy to verify directly that the space of all real
valued sequences is a vector space, or we can observe that it is the space of
functions F

R
({1, 2, 3, . . .}).

A sequence {sn} of real numbers is said to be bounded if there is some
M > 0 such that |sn| < M for all n. Let ℓ∞ ⊂ FR({1, 2, 3, . . .}) be the space
of all bounded sequences of real numbers. Since a sum of two bounded
sequences is bounded, and any scalar product of a bounded sequence is
bounded (hint: the quantities M1 +M2 and αM figure in the proofs) ℓ∞ is
a vector space over R.

The sequence {sn} is said to be summable if

|s1| + |s2| + · · · <∞.

Let ℓ1 be the space of summable sequences. It is obvious that any scalar
multiple of a summable sequence is summable, and that the sum of two
summable sequences is summable. (Again, if the way to prove these facts
isn’t obvious, please stop and think about it, and this time make up your
own hint.) Therefore ℓ1 is a vector space over R.

The sequence {sn} is said to be square summable if

s21 + s22 + · · · <∞.

Let ℓ2 be the space of square summable sequences. As above, it is ob-
vious that any scalar multiple of a square summable sequence is square
summable. To see that the sum of two square summable sequences {sn}
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and {tn} is square summable we observe that, for each n = 1, 2, . . ., the
triangle inequality for the norm ‖ · ‖2 gives

(

(s1 + t1)
2 + · · · + (sn + tn)

2
)

1
2 ≤

(

s21 + · · · + s2n
)

1
2 +

(

t21 + · · · + t2n
)

1
2 .

Since the right hand side is bounded as n → ∞, the same is true for the
left hand side. If a sequence {sn} is summable, then it is square summable
because |sn| < 1, and thus s2n < |sn|, for all sufficiently large n. Therefore
ℓ1 ⊂ ℓ2. We now have the following vector spaces over R:

ℓ1 ⊂ ℓ2 ⊂ ℓ∞ ⊂ FR({1, 2, 3, . . .}).

Evidently a vector space can have additional structure over and above
the vector operations. For example, k[X1, . . . ,Xn] is a ring, and a vector
space can be endowed with an inner product, or a metric, or a topology.
The last idea is particularly important: a topological vector space is
a vector space over R endowed with a Hausdorff topology that makes the
vector operations continuous. This definition is the starting point of the
subfield of mathematics called functional analysis, which studies topological
vector spaces, of various sorts, and functions between them. Functional
analysis has grown enormously over the last several decades, and has pretty
much swallowed most of what used to be called analysis. Roughly, analysts
consider issues having to do with functions, e.g., in what senses might we
speak of a sequence of functions converging, and under what circumstances
is convergence guaranteed. For the most part the functions in question
can be thought of as elements of vector spaces, and many of the relevant
concepts, such as convergence, can be expressed topologically. This point of
view helps solve some problems, and often provides a unifying perspective.
Since it usually doesn’t do any damage, over time the tendency has been in
the direction of adopting the “functional analytic viewpoint” as a matter of
course.

4.2 Bases and Dimension

What should our agenda be? At a minimum we have to describe the parts of
the theory that we will need later, and it would be desirable to convey other
important information. “Important” here means “important, as revealed
by the experience of working mathematicians,” and the reader is currently
in no position to appreciate this. Perhaps for this reason, the approach of
most books is to simply lay out a bunch of definitions and theorems without
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much auxiliary explanation, hoping that the reader will eventually come to
appreciate the appropriateness of the material through her own experience.

An alternative is to pursue the subject with certain objectives in mind.
These may be fictional in a sense, representing neither the actually histor-
ical development of the ideas nor a comprehensive approach to what the
reader “needs” to know. But these defects can be addressed later, and in
the meantime this approach endows our work with some tangible sense of
purpose.

What might it mean to “understand” vector spaces, or any mathematical
object for that matter? There are many reasonable or valid answers to this
question, but a rather minimal criterion of “understanding” is that we should
be able to tell whether two vector spaces are “the same” or “different.”

As we mentioned in Chapter 1, in any category there is the concept of
isomorphism: a morphism f : X → Y is an isomorphism if there is a
morphism g : Y → X such that g ◦ f = IdX and f ◦ g = IdY . In this
circumstance we say that the objects X and Y are isomorphic. In their
lives beyond the category, X and Y might be as different as apples and
oranges, but as far as the category is concerned, X is “just like” Y and
vice versa. An attribute of objects in the category is invariant under

isomorphism, or an isomorphism invariant, or simply an invariant, if
isomorphic objects always have the same value of the attribute. A complete

set of invariants is a collection of invariants that classify the objects up
to invariance, in the sense that for any two objects X and Y that are not
isomorphic, there is at least one invariant whose value for X is different from
its value for Y .

Perhaps this sounds like completely unmotivated gobbledygook. Well,
all I can say is that, after a certain amount of experience, you may well
come to appreciate how the last paragraph expresses, succinctly and directly,
an important aspect of mathematical thought. In the meantime here is
the main idea pursued below, described more concretely: the concept of
dimension classifies finite dimensional vector spaces over k. That is, two
finite dimensional vector spaces over k are isomorphic if and only if they
have the same dimension.

So, we need to define the concept of dimension. The intuition here is
completely familiar: the dimension of a space is the number of numbers
required to describe a point. The line R is one dimensional, a point in the
plane is described by two numbers, a point in space by three numbers, and
so forth. But in order to attain a coordinate-free expression of this idea we
need a framework in which the numbers that determine a point in kn may
be different from its components as an element of kn = k × · · · × k.
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The standard unit basis of kn is e1, . . . , en where, for each i = 1, . . . , n,

ei = (0, . . . , 0, 1, 0, . . . , 1)

is the element of kn whose ith component is 1 and whose other components
are all 0. Any v = (v1, . . . , vn) ∈ kn can be written as

v = v1e1 + · · · + vnen.

Moreover, there is only one way to write v as such an expression in the sense
that if, in addition to this equation, we also have v = v′1e1 + · · ·+v′nen, then
necessarily v′1 = v1, . . . , v

′
n = vn.

In order to give a more conceptual explanation of what is going on here
we need to expand our terminology. Fix a vector space V over k. For any
set S ⊂ V , a linear combination of elements of S is an expression of
the form

∑

s∈S αss in which each αs is an element of k and there are only
finitely many s such that αs 6= 0. The gist of the last paragraph is that each
element of kn is expressed in one and only one way as a linear combination of
e1, . . . , en. In this sense e1, . . . , en impose a coordinate system on kn. This
coordinate systems happens to coincide with the coordinate system given
by the definition of kn, but the general method leads to other coordinate
systems as well.

Definition 4.2. A basis for V is a set B ⊂ V such that each element of V
can be expressed in a unique way as a linear combination of the elements of
B.

For a concrete example, consider b1 = (2, 1) and b2 = (1, 2). We
would like to show that b1,b2 is a basis of k2. (According to the defini-
tion, “{b1,b2} is a basis of k2” is the logically exact way to say this, but
in real life everybody leaves out the ‘{’ and ‘}’.) This boils down to the
assertion that for any v = (v1, v2) ∈ k2 the system of equations

2α1 + α2 = v1, α1 + 2α2 = v2

has a unique solution. A direct calculation verifies that

α1 =
2v1 − v2

3
, α2 =

−v1 + 2v2
3

is a solution1. To see that it is unique, suppose that α′
1 and α′

2 is another
solution. Subtracting the system of equations above from

2α′
1 + α′

2 = v1, α′
1 + 2α′

2 = v2
1In order for this calculation to be valid, the characteristic of k must be different from

3. If the characteristic of k is 3, then b2 = −b1 and b1,b2 actually isn’t a basis.
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gives

2(α′
1 − α1) + (α′

2 − α2) = 0, (α′
1 − α1) + 2(α′

2 − α2) = 0.

Putting α′
1 − α1 and α′

2 − α2 on opposite sides in both equations, then
combining, leads to

α′
1 − α1 = −2(α′

2 − α2) = 4(α′
1 − α1).

Unless the characteristic of k is 3 this implies that α′
1 − α1 = 0, and a

symmetric argument shows that α′
2 − α2 = 0.

In this example, and in general, a basis B imposes a coordinate system

on V : for each v ∈ V there is a unique system of scalars αb for b ∈ B,
only finitely many of which are nonzero, such that v =

∑

b∈B αbb. Many
calculations and arguments can be simplified by choosing an appropriate
basis, even when the underlying vector space is kn.

You can probably sense where this is headed: if a vector space has a
finite basis, then all bases have the same finite number of elements, and we
can define the dimension of the space to be the number of elements in any
basis. To facilitate our explanation we introduce terminology corresponding
to the two properties of a basis.

Definition 4.3. A set of vectors S ⊂ V is linearly independent if the
only linear combination

∑

s∈S αss equal to 0 has αs = 0 for all s.

Definition 4.4. The span of a set of vectors S ⊂ V is the set of all linear
combinations of the elements of S.

The definition of a basis for V states that a basis B spans V , and that it
is linearly independent because there can be only one way to represent 0 as
a linear combination of the elements of B. The converse is also true: if B is
linearly independent and spans V , then it is a basis, and the only thing we
need to show to prove it is that every element of V (not just 0) has only one
representation as a linear combination of elements of B. But if some v can
be represented as a linear combination of the elements of B in two different
ways, say

∑

b∈B

αbb = v =
∑

b∈B

α′
b
b,

then subtraction gives
∑

b∈B

(α′
b − αb)b = 0,

which is a violation of linear independence.
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We should make a remark here about the space {0}. Specifically, we
follow a convention according to which there is something called the “null
sum” that has no terms and whose value is 0. Thus 0 is in the span of every
subset of {0}, including ∅, and in fact ∅ is the unique basis of {0}.

The proof of the next result is long and “algebra intensive,” but you
should study it carefully, both because the result is very important and
because it expresses a fundamental idea known as Gaussian elimination.
(The material in this chapter is mostly straightforward, but even so Gauss
manages to get a mention!) This is the basic idea that is applied in most
concrete calculations in linear algebra: use one of the equations to express
one of the variables in terms of the others, then substitute this into the
other equations, thereby achieving a system with one fewer equation and
one fewer unknown.

Lemma 4.5. If S and T are linearly independent subsets of V with T finite,
say T = {t1, . . . , tn}, and the span of S is contained in the span of T , then
S has at most n elements.

Proof. The result in the case n = 0 is clear: the span of T = ∅ is {0}, and if
the span of S is also {0}, and S is linearly independent, then S = ∅. Arguing
inductively, we may assume that the result has already been established with
n−1 in place of n. Aiming at a contradiction, suppose that S has more than
n elements, and choose some particular list s1, . . . , sn+1 of n+ 1 elements.

Since the span of T contains the span of S, which in turn contains S
itself, there are scalars αi,j such that

s1 = α1,1t1 + · · · + α1,ntn,

...

sn = αn,1t1 + · · · + αn,ntn,

sn+1 = αn+1,1t1 + · · · + αn+1,ntn.

If α1,n, . . . , αn+1,n were all zero the equations would involve only t1, . . . , tn−1,
and we could apply the induction hypothesis. Therefore we may assume that
this at least one of these scalars is not zero, and after reindexing, if necessary,
it will be the case that αn+1,n 6= 0. Then

tn =
1

αn+1,n

(

sn+1 −
n−1
∑

j=1

αn+1,jtj
)

.
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Substituting this into the first n equations gives

s1 −
α1,n

αn+1,n
sn+1 = α′

1,1t1 + · · · + α′
1,n−1tn−1,

...

sn −
αn,n
αn+1,n

sn+1 = α′
n,1t1 + · · · + α′

n,n−1tn−1,

where

α′
i,j = αi,j −

αn,j
αn+1,n

αi,n

for all i = 1, . . . , n and j = 1, . . . , n − 1. This is a system of the same sort
with n replaced by n − 1, so the vectors si − (αi,n/αn+1,n)sn+1 cannot be
linearly independent and there must be scalars β1, . . . , βn, not all of which
are zero, such that

β1

(

s1 −
α1,n

αn+1,n
sn+1

)

+ · · · + βn
(

sn −
αn,n
αn+1,n

sn+1

)

= 0.

This is a linear dependence of s1, . . . , sn+1 if the coefficient

β1
α1,n

αn+1,n
+ · · · + βn

αn,n
αn+1,n

of sn+1 is nonzero, and otherwise it reduces to the linear dependence β1s1 +
· · ·+βnsn = 0. Either way there is a contradiction, so the proof is complete.

We now have the tools we need to give a precise explanation of dimension.

Theorem 4.6. If V has a finite basis, then any two bases have the same
number of elements.

Proof. Let B := {b1, . . . ,bn} be a finite basis of V , and let C be another
basis. Since C is linearly independent and its span is contained in the span
of B, Lemma 4.5 implies that C has at most n elements. In particular, C
is finite, so now we can apply the same argument with B and C reversed,
finding that C has at least n elements.

Definition 4.7. A vector space V is finite dimensional if it has a finite
basis; otherwise V is infinite dimensional. The dimension of a finite
dimensional vector space is the number of elements of any one of its bases.
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Theorem 4.6 is the real gist of the classification of finite dimensional
vector spaces, but before we can state and prove the classification result
formally we need to define the appropriate concept of isomorphism. This
will be done in the next section.

So far our definitions have avoided the issue of whether vector spaces
actually have bases, in a rather sneaky way: a finite dimensional vector
space has a basis, simply because that’s part of what it means to be finite
dimensional. But we haven’t yet proved some rather important and obvious
things that ought to be true. The next result handles most of these issues.

Lemma 4.8. Suppose that S is a linearly independent subset of V . If v is
a point in V that is not contained in the span of S, then S ∪ {v} is linearly
independent. If V is finite dimensional, then S is a subset of a basis of
V . If V is infinite dimensional, then S is a subset of an infinite linearly
independent set.

Proof. Aiming at a contradiction, suppose that there is a linear dependence:

0 = αv +
∑

s∈S

βss,

where at least one of the coefficients is nonzero. We cannot have α = 0
because S is linearly independent, but if α 6= 0, then we could solve for v,
arriving at

v = −
∑

s∈S

βs
α
s.

Since v is not spanned by S, this is impossible. We have shown that S ∪{v}
is linearly independent.

Starting with S, consider repeatedly adding points that are not already
spanned. If V is finite dimensional this process must arrive at a basis af-
ter finitely many steps because no linearly independent set can have more
elements than one of V ’s bases. If V is infinite dimensional, and S is not
already infinite, the process cannot halt after finitely many steps, because it
can only halt at a basis. The result of continuing it indefinitely is an infinite
linearly independent set.

Actually, a linearly independent set S is always a subset of a basis,
even if V is not finite dimensional. The proof involves a technique called
“transfinite induction” that extends the idea in the proof above: we go
through the elements of V \ S “one by one,” adding the ones that have not
already been spanned to our prospective basis. At the end of this process
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the prospective basis is still linearly independent, and every point is either
in it or spanned by it, so it is in fact a basis. This makes perfect sense when
V is countable, since, by definition, countability means that we can write
down a list v1, v2, . . . that has all the elements of V . For uncountable V
there is a sophisticated application of the axiom of choice that allows one to
“line up” the elements of V in a suitable ordering.

4.3 Linear Transformations

By this point it should be almost instinctive: given a collection of objects
(in this case, vector spaces) we should expect a corresponding concept of
morphism.

Definition 4.9. If V and W are vector spaces over k, a linear transfor-

mation from V to W is a function ℓ : V → W satisfying

ℓ(v + v′) = ℓ(v) + ℓ(v′) and ℓ(αv) = αℓ(v)

for all v, v′ ∈ V and all α ∈ k.

That is, a linear transformation is just a k-module homomorphism.
Since, for any commutative ring with unit R, there is a category whose ob-
jects are R-modules and whose morphisms are R-module homomorphisms,
we already know that k-vector spaces and linear transformations constitute
a category.

Pretty much everything we need to know about linear transformations
can be boiled down to the relationship between linear transformations and
bases. In this sense the next three results are the technical underpinning
of the entire theory of finite dimensional linear algebra. Unfortunately, this
will be a patch of rather dry reading, with simple lemmas proved by prosaic
arguments. If it is any consolation, beyond this level you will never have
to see these arguments again, since in all “more advanced” mathematical
literature these facts are invariably taken for granted.

A linear transformation can be defined by specifying the image of a basis.

Lemma 4.10. If V and W are vector spaces over k, b1, . . . ,bn is a basis
of V , and w1, . . . , wn ∈ W , then there is a unique linear transformation
ℓ : V →W such that

ℓ(b1) = w1, . . . , ℓ(bn) = wn.
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Proof. In view of the requirements that define a linear transformation, if
ℓ is a linear transformation satisfying the given condition, then for any
α1, . . . , αn it must be the case that

ℓ(α1b1 + · · · + αnbn) = ℓ(α1b1) + · · · + ℓ(αnbn)

= α1ℓ(b1) + · · · + αnℓ(bn)

= α1w1 + · · · + αnwn.

Since each element of V can be written as a linear combination of the ele-
ments of b1, . . . ,bn in exactly one way, this formula defines the function ℓ
unambiguously.

We still have to show that, in fact, this function is linear. Consider
v, v′ ∈ V and β ∈ k. There are scalars α1, . . . , αn, α

′
1, . . . , α

′
n such that

v = α1b1 + · · · + αnbn and v′ = α′
1b1 + · · · + α′

nbn.

That ℓ satisfies the conditions in the definition of a linear transformation is
confirmed by the calculations

ℓ(v + v′) = ℓ
(

(α1 + α′
1)b1 + · · · + (αn + α′

n)bn
)

= (α1 + α′
1)w1 + · · · + (αn + α′

n)wn

= (α1w1 + · · · + αnwn) + · · · + (α′
1w1 + · · · + α′

nwn)

= ℓ(v) + ℓ(v′)

and

ℓ(βv) = ℓ
(

β(α1b1 + · · · + αnbn)
)

= ℓ
(

(βα1)b1 + · · · + (βαn)bn
)

= (βα1)w1 + · · · + (βαn)wn

= β(α1w1 + · · · + αnwn)

= βℓ(v).

The following notation will often be useful. If b = {b1, . . . ,bn} is a basis
of V and w1, . . . , wn ∈W , let

[w1, . . . , wn]b : V →W

be the linear transformation satisfying [w1, . . . , wn]b(bi) = wi for i = 1, . . . , n.
Every linear transformation ℓ : V → W whose domain is finite dimensional
can be written in this way because for any basis b we have

ℓ = [ℓ(b1), . . . , ℓ(bn)]b.
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The injectivity (surjectivity) of a linear transformation can be diagnosed
from the linear independence (span) of the image of a basis.

Proposition 4.11. If V and W are vector spaces over k, b = {b1, . . . ,bn}
is a basis of V , w1, . . . , wn ∈W , and ℓ = [w1, . . . , wn]b, then:

(a) ℓ is injective if and only if w1, . . . , wn are linearly independent;

(b) ℓ is surjective if and only if w1, . . . , wn span W .

Proof. (a) If ℓ is not injective then ℓ(v) = ℓ(v′) for some distinct v, v′ ∈ V .
There are scalars α1, . . . , αn such that

v′ − v = α1b1 + · · · + αnbn,

and since v′ − v 6= 0, αi 6= 0 for some i. But then

0 = ℓ(v′) − ℓ(v) = ℓ(v′ − v) = α1w1 + · · · + αnwn,

which shows that w1, . . . , wn are not linearly independent. Conversely, if
w1, . . . , wn are not linearly independent, then 0 = α1w1 + · · · + αnwn for
some scalars α1, . . . , αn, not all of which are zero, so α1b1 + · · ·+αnbn 6= 0,
but

ℓ(0) = 0 = ℓ(α1b1 + · · · + αnbn).

(b) The image of ℓ is the set of points of the form α1w1 + · · ·+αnwn, which
is, by definition, the span of w1, . . . , wn.

Combining the two parts of this result, if V is finite dimensional and
ℓ : V → W is a linear transformation, then ℓ is a bijection if and only if
ℓ maps any basis of V to a basis of W . In this case it is an isomorphism
because in Section 2.5 we showed that for any commutative ring with unit
R, if ϕ is a bijective R-module homomorphism, then so is ϕ−1.

Now, at long last, we can see that dimension classifies finite dimensional
vector spaces.

Theorem 4.12. Two finite dimensional vector spaces V and W are linearly
isomorphic if and only if they have the same dimension.

Proof. Let b = {b1, . . . ,bn} be a basis of V . If ℓ : V →W is a linear isomor-
phism, then Proposition 4.11 implies that ℓ(b1), . . . , ℓ(bn) is a basis of W ,
so W is n-dimensional. For the converse suppose that W is n-dimensional,
and let c1, . . . , cn be a basis. Proposition 4.11 implies that [c1, . . . , cn]b is a
linear bijection, so it is a linear isomorphism by the result above.
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4.4 Linear Subspaces

Taking the classification of finite dimensional vector spaces as our goal, in
the last two sections we were led along a rather natural path that involved
a number of definitions and results that, it turns out, are of great general
importance. What next? Well, a natural impulse is to try to classify linear
transformations. We will say that two linear transformations

ℓ : V →W and ℓ′ : V ′ → W ′

are equivalent if there are isomorphisms

ιV : V → V ′ and ιW : W →W ′

such that ℓ′ = ιW ◦ ℓ ◦ ι−1
V , or, equivalently, ℓ′ ◦ ιV = ιW ◦ ℓ, or, equivalently,

ℓ = ι−1
W ◦ ℓ′ ◦ ιV . In order to lay out the information in a way that allows

the eye to take it all in in one fell swoop, mathematicians like to express an
equation like ℓ′ ◦ ιV = ιW ◦ ℓ by saying that “the diagram

V
ℓ−−−−→ W

ιV





y





y

ιW

V ′ ℓ′−−−−→ W ′

commutes.”

As always, we have to verify that ‘equivalence’ is actually an equivalence
relation, and, as usual, this is quite simple. The isomorphisms IdV and IdW
can obviously be used to show that ℓ is equivalent to itself, and in the setting
of the last paragraph the isomorphisms ι−1

V and ι−1
W can be used to show that

ℓ′ is equivalent to ℓ. To demonstrate transitivity, suppose that, in addition,
ℓ′ is equivalent to ℓ′′ by virtue of the commutative diagram

V ′ ℓ′−−−−→ W ′

ιV ′





y





y

ιW ′

V ′′ ℓ′′−−−−→ W ′′

in which ιV ′ and ιW ′ are isomorphisms. Then ιV ′ ◦ ιV and ιW ′ ◦ ιW are
isomorphisms, and ℓ is equivalent to ℓ′′ because

ιW ′ ◦ ιW ◦ ℓ = ιW ′ ◦ ℓ′ ◦ ιV = ℓ′′ ◦ ιV ′ ◦ ιV .



4.4. LINEAR SUBSPACES 161

In our general description of classification, the things being classified
were the objects of some category. It is not particularly difficult to create
a category of linear transformations in which two linear transformations
are isomorphic if and only if they are equivalent in this sense, and in which
our characterization of equivalence fits the general paradigm of classification
described earlier, but the construction is a bit artificial, and we won’t bother.
And in fact the idea of classification isn’t really restricted to isomorphism
in a category, but makes sense for any equivalence relation. That is, given
a collection of objects, some attributes of these objects, and an equivalence
relation, if equivalent objects have the same values of all attributes, and any
two inequivalent objects have different values of at least one attribute, then
the attributes are said to classify the objects up to equivalence.

Eventually we’ll find that the linear transformations between finite di-
mensional spaces are classified by the dimensions of the domain, the range,
and the image. In order to explain this properly we need to develop some
basic facts about linear subspaces.

Definition 4.13. If V is a vector space over k, a nonempty set P ⊂ V is a
linear subspace if it is “closed” under addition and scalar multiplication:

(a) v + v′ ∈ P whenever v, v′ ∈ P .

(b) αv ∈ P whenever v ∈ P and α ∈ k.

That is, a linear subspace is just a submodule of the k-module V , and
general properties of submodules hold here as well. For example, the re-
strictions to P of the vector operations satisfy all the conditions defining a
vector space, so P is itself a vector space over k.

It is important to have a clear visual sense of what it means to be a
linear subspace. Note that {0} is always a linear subspace of V , and V is
always a linear subspace of itself. In addition to {0} and R2 itself, the linear
subspaces of R2 are the lines through the origin. In addition to {0} and R3

itself, the linear subspaces of R3 are:

(a) the lines through the origin;

(b) the two dimensional planes containing the origin.

The span of any S ⊂ V is a linear subspace of V because a) the sum
of two linear combinations of the elements of S is a linear combination of
the elements of S, and b) a scalar multiple of a linear combination of the
elements of S is a linear combination of the elements of S. In Chapter 2 we
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saw that for any commutative ring R, intersections and sums of submodules
of an R-module are submodules, so if P and P ′ are linear subspaces of V ,
then so are P ∩ P ′ and

P + P ′ := { v + v′ : v ∈ P and v′ ∈ P ′ }.

We say that P and P ′ are complementary subspaces of V if P ∩P ′ = {0}
and P + P ′ = V .

Lemma 4.14. If P and P ′ are finite dimensional complementary subspaces
of V , then

dimV = dimP + dimP ′.

Proof. Suppose b1, . . . ,bp is a basis of P and bp+1, . . . ,bp+p′ is a basis of
P ′. Then b1, . . . ,bp+p′ span V because they span P and P ′ and P+P ′ = V .
If α1b1 + · · · + αp+p′bp+p′ = 0, then

α1b1 + · · · + αpbp = −αp+1bp+1 − · · · − αp+p′bp+p′ ∈ P ∩ P ′ = {0},

so α1, . . . , αp are all zero because b1, . . . ,bp are linear independent and
αp+1, . . . , αp+p′ are all zero because bp+1, . . . ,bp+p′ are linearly independent.
This shows that b1, . . . ,bp+p′ are linearly independent, so they are a basis
of V . Consequently dimV = p+ p′.

Lemma 4.15. Suppose that V is a finite dimensional vector space and P
is a linear subspace. Then there is a linear subspace P ′ such that P and P ′

are complementary subspaces of V .

Proof. Using Lemma 4.8, we see that P must be finite dimensional because
an infinite linearly independent set in P would also be linearly independent
in V , contrary to our assumption that V is finite dimensional. Lemma 4.8
also implies that P has a basis b1, . . . ,bp, and that we can extend it to a
basis b1, . . . ,bn of V by choosing suitable bp+1, . . . ,bn. Let P ′ be the span
of bp+1, . . . ,bn. To see that P ∩ P ′ = {0}, consider that if

α1b1 + · · · + αpbp = αp+1bp+1 + · · · + αnbn,

then

α1b1 + · · · + αpbp − αp+1bp+1 − · · · − αnbn = 0,

so that α1, . . . , αn are all zero because the basis is a linearly independent
set. Of course P + P ′ = V because b1, . . . ,bn spans V .
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If ℓ : V →W is a linear transformation, its kernel is

ker(ℓ) := ℓ−1(0) = { v ∈ V : ℓ(v) = 0 } ⊂ V,

and its image is

image(ℓ) := ℓ(V ) = { ℓ(v) : v ∈ V } ⊂W.

These are linear subspaces of V and W because (as we explained in Chapter
2) whenever R is a commutative ring with unit, the kernel and image of
any R-module homomorphism are submodules of the domain and range
respectively. If V is finite dimensional, then the dimension of the image of
ℓ is called the rank of ℓ, and is denoted by rank(ℓ), while the dimension of
the kernel of ℓ is called the nullity, and is denoted by null(ℓ).

Theorem 4.16 (Rank-Nullity Theorem). If ℓ : V → W is a linear trans-
formation and V is finite dimensional, then rank(ℓ) + null(ℓ) = dimV .

Proof. As we saw in the proof of the last result, there is a basis b1, . . . ,bn
of V with b1, . . . ,bp a basis of ker(ℓ). We claim that ℓ(bp+1), . . . , ℓ(bn)
is a basis of image(ℓ). Of course this collection spans image(ℓ) because
ℓ(b1), . . . , ℓ(bn) spans image(ℓ) and ℓ(b1) = · · · = ℓ(bp) = 0. This collection
is linearly independent because if αp+1ℓ(bp+1) + · · · + αnℓ(bn) = 0, then

0 = ℓ(αp+1bp+1) + · · · + ℓ(αnbn) = ℓ(αp+1bp+1 + · · · + αnbn),

so αp+1bp+1+· · ·+αnbn ∈ ker(ℓ) and consequently αp+1 = · · · = αn = 0.

The result classifying linear transformations up to equivalence is:

Theorem 4.17. If V , W , V ′, and W ′ are finite dimensional vector spaces
over k, then two linear transformations ℓ : V → W and ℓ′ : V ′ → W ′ are
equivalent if and only if:

(a) dimV = dimV ′,

(b) dimW = dimW ′,

(c) null(ℓ) = null(ℓ′), and

(d) rank(ℓ) = rank(ℓ′).
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Proof. First suppose that ℓ and ℓ′ are equivalent, so that there are linear
isomorphisms ιV : V → V ′ and ιW : W → W ′ such that ιW ◦ ℓ = ℓ′ ◦
ιV . Then dimV = dimV ′ and dimW = dimW ′ because isomorphic finite
dimensional vector spaces have the same dimension. In addition, ιV restricts
to a bijection between the kernel of ℓ′ and the kernel of ℓ′ ◦ιv , and the kernel
of ιW ◦ ℓ is just the kernel of ℓ, so

ker(ℓ′) = ιV (ker(ℓ′ ◦ ιV )) = ιV (ker(ιW ◦ ℓ)) = ιV (ker(ℓ)).

Therefore ker(ℓ) and ker(ℓ′) are isomorphic and consequently have the same
dimension. We have shown that (a), (b), and (c) hold, and in this circum-
stance the rank-nullity theorem implies that (d) also holds.

Now suppose that dimV = dimV ′, dimW = dimW ′, and null(ℓ) =
null(ℓ′). There are only the most obvious constraints on the construc-
tion of the desired isomorphisms. Lemma 4.15 implies that V and V ′

have linear subspaces that are complementary to ker(ℓ) and ker(ℓ′) respec-
tively; let b1, . . . ,bm−p and b′

1, . . . ,b
′
m−p be bases of these subspaces. Let

bm−p+1, . . . ,bm and b′
m−p+1, . . . ,b

′
m be bases of ker(ℓ) and ker(ℓ′). As we

have seen before, b1, . . . ,bm and b′
1, . . . ,b

′
m are bases of V and V ′.

For i = 1, . . . ,m − p let ci := ℓ(bi) and c′i := ℓ(b′
i). The restriction of

ℓ to the span of b1, . . . ,bm−p is injective, so c1, . . . , cm−p are linearly inde-
pendent. Similarly, c′1, . . . , c

′
m−p are linearly independent. Applying Lemma

4.8, there exist cm−p+1, . . . , cn and c′m−p+1, . . . , c
′
n such that c1, . . . , cn and

c′1, . . . , c
′
n are bases of W and W ′. Let

ιV := [b′
1, . . . ,b

′
m]b : V → V ′ and ιW := [c′1, . . . , c

′
n]c : W →W ′.

Proposition 4.11 implies that ιV and ιW are isomorphisms. Finally observe
that

ℓ = [c1, . . . , cm−p, 0, . . . , 0]b and ℓ′ = [c′1, . . . , c
′
m−p, 0, . . . , 0]b′ ,

so that

ιW ◦ ℓ = [c′1, . . . , c
′
m−p, 0, . . . , 0]b = ℓ′ ◦ ιV .

Let’s be completely concrete about what this result says. If m, n, and p
are nonnegative integers with n ≥ m − p, then there is the linear transfor-
mation

L := [f1, . . . , fm−p, 0, . . . , 0]e : km → kn
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where e1, . . . , em and f1, . . . , fn are the standard bases of km and kn. If
ℓ : V → W is a linear transformation from an m-dimensional vector space
to an n-dimensional vector space and null(ℓ) = p, then ℓ is equivalent to L,
so there are bases for V and W with respect to which ℓ “looks just like” L.

4.5 Matrices

Reader with some prior exposure to linear algebra know that a linear trans-
formation can be represented by a matrix, and may well think of linear
algebra as almost entirely a matter of doing various computations with ma-
trices. Up to this point we have downplayed matrices, mainly in order to
keep the focus on the linear transformations rather than the computational
devices used to represent them, but they also simply would not have been
very useful. Nevertheless our discussion of the fundamentals of linear al-
gebra would not be complete without a brief discussion of the relationship
between matrices and linear transformations.

Let ℓ : V →W be a linear transformation between vector spaces V and
W over k. If b1, . . . ,bm and c1, . . . , cn are bases of V and W respectively,
and

ℓ(bi) = a1ic1 + · · · + anicn

for each i = 1, . . . ,m, then we say that

A :=







a11 · · · a1m
...

. . .
...

an1 · · · anm







is the matrix of ℓ with respect to the bases b1, . . . ,bm and c1, . . . , cn. Note
that the bases b1, . . . ,bm and c1, . . . , cn induce a bijection between linear
transformations from V to W and n × m matrices: every linear transfor-
mation has a matrix, and equally, for any n×m matrix A there is a corre-
sponding linear transformation

[

n
∑

j=1

aj1cj , . . . ,
n
∑

j=1

ajmcj
]

b
.

The computation of the effect of ℓ, using A, is a matter of matrix mul-
tiplication. Recall that, in general, if

B :=







b11 · · · b1s
...

. . .
...

br1 · · · brs






and C :=







c11 · · · c1t
...

. . .
...

cs1 · · · cst
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are r × s and s × t matrices, then the matrix product BC is defined to be
the r × t matrix whose ik-entry is

bi1c1k + · · · + biscsk.

That is, we compute the ik-entry by taking the inner product of the ith row
of B and the kth column of C.

To see how A “computes” the effect of ℓ, suppose that

ℓ(β1b1 + · · · + βmbm) = γ1c1 + · · · + γncn.

Then

ℓ(β1b1 + · · · + βmbm) = β1

n
∑

j=1

aj1cj + · · · + βm

n
∑

j=1

ajmcj

=
(

m
∑

i=1

a1iβi
)

c1 + · · · +
(

m
∑

i=1

aniβi
)

cn,

so, for each j = 1, . . . , n,

γj = aj1β1 + · · · + ajmβm.

We can express this result as the matrix multiplication γ = Aβ:







γ1
...
γn






=







a11 · · · a1m
...

. . .
...

an1 · · · anm













β1
...
βm






.

One can think about what we’re doing here in the following way. Let
r : V → km and s : W → kn be the functions

r(β1b1 + · · · + βmbm) := (β1, . . . , βm)

and
s(γ1c1 + · · · + γncn) := (γ1, . . . , γn)

that “compute” the coordinates of points in V and W in the coordinate sys-
tems induced by our bases. Then for any v ∈ V we have ℓ(v) = s−1(Ar(v)).
If your education in linear algebra consists largely of concrete matrix calcu-
lations, it’s easy to lose sight of the distinction between the linear transfor-
mation ℓ : v 7→ s−1(Ar(v)) and the computation β 7→ Aβ, but in any kind of
scientific application an awareness of this distinction is a prerequisite of any
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sort of clear understanding of the situation. Elements of V and W are things
like the electromagnetic field at a point in space, or a bundle of commodities
consisting of certain amounts of iron ore, rubber, and coal. Elements of km

and kn are just tuples of elements of k.
Now suppose that X is a p-dimensional vector space over k with basis

d1, . . . ,dp, and that m : W → X is a second linear transformation whose
matrix, with respect to the bases c1, . . . , cn and d1, . . . ,dp, is the matrix B
introduced above, so that

m(cj) = b1jd1 + · · · + bnjdp

for each j = 1, . . . , n. We compute the effect of the composition m ◦ ℓ:

m(ℓ(bi)) = m(a1ic1 + · · · + anicn)

= a1im(c1) + · · · + anim(cn)

=
n
∑

j=1

aji
(

b1jd1 + · · · + bnjdp
)

=
(

n
∑

j=1

b1jaji
)

d1 + · · · +
(

n
∑

j=1

bpjaji
)

dp.

In this way we see that BA is the matrix of m ◦ ℓ with respect to the bases
b1, . . . ,bm and d1, . . . ,dp.

This gives a new way of thinking about the associativity of matrix mul-
tiplication when the entries of the matrix are field elements. (When we
dealt with this issue before, in Chapter 2, the proof was a calculation with-
out much conceptual content.) Consider a fourth finite dimensional vector
space Y over k and a third linear transformation n : X → Y that we as-
sume is represented (with respect to d1, . . . ,dp and some basis for Y ) by
the matrix C. Then

C(BA) = (CB)A

because C(BA) represents the linear transformation n ◦ (m ◦ ℓ), (CB)A
represents the linear transformation (n ◦m) ◦ ℓ, and

n ◦ (m ◦ ℓ) = (n ◦m) ◦ ℓ

because composition of functions is associative.
Now suppose that V and W are both n-dimensional, and ℓ : V → W

is a linear transformation. We say that ℓ is nonsingular if it is a linear
isomorphism, and otherwise it is singular. Suppose that ℓ is nonsingular,
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and that A and B are the matrices of ℓ and ℓ−1 with respect to some bases
for V and W . Then BA = I = AB, where I is the n × n identity matrix,
because BA and AB are the matrices of ℓ−1 ◦ ℓ = IdV and ℓ ◦ ℓ−1 = IdW
respectively.

In general, if A and B are n × n matrices such that BA = I, then we
say that B is a left inverse of A, and that A is a right inverse of B.
Suppose that A and B are the matrices of ℓ : V →W and m : W → V , with
respect to some bases. If BA = I, then BA is the matrix of IdV , and ℓ and
m must be inverse isomorphisms, so AB = I because AB is the matrix of
ℓ ◦m = IdW . Thus a left inverse of a square matrix is also a right inverse,
and a right inverse is necessarily a left inverse. Moreover, A has only one
left inverse because a left inverse is necessarily the matrix of ℓ−1. In sum:

Theorem 4.18. For any n× n matrix A either:

(a) there is a unique matrix B that is the only left inverse of A and also
the only right inverse of A;

(b) A has neither a left inverse nor a right inverse.

If (a) holds, then we say that A is invertible or nonsingular, and we
denote the inverse by A−1. If (b) holds, then we say that A is singular.



Chapter 5

The Determinant

My own education concerning the determinant was a haphazard affair. I
was taught how to compute the determinants of 2 × 2 and 3 × 3 matrices,
but initially, at least, it wasn’t clear why one would want to do so. Various
facts about determinants were introduced in piecemeal fashion, with little
in the way of proofs, so eventually I knew the basics, sort of, but there were
many important things I didn’t learn until years later.

In this chapter we’re going to approach the subject from a purely theo-
retical perspective, pursuing an inquiry that begins with a desire to explore
a particular phenomenon and proceeds to certain intuitive considerations
that become axioms. It will turn out that the axioms can be satisfied in a
unique way, and that all the properties of the determinant can be derived
from them. Because the theory is abstract and highly structured, it will
require careful reading. But I think it is a quite satisfying piece of math-
ematics, addressing an important issue and arriving at a theory that is far
from trivial, but which derives a certain ex post simplicity from its coher-
ence. If your education to date has been like what I went through, it might
be quite a revelation.

5.1 Positive and Negative Volume

In the last chapter the theme of classification was fruitful in two senses.
Judged on its own terms, it gave us a clear picture of how vector spaces and
linear transformations are structured. In addition, it forced us to develop
vocabulary and basic technical facts that are used all the time in any sort of
discussion involving linearity. But in the end the problems we used to guide
our work turned out to be easy, and frankly, in my opinion, the analysis
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lacked mathematical depth.

From this point on we will aim at a more difficult classification problem.
Fix a field k and a vector space V over k. A linear transformation from V
to itself is called a linear endomorphism. (Recall that in any category
an endomorphism is a morphism from an object to itself.) Let End(V )
be the space of linear endomorphisms from V to itself. In what follows we
will say that two linear endomorphisms ℓ ∈ End(V ) and ℓ′ ∈ End(V ′) are
similar if there is a linear isomorphism ι : V → V ′ such that ι ◦ ℓ = ℓ′ ◦ ι,
i.e., the diagram

V
ℓ−−−−→ V

ι





y





y

ι

V ′ ℓ′−−−−→ V ′

commutes. The proof that this is an equivalent relation follows the argu-
ment given in Section 4.4, with obvious modifications. An attribute of en-
domorphisms is an invariant if its value for ℓ is the same as its value for ℓ′

whenever ℓ and ℓ′ are similar. For us a solution of the classification problem
will be a collection of invariants such that for any two distinct equivalence
classes, at least one invariant is different.

When V ′ = V we can think of the relation between ℓ and ℓ′ as a matter
of replacing the matrix of ℓ with the matrix of ι◦ℓ◦ι−1. In effect this notion
of similarity forces us to choose the same coordinate system for the domain
and range, making it much more difficult than before to find a canonical
form that can always be achieved by some choice of basis. The determinant
will be an invariant, and it will point in the direction of additional invariants,
but these will not quite constitute a solution of the classification problem.
As we will see in this chapter’s final section, the invariants that solve the
problem are quite subtle.

Although the theory we develop will be valid for any field, our motiva-
tion will be derived from the case of k = R. Let V be an n-dimensional
vector space over Rn. In some sense that is, at this point, quite vague, it is
intuitive that there should be a factor by which an endomorphism ℓ : V → V
expands or contracts “oriented” (we’ll say more about this the term shortly)
volume. To be concrete, think of this factor as the oriented volume of the
image ℓ(C) of a cube C ⊂ V of unit volume. Based on experience, one has
the feeling that this quantity shouldn’t depend on the coordinate system
used to measure it. What is almost the same thing, this quantity should
be invariant, depending only on the similarity class of ℓ. From the point
of view of contemporary research methods this seems like a very natural
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quantity to study, and in fact our investigation will develop this intuition
along very natural and straightforward lines until we arrive at the theory of
the determinant. Based on this picture of its logical structure, one might
guess that the theory emerged at a single point in time, when some gifted
researcher noticed the issue and pursued it systematically.

In fact the theory of the determinant emerged over a long period of
time, in fits and starts. The two dimensional case was considered by Gero-
lamo Cardano (1501-1576) and higher dimensional cases were considered by
Leibniz. During the 18th century contributions to the theory were made
by Gabriel Cramer (1704-1752), Étienne Bezout (1730-1783), Alexandre-
Théophile Vandermonde (1735-1796), Laplace, and Lagrange, and at the
beginning of the 19th century Gauss applied the determinant to issues in
number theory, but it was not until 1811 that Jacques Binet (1786-1856)
and Augustin Louis Cauchy (1789-1857) independently stated and proved
what we might think of as the most fundamental fact about the determi-
nant, namely the multiplicative property (Theorem 5.13). Now many things
that seem simple and logical in retrospect are more complicated and far less
obvious than we imagine, but I think this also says something about how
powerful the axiomatic method is in research, by virtue of the questions it
suggests and the methods it presents for addressing them. In a world with
modern tools and hordes of hungry graduate students, theories like the one
we’ll see below do not go undeveloped for long.

In pursuing the geometric intuition described above, the first point to
clarify is the word “oriented.” Orientation is generally regarded as an ad-
vanced mathematical concept, and in some sense this is, perhaps, correct.
But orientation is also a matter of universal everyday experience.

Consider a mirror. To be very explicit, suppose that the mirror is the xz-
coordinate plane for a coordinate system in which the x-axis extends from
left to right along the floor, the y-axis passes under your feet and straight
ahead along the floor toward the horizon, and the z-axis is vertical. Then
the mirror image of a point (x, y, z) with y ≤ 0 appears to be located at
(x,−y, z).

Things look different in the mirror than when you look at them directly,
with left shoes becoming right shoes and so forth. The technical way of
saying this is that the map (x, y, z) 7→ (x,−y, z) “reverses the orientation
of space,” but we are now a long way from being able to say precisely what
might be meant by this, much less justifying such language by providing
a general theory. The main idea to absorb now is that our theory of the
determinant will involve negative volume. In the example in question the
volume of the image of the unit cube under the map (x, y, z) 7→ (x,−y, z) is
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−1. In general, the volume of the image of the unit cube will be negative for
a linear transformation that “reverses orientation” and positive for a linear
transformation that “preserves orientation.”

At this point we could try to compute the volume of the image of the
unit cube in some examples, hoping to get some clue about how to go for-
ward. One imagines the inventor of the determinant, having realized that
it was invariant and hence an important quantity, doing extensive compu-
tations in search of inspiration. Well, as we saw above the actual historical
process was quite different, and such computational experiments would get
pretty complicated pretty quickly. We’re not going to beat around the bush.
Instead, we’ll point out certain properties of the volume of the image of the
unit cube, then show that there is a unique function with these properties.

Let b = (b1, . . . ,bn) be a basis of V that, for the most part, will be
fixed throughout our discussion. For w1, . . . , wn ∈ V consider

ℓ = [w1, . . . , wn]b ∈ End(V ).

Without knowing precisely what we mean by volume, we will try to discover
properties of the ratio of the volume of the parallelepiped

ℓ(C) := { δ1w1 + · · · + δnwn : 0 ≤ δ1, . . . , δn ≤ 1 }

to the volume of the unit cube

C := { δ1b1 + · · · + δnbn : 0 ≤ δ1, . . . , δn ≤ 1 }.

That is, we would like to define a function

∆b : End(V ) → R

whose properties correspond to the interpretation that ∆b(ℓ) is this ratio.
What properties should we expect ∆b to have?

First of all, and most obviously, the identity function on V maps the
unit cube to itself, so we should have

∆b(IdV ) = 1.

This point really requires no further comment.
If we interchange wi and wj, the result is to reverse the orientation of the

image. Consistent with our interpretation of orientation reversal as negating
volume, we should have

∆b([w1, . . . , wj , . . . ,wi, . . . , wn]b)

= −∆b([w1, . . . , wi, . . . , wj , . . . , wn]b). (∗)
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In the case of n = 2, this is illustrated in Figure 5.1. We look at the
image of the unit square in the two cases. By including a test shape that is
different from its mirror image, we can visually detect orientation reversal.
For general n this idea is harder to visualize, and indeed we will soon have
to do some combinatoric work just to show that it makes sense.

w1

w2

e1

e2

w1

w2

[w1, w2]e [w2, w1]e

Figure 5.1

If we multiply some wi by a scalar α, this should result in the volume
being expanded by the same factor. That is,

∆b([w1, . . . , αwi, . . . , wn]b) = α∆b([w1, . . . , wi, . . . , wn]b). (∗∗)

This idea is easy to accept when α > 0, as shown in Figure 5.2.

w1

w2

e1

e2

w1

3
2w2

[w1, w2]e [w1,
3
2w2]e

Figure 5.2

When α < 0 we can think of this operation as having two parts: a)
first multiply wi by the absolute value of α; b) now multiply wi by −1. We
already understand a), and b) is an orientation reversal that turns positive
volume into negative volume and vice versa. The combined effect is shown
in Figure 5.3.
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w1

w2

e1

e2

w1

−3
2w2

[w1, w2]e [w1,−3
2w2]e

Figure 5.3

Suppose we add some multiple of wj to wi where i 6= j. As Figure 5.4
suggests, this doesn’t change the total volume, so we should have

∆b([w1, . . . , wi + αwj , . . . , wn]b) = ∆b([w1, . . . , wn]b) (∗ ∗ ∗)

for all i 6= j and all α ∈ R.

w1

w2

e1

e2

w1
w2−w1

[w1, w2]e [w1, w2−w1]e

Figure 5.4

Here is a different way to visualize this idea. Put a deck of playing cards
on a table in the usual way, with its sides at 90◦ angles. We think of its
volume as ∆e([ℓe1, we2, he3]e) where ℓ, w, and h are the length, width, and
height, respectively, and e = {e1, e2, e3} is the standard basis of R3. Now
push against the deck with your hand in a way that leaves the bottom card
fixed and slants the deck in some direction. The effect of this is to leave ℓe1

and we2 fixed while replacing he3 with he3 + δℓe1 + δwe2 for some numbers
δℓ and δw. Since the volume of the deck is unchanged, we should have

∆e([ℓe1, we2, he3 + δℓe1 + δwe2]e) = ∆e([ℓe1, we2, he3]e).

The final formula governing ∆b is

∆b([w1, . . . , wi +w′
i, . . . , wn]b) =
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∆b([w1, . . . , wi, . . . , wn]b) + ∆b([w1, . . . , w
′
i, . . . , wn]b).

This is illustrated in the two dimensional case in Figure 5.5, but I think that
in higher dimensions it is not so easy to visualize directly. Here is a different
explanation. If the dimension of the span V ′ of w1, . . . , wi−1, wi+1, . . . , wn
is less than n − 1, then the formula will hold because all its terms will be
zero. If V ′ is (n − 1)-dimensional, then take some x ∈ V \ V ′. Since x and
V ′ span V , we have wi = αx + w and w′

i = α′x + w′ where α and α′ are
scalars and w,w′ ∈ V ′. Then (∗∗) and (∗ ∗ ∗) imply that

∆b([w1, . . . , wi, . . . , wn]b) = α∆b([w1, . . . , x, . . . , wn]b),

∆b([w1, . . . , w
′
i, . . . , wn]b) = α′∆b([w1, . . . , x, . . . , wn]b),

and

∆b([w1, . . . , wi +w′
i, . . . , wn]b) = (α+ α′)∆b([w1, . . . , x, . . . , wn]b),

and these combine to give the equation above.

w1

w2

w′
2

e1

e2

w1

w2+w′
2

[w1, w2]e

[w1, w
′
2]e

[w1, w2+w′
2]e

Figure 5.5

We have just seen that the properties described above are not all in-
dependent, even though each has some distinct psychological importance
as part of a functional understanding of the concept. The following two
definitions boil them down to the logical minimum.

Definition 5.1. A function ∆b : End(V ) → k is multilinear if

∆b([w1, . . . , αwi + w′
i, . . . , wn]b) =

α∆b([w1, . . . , wi, . . . , wn]b) + ∆b([w1, . . . , w
′
i, . . . , wn]b)

for all w1, . . . , wn ∈ V , i = 1, . . . , n, w′
i ∈ V , and α ∈ k.
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That is, for any i and w1, . . . , wi−1, wi+1, . . . , wn,

wi 7→ ∆b([w1, . . . , wi−1, wi, wi+1, . . . , wn]b)

is a linear function from V to k.

Definition 5.2. A function ∆b : End(V ) → k is alternating if

∆b([w1, . . . , wn]b) = 0

whenever wi = wj for some i 6= j.

If ∆b is multilinear and alternating, and ∆b(IdV ) = 1, then it satisfies
all the equations above. This is clear except, perhaps, for the equation that
says that interchanging wi and wj negates ∆b. The way to obtain this
equation is to note that, because ∆b is alternating,

0 = ∆b([w1, . . . , wi + wj, . . . , wi + wj, . . . , wn]b).

Using multilinearity, we can expand the right hand side as a sum of four
terms, two of which are zero because ∆b is alternating. What remains is a
rearrangement of (∗).

Does a multilinear alternating ∆b exist at all? Is there a unique such
∆b satisfying ∆b(IdV ) = 1? The answers are affirmative, but will involve a
brief adventure in group theory. In the remainder of this section we set up
the key question, which is answered in the next section.

Let an n× n matrix A = (aij) be given. For j = 1, . . . , n let

wj = a1jb1 + · · · + anjbn,

and let

ℓb(A) := [w1, . . . , wn]b =
[

n
∑

i=1

ai1bi, . . . ,
n
∑

i=1

ainbi
]

b

be the element of End(V ) whose matrix with respect to b is A. Applying
multilinearity to w1 gives

∆b(ℓb(A)) =
n
∑

i1=1

ai11∆b([bi1 , w2, . . . , wn]b).

This can be repeated for w2, . . . , wn, and eventually we arrive at

∆b(ℓb(A)) =
n
∑

i1,...,in=1

ai11 · · · ainn∆b([bi1 , . . . ,bin ]b).
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This simplifies a bit if we recognize that ∆b([bi1 , . . . ,bin ]b) = 0 when-
ever ih = ij for some h 6= j. That is, the only terms in the sum that can
be nonzero are those for which the function j 7→ ij is injective, and con-
sequently bijective because it maps a finite set to itself. Recall that the
symmetric group Sn is the set of permutations of {1, . . . , n}. That is, an
element of Sn is a bijection σ : {1, . . . , n} → {1, . . . , n}. So,

∆b(ℓb(A)) =
∑

σ∈Sn

aσ(1)1 · · · aσ(n)n∆b([bσ(1), . . . ,bσ(n)]b).

We now see that ∆b is completely determined by its restriction

[bσ(1), . . . ,bσ(n)]b 7→ ∆b([bσ(1), . . . ,bσ(n)]b)

to bases obtained by permuting b1, . . . ,bn. This restriction needs to be
alternating, in the obvious sense, and we need to have ∆b([b1, . . . ,bn]b) = 1.
In the next section we will show that there is exactly one function satisfying
these conditions.

5.2 Even and Odd Permutations

For 1 ≤ i, j ≤ n with i 6= j the swap of i and j is the permutation τij ∈ Sn
given by

τij(h) =











j, h = i,

i, h = j,

h, otherwise.

In this section we will mainly be concerned with compositions of several
swaps, and compositions of swaps with other permutations, so to save space
we will write compositions multiplicatively, e.g., τkℓτij rather than τkℓ ◦ τij.

In thinking about permutations it can help to have a concrete image.
Suppose we have n objects, labeled 1, . . . , n, and n buckets, which are also
labeled 1, . . . , n. We identify a permutation σ with the arrangement in
which, for each k = 1, . . . , n, the bucket labeled with k has the object
labeled with σ(k) in it. Suppose that we now interchange the contents of
the buckets labeled i and j. Then bucket i has object σ(j) in it, and bucket
j has object σ(i) in it, so the new arrangement is the one corresponding to
the permutation στij = τσ(i)σ(j)σ.

The following result is now a matter of concrete everyday experience: one
can obtain any assignment of objects to buckets by swapping the contents
of pairs of buckets until each object is where it should be. (In fact one can
do this with n− 1 or fewer swaps.)
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Lemma 5.3. Every σ ∈ Sn can be written as a composition of swaps.

Proof. Let ρ be a composition of swaps that is maximal, among all compo-
sitions of swaps, for the number of i such that ρ(i) = σ(i). If ρ 6= σ there is
some j with ρ(j) 6= σ(j), and there is some k such that ρ(k) = σ(j). Then
ρτjk takes j to σ(j), and ρ(τjk(i)) = σ(i) for all i such that ρ(i) = σ(i). This
contradicts the definition of ρ, so we must have ρ = σ.

Actually, any permutation σ can be written as a composition of swaps
of the form τi,i+1. This is fairly obvious in the sense that everyone knows
that any assignment of objects to buckets can be attained, eventually, by
repeatedly swapping the contents of adjacent buckets. Alternatively, we can
observe that if i < j, then

τij = τi,i+1τi+1,i+2 · · · τj−2,j−1τj−1,jτj−2,j−1 · · · τi+1,i+2τi,i+1.

That is, starting with the assignment corresponding to e, we move the ith

object up one step at a time until it is in the jth bucket, then move the jth

object down one step at a time until it is in the ith bucket, after which every
other item ends up where it began. Observe that τj−1,j appears once in
this composition, and every other swap appears twice, so the total number
2(j − i) − 1 of swaps is odd.

If the function ∆b is alternating, then it must be the case that

∆b([bτijσ(1), . . . ,bτijσ(n)]b) = −∆b([bσ(1), . . . ,bσ(n)]b)

for all σ ∈ Sn and all swaps τij. Provided that ∆b([b1, . . . ,bn]b) = 1,
∆b([bσ(1), . . . ,bσ(n)]b) must be 1 if σ can be written as the composition of
an even number of swaps, and it must be −1 if σ can be written as the
composition of an odd number of swaps. Our principle objective is to show
that there is no σ that can be written in both these ways.

The method of proof is rather clever. Consider

∆n(X1, . . . ,Xn) :=
∏

1≤i<j≤n

(Xj −Xi) ∈ ZZ[X1, . . . ,Xn].

This polynomial is called the Vandermonde determinant for reasons that
will be explained a bit later. For any σ ∈ Sn we have either

∆n(Xσ(1), . . . ,Xσ(n)) = ∆n(X1, . . . ,Xn)

or
∆n(Xσ(1), . . . ,Xσ(n)) = −∆n(X1, . . . ,Xn)
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because ∆n(Xσ(1), . . . ,Xσ(n)) can be obtained from ∆n(X1, . . . ,Xn) by mul-
tiplying each of the factors Xj − Xi by 1 or −1, so there is a function
sgn : Sn → {−1, 1} such that

∆n(Xσ(1), . . . ,Xσ(n)) = sgn(σ) · ∆n(X1, . . . ,Xn).

We call sgn(σ) the sign of σ, and we say that σ is an odd permutation

or an even permutation according to whether sgn(σ) is −1 or 1.
We now compare the sign of each factor in

(a)
∏

1≤i<j≤n

(Xστk,k+1(j) −Xστk,k+1(i)) and (b)
∏

1≤i<j≤n

(Xσ(j) −Xσ(i)).

If {i, j} ∩ {k, k + 1} = ∅, then σ(τk,k+1(i)) = σ(i) and σ(τk,k+1(j)) = σ(j),
so Xσ(j) −Xσ(i) has the same sign in (a) and (b). If 1 ≤ i < k, then

Xστk,k+1(k) −Xστk,k+1(i) = Xσ(k+1) −Xσ(i)

and
Xστk,k+1(k+1) −Xστk,k+1(i) = Xσ(k) −Xσ(i)

have the same signs in (a) and (b). Similarly, if k + 1 < j ≤ n, then

Xστk,k+1(j) −Xστk,k+1(k) = Xσ(j) −Xσ(k+1)

and
Xστk,k+1(j) −Xστk,k+1(k+1) = Xσ(j) −Xσ(k)

have the same signs in (a) and (b). Since

Xστk,k+1(k+1) −Xστk,k+1(k) = Xσ(k) −Xσ(k+1)

occurs with opposite signs in (a) and (b), there is exactly one sign reversal,
and we can conclude that sgn(στk,k+1) = −sgn(σ).

Above we saw that any swap is a composition of an odd number of swaps
of the form τk,k+1, so sgn(στ) = −sgn(σ) for any permutation σ and any
swap τ . Since every permutation can be written as a composition of swaps,
we conclude that sgn(σ) = −1 if σ can be written as a composition of an
odd number of swaps and sgn(σ) = 1 if σ can be written as a composition
of an even number of swaps, so, as desired, it is never possible to write a
permutation in both ways.

In view of all this, sgn(σσ′) = sgn(σ)sgn(σ′) for all σ, σ′ ∈ Sn, so

sgn : Sn → {−1, 1}
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is a homomorphism if we regard {1,−1} as a group with multiplication as the
group operation. It won’t figure in our subsequent work, but it is nonetheless
worth mentioning that An := sgn−1(1) is a normal (because it is the kernel
of a homomorphism) subgroup of Sn called the alternating group on n
letters. These groups figure prominently in the theory of simple groups
because An is simple with one oddball exception: A4 is not simple. (There
is an elementary proof that An is simple when n ≥ 5, but unfortunately it
is a bit too long to include here.)

5.3 The Determinant of a Matrix

Let’s review the situation. In the section before last we showed that if b is
a basis of V , ∆b : End(V ) → k is multilinear and alternating, and A is an
n× n matrix, then

∆b(ℓb(A)) =
∑

σ∈Sn

aσ(1)1 · · · aσ(n)n∆b([bσ(1), . . . ,bσ(n)]b).

Since ∆b is alternating, if ∆b(IdV ) = 1, then the results of the last section
imply that ∆b([bσ(1), . . . ,bσ(n)]b) = sgn(σ) for all σ. In sum, if ∆b :
End(V ) → k is multilinear and alternating with ∆b(IdV ) = 1, then

∆b(ℓb(A)) =
∑

σ∈Sn

sgn(σ)aσ(1)1 · · · aσ(n)n.

But we still need to show that the function defined by this formula actually
satisfies the stated conditions.

Both in order to be very clear about what our results depend on, and be-
cause there are important applications that depend on the additional gener-
ality, in this section we will work with matrices whose entries lie in a general
commutative ring with unit R. Let

A =







a11 · · · a1n
...

. . .
...

an1 · · · ann







be an n× n matrix with entries in R. The determinant of A is

|A| =

∣

∣

∣

∣

∣

∣

∣

a11 · · · a1n
...

. . .
...

an1 · · · ann

∣

∣

∣

∣

∣

∣

∣

:=
∑

σ∈Sn

sgn(σ) · aσ(1)1 · · · aσ(n)n.
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In this section and the next the analysis will refer only to matrices, de-
veloping the key properties of the determinant using purely algebraic com-
putations. Of course the relation between square matrices and linear endo-
morphisms is the underlying motivation, and the key properties are closely
related to the formulas for ∆b([w1, . . . , wn]b) developed earlier, but from a
logical point of view nothing depends on that.

We begin with perhaps the most basic property of the determinant. Any
product aσ(1)1 · · · aσ(n)n includes a factor from each row and a factor from
each column, so:

Proposition 5.4. If all the entries in one of the rows, or one of the columns,
of A are zero, then |A| = 0.

A slightly more sophisticated version of this idea occurs when exactly
one of the entries of a column or row are nonzero. At this point we present
only the simplest version of this: a11 is the nonzero entry in question. The
other results developed in this and the next section will make it easy to
generalize to an arbitrary aij later.

Proposition 5.5. If a12, . . . , a1n are all zero, or a21, . . . , an1 are all zero,
then

|A| = a11 ·

∣

∣

∣

∣

∣

∣

∣

a22 · · · a2n
...

...
an2 · · · ann

∣

∣

∣

∣

∣

∣

∣

.

Proof. In either case the only nonzero products aσ(1)1 · · · aσ(n)n are those
with σ(1) = 1. If, for such a σ, the permutation τ ∈ Sn−1 is given by
τ(j) := σ(i + 1) − 1, then sgn(τ) = sgn(σ) because any representation of σ
as a composition of swaps can be “translated” into a representation of τ as
a composition of the same number of swaps. Therefore

|A| =
∑

σ∈Sn,σ(1)=1

sgn(σ)

n
∏

i=1

aσ(i)i = a11

∑

τ∈Sn−1

sgn(τ)

n−1
∏

j=1

aτ(j)+1,j+1.

We now develop the properties of the determinant that correspond to
the conditions we want ∆b to satisfy. The first result requires no comment
and is, I think, obvious enough that there is no need to present a proof.

Proposition 5.6. If I is the n× n identity matrix, then

|I| = 1.
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The next two results imply that the determinant of A is a multilinear
function, and the third states that is alternating. The proofs reflect, in a
straightforward manner, ideas we have seen earlier. But the formula defining
the determinant is bulky, so computations involving it are necessarily rather
messy.

Proposition 5.7. Suppose A = (aij), A
′ = (a′ij), and A′′ = (a′′ij) are n× n

matrices such that, for some h, a′′ih = aih + a′ih for all i = 1, . . . , n and
aij = a′ij = a′′ij for all 1 ≤ i, j ≤ n with j 6= h. Then |A′′| = |A| + |A′|.

Proof. This is a straightforward calculation:

|A′′| =
∑

σ∈Sn

sgn(σ) · a′′σ(1)1 · · · a′′σ(n)n

=
∑

σ∈Sn

sgn(σ) · aσ(1)1 · · · (aσ(h)h + a′σ(h)h) · · · aσ(n)n

=
∑

σ∈Sn

sgn(σ) · aσ(1)1 · · · aσ(n)n +
∑

σ∈Sn

sgn(σ) · a′σ(1)1 · · · a′σ(n)n

= |A| + |A′|.

Proposition 5.8. If A = (aij) and A′ = (a′ij) are n×n matrices such that,
for some h and α ∈ R,

a′ij =

{

αaij , j = h,

aij, j 6= h,

for all 1 ≤ i, j ≤ n, then |A′| = α|A|.

Proof. This is another simple calculation:

|A′| =
∑

σ∈Sn

sgn(σ) · a′σ(1)1 · · · a′σ(n)n

=
∑

σ∈Sn

sgn(σ) · aσ(1)1 · · · (αaσ(h)h) · · · aσ(n)n

= α
∑

σ∈Sn

sgn(σ) · aσ(1)1 · · · aσ(n)n = α|A|.
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Proposition 5.9. Suppose A = (aij) is an n × n matrix and A′ = (a′ij) is
obtained from A by interchanging columns k and ℓ, for some 1 ≤ k < ℓ ≤ n,
so that

a′ij = aiτkℓ(j)

for all 1 ≤ i, j ≤ n. Then |A′| = −|A|.
Proof. For any σ ∈ Sn we have

n
∏

h=1

a′σ(h)h =

n
∏

h=1

aσ(h)τkℓ(h) =

n
∏

h′=1

aστkℓ(h′)h′

where the second equality comes from the substitution h′ := τkℓ(h). The
function σ 7→ στkℓ is a bijection from Sn to itself (in fact it is its own inverse)
so

|A′| =
∑

σ∈Sn

sgn(σ) · a′σ(1)1 · · · a′σ(n)n

=
∑

σ∈Sn

sgn(σ) · aστkℓ(1)1 · · · aστkℓ(n)n

= −
∑

σ∈Sn

sgn(στkℓ) · aστkℓ(1)1 · · · aστkℓ(n)n

= −
∑

σ∈Sn

sgn(σ) · aσ(1)1 · · · aσ(n)n = −|A|.

The most frequent operation in numerical computation of determinants—
adding a scalar multiple of one column to another column—is a combination
of the more elementary operations described above. Starting with A, dis-
tinct indices g, h, and α ∈ R, form A′ by replacing the gth column of A
with α times the hth column. Then |A′| = 0 because |A′| is α times the
determinant of a matrix with two identical column, and the determinant of
such a matrix must be zero because the last result implies that it is equal to
its negation. If we then form A′′ by replacing the gth column of A with the
sum of the gth column and the gth column of A′ (which is α times the hth

column of A) then Proposition 5.7 gives |A′′| = |A|+ |A′| = |A|. We restate
this conclusion with A′ in place of A′′:

Proposition 5.10. Suppose A = (aij) and A′ = (a′ij) are n × n matrices
such that, for some 1 ≤ g, h ≤ n with g 6= h and some α ∈ R, a′ig = aig+αaih
for all i = 1, . . . , n, and aij = a′ij for all 1 ≤ i, j ≤ n with j 6= g. Then
|A′| = |A|.
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When R is a field the last result and Propositions 5.5 and 5.9 combine to
give a systematic procedure for computing determinants numerically. Let’s
suppose that a11 6= 0. (If all the entries in the first row are zero, then the
determinant is zero, and otherwise we can bring this about by interchanging
columns to get a matrix whose determinant is the same or, in the case n = 2,
its negation.) For each i = 2, . . . , n we can subtract a1i/a11 times the first
column from column i, thereby obtaining

|A| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 0 · · · 0
a21 a22 − a12

a11
a21 · · · a2n − a1n

a11
a21

...
...

...
an1 an2 − a12

a11
an1 · · · ann − a1n

a11
an1

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Applying Proposition 5.5,

|A| = a11 ·

∣

∣

∣

∣

∣

∣

∣

a22 − a12
a11
a21 · · · a2n − a1n

a11
a21

...
...

a2n − a12
a11
an1 · · · ann − a1n

a11
an1

∣

∣

∣

∣

∣

∣

∣

.

We’ve reduced the computation of the determinant of an n × n matrix
to the computation of the determinant of an (n− 1) × (n− 1) matrix. The
reduction took on the order of n2 arithmetical operations, so if we repeatedly
reduce in this fashion the total number of operations required to compute
the determinant is on the order of

n2 + (n− 1)2 + · · · + 1 = 1
6n(n+ 1)(2n + 1).

(The expression on the right hand side is obviously correct when n = 1, and
you are invited to check that (n + 1)(n + 2)(2n + 3) − n(n + 1)(2n + 1) =
6(n+ 1)2.) This number grows much less rapidly than n!, so this procedure
is much more practical than computing the formula defining the determi-
nant directly. A computer can use this method to compute determinants of
matrices with hundreds or even thousands of rows and column. (Actually,
there is something called the “fast Fourier transform” that is much faster
still when the matrices are large.)

5.4 Transposes and Products

In addition to the properties directly motivated by the function ∆b, there
are two additional facts about the determinant that are quite important.
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The transpose of an m× n matrix

A =







a11 · · · a1n
...

. . .
...

am1 · · · amn







is the n×m matrix

AT =







a11 · · · am1
...

. . .
...

a1n · · · amn







obtained by “turning A over,” so that rows become columns and vice versa,
and the ij-entry of A becomes the ji-entry of AT . The results above describe
how the determinant is affected by certain operations on the columns. The
use of such operations in computations is made much more flexible by the
following result, which shows that the same results pertain to operations on
rows.

Proposition 5.11. For any n× n matrix A,

|AT | = |A|.

Proof. For any σ ∈ Sn the list of pairs (1, σ−1), . . . , (n, σ−1(n)) is a reorder-
ing of the list (σ(1), 1), . . . , (σ(n), n), and sgn(σ−1) = sgn(σ)−1 = sgn(σ)
because sgn is a homomorphism. For any group G the function g 7→ g−1 is
a bijection because it is its own inverse. Therefore

|A| =
∑

σ∈Sn

sgn(σ) · aσ(1)1 · · · aσ(n)n

=
∑

σ∈Sn

sgn(σ−1) · a1σ−1(1) · · · anσ−1(n)

=
∑

σ∈Sn

sgn(σ) · a1σ(1) · · · anσ(n) = |AT |.

Now that this result has been established, for each of the column opera-
tions studied in the last section, the corresponding result for row operations
has now been “officially” established. In order to be able to refer to these
results easily we summarize what we’ve learned.
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Theorem 5.12. Let A be an n×n matrix. If A′ is obtained by interchanging
two of the columns of A, then |A′| = −|A|, so |A| = 0 whenever A has
two identical columns. If A′ is obtained from A by multiplying one of A’s
columns by a scalar α, then |A′| = α|A|. If A′ is obtained from A by adding
a linear combination of the other columns to one of the columns of A, then
|A′| = |A|. If all the entries in column j other than aij are zero, then

|A| = (−1)i+jaij ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 · · · a1,j−1 a1,j+1 · · · a1n
...

...
...

...
ai−1,1 · · · ai−1,j−1 ai−1,j+1 · · · ai−1,n

ai+1,1 · · · ai+1,j−1 ai+1,j+1 · · · ai+1,n
...

...
...

...
an1 · · · an,j−1 an,j+1 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

All these results hold equally with ‘column’ replaced by ‘row.’

Proof. The only claim that might not be clear, after all the other results
above, is the one concerning all entries in column j, other than aij , being
zero. The idea is to interchange rows i and i−1, then interchange rows i−1
and i−2, and so forth until row i becomes row 1, then interchange columns j
and j−1, then interchange columns j−1 and j−2, and so forth until column
j becomes column 1. The total number of swaps is (i− 1) + (j − 1).

As an illustration of how row and column operation can be combined,
we will now verify the formula from which the Vandermonde determinant
derives its name. The Vandermonde matrix is

V (X1, . . . ,Xn) :=















1 X1 X2
1 · · · Xn−1

1

1 X2 X2
2 · · · Xn−1

2

1 X3 X2
3 · · · Xn−1

3
...

...
...

...
1 Xn X2

n · · · Xn−1
n















.

We will show that

|V (X1, . . . ,Xn)| = ∆n(X1, . . . ,Xn) :=
∏

1≤i<j≤n

(Xj −Xi).

The determinant of V (X1, . . . ,Xn) is unaffected if we subtract the first
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row from each of the other rows, so

|V (X1, . . . ,Xn)| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 X1 X2
1 · · · Xn−1

1

0 X2 −X1 X2
2 −X2

1 · · · Xn−1
2 −Xn−1

1

0 X3 −X1 X2
3 −X2

1 · · · Xn−1
3 −Xn−1

1
...

...
...

...

0 Xn −X1 X2
n −X2

1 · · · Xn−1
n −Xn−1

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Since the only entry in the first column is the 1 in the upper left hand corner,
we have

|V (X1, . . . ,Xn)| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

X2 −X1 X2
2 −X2

1 · · · Xn−1
2 −Xn−1

1

X3 −X1 X2
3 −X2

1 · · · Xn−1
3 −Xn−1

1
...

...
...

Xn −X1 X2
n −X2

1 · · · Xn−1
n −Xn−1

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

For each relevant i and j there is the factorization

Xj
i −Xj

1 = (Xi −X1)(X
j−1
i +Xj−2

i X1 + · · · +XiX
j−2
1 +Xj−1

1 ).

Therefore

|V (X1, . . . ,Xn)| = |W | ·
n
∏

i=2

(Xi −X1) (∗)

where

W :=











1 X2 +X1 X2
2 +X2X1 +X2

1 · · · Xn−2
2 + · · · +Xn−2

1

1 X3 +X1 X2
3 +X3X1 +X2

1 · · · Xn−2
3 + · · · +Xn−2

1
...

...
...

...

1 Xn +X1 X2
n +XnX1 +X2

1 · · · Xn−2
n + · · · +Xn−2

1











.

In evaluating the determinant of W we can subtract X1 times the first
column from the second column, subtract X2

1 times the first column from the
third column, and so forth, finally subtracting Xn−2

1 times the first column
from the last column, arriving at

|W | :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 X2 X2
2 +X2X1 · · · Xn−2

2 + · · · +X2X
n−3
1

1 X3 X2
3 +X3X1 · · · Xn−2

3 + · · · +X3X
n−3
1

...
...

...
...

1 Xn X2
n +XnX1 · · · Xn−2

n + · · · +XnX
n−3
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We can now subtract X1 times the second column from the third column,
subtract X2

1 times the second column from the fourth column, and so on
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until Xn−3
1 times the second column is subtracted from the last column, so

that

|W | :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 X2 X2
2 · · · Xn−2

2 + · · · +X2
2X

n−4
1

1 X3 X2
3 · · · Xn−2

3 + · · · +X2
3X

n−4
1

...
...

...
...

1 Xn X2
n · · · Xn−2

n + · · · +X2
nX

n−4
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Continuing in this manner leads eventually to

|W | :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 X2 X2
2 · · · Xn−2

2

1 X3 X2
3 · · · Xn−2

3
...

...
...

...
1 Xn X2

n · · · Xn−2
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Induction now implies the claim. Evidently ∆1(X1) = 1 is the determi-
nant of V (X1) because this is a 1 × 1 matrix whose only entry is 1. If the
desired formula has already been established with n− 1 in place of n, then

|W | = ∆n−1(X2, . . . ,Xn) =
∏

2≤j<k≤n

(Xk −Xj),

and the desired formula for ∆n(X1, . . . ,Xn) is obtained by substituting this
in equation (∗):

|V (X1, . . . ,Xn)| =
(

n
∏

i=2

(Xi −X1)
)

·
(

∏

2≤j<k≤n

(Xk −Xj)
)

=
∏

1≤i<j≤n

(Xj −Xi) = ∆n(X1, . . . ,Xn).

This formula has an interesting geometric interpretation. Obviously the
rows of the Vandermonde matrix are linearly dependent whenever there are
distinct i and j such that Xi = Xj . This formula implies that this is the
only way there can be a linear dependence.

Perhaps the most commonly used result concerning the determinant is
the fact that taking the determinant commutes with matrix multiplication.
Thinking in terms of composition of linear functions leads us to expect
this, since, for example, if ℓ : V → V expands volume by a factor of 3, and
m : V → V compresses volume according to a factor of 1/2, then m◦ℓ should
expand volume by a factor of 3/2. Even so, the complexity of the formula
defining the determinant suggests that the proof might be a nightmare. But
it turns out to be about as simple and straightforward as one might hope.
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Theorem 5.13. If A and B are n× n matrices, then

|AB| = |A| |B|.

Proof. We start out with the definition of |AB|, then massage it in what
seems like a promising direction:

|AB| =
∑

σ∈Sn

sgn(σ)
(

n
∑

j1=1

aσ(1)j1bj11
)

· · ·
(

n
∑

jn=1

aσ(n)jnbjnn
)

=
∑

σ∈Sn

sgn(σ)

n
∑

j1,...,jn=1

aσ(1)j1bj11 · · · aσ(n)jnbjnn

=

n
∑

j1,...,jn=1

(

∑

σ∈Sn

sgn(σ)aσ(1)j1 · · · aσ(n)jn

)

bj11 · · · bjnn.

Now observe that
∑

σ∈Sn

sgn(σ)aσ(1)j1 · · · aσ(n)jn

is the determinant of the matrix whose ith column is the ji
th column of A.

This is 0 if ji = ji′ for some i 6= i′, and if there is ρ ∈ Sn such that ji = ρ(i)
for all i, then it is sgn(ρ)|A|. Therefore

|AB| = |A|
∑

ρ∈Sn

sgn(ρ)bρ(1)1 · · · bρ(n)n = |A| |B|.

5.5 Back to Linear Transformations

We now revert to working over a field k. Let V be an n-dimensional vector
space over k with basis b. Combining the results of the last three sections
yields:

Theorem 5.14. There is a unique multilinear alternating function ∆b :
End(V ) → k with ∆b(IdV ) = 1 given by the formula

∆b(ℓb(A)) = |A|.

It’s time to take what we’ve learned about determinants of matrices and
use it to put the finishing touches on the theory of determinants of linear
transformations.
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Proposition 5.15. An endomorphism ℓ ∈ End(V ) is singular if and only
if ∆b(ℓ) = 0.

Proof. Let ℓ = [w1, . . . , wn]b where wj =
∑n

i=1 aijbi, so that A = (aij)
is the matrix of ℓ. If ℓ is singular, then w1, . . . , wn are linearly dependent
(Proposition 4.11) which implies that one of the columns of A = (aij) can
be expressed as a linear combination of the other columns, so that Theorem
5.12 implies that |A| = 0. If ℓ is nonsingular, then it is invertible, and we
can let B be the matrix of ℓ−1. Then BA is the matrix of IdV , so BA = I
and |A| |B| = |AB| = |I| = 1, and consequently |A| 6= 0.

The applicability of this insight is not restricted to endomorphisms. Sup-
pose that W and X are n-dimensional vector spaces and A is the matrix
of m : W → X, say with respect to bases c and d. If |A| = 0, then the
endomorphism ℓb(A) ∈ End(V ) is singular, and consequently A cannot be
invertible, which in turn implies that m is singular. On the other hand, if
|A| 6= 0, then ℓb(A) is nonsingular, so A is invertible, and consequently m
is nonsingular. Thus:

Theorem 5.16. If W and X are n-dimensional vector spaces and A is the
matrix of the linear transformation m : W → X, then the following are
equivalent:

(a) A is invertible;

(b) m is an isomorphism;

(c) |A| 6= 0.

We will now show that similar endomorphisms have the same determi-
nant. Suppose ℓ ∈ End(V ) and ℓ′ ∈ End(V ′) are similar, so there is a linear
isomorphism ι : V → V ′ such that the diagram

V
ℓ−−−−→ V

ι





y





y

ι

V ′ ℓ′−−−−→ V ′

commutes. Let b be a basis of V , let c be a basis of V ′, and let A and A′

be the matrices of ℓ and ℓ′ with respect to these bases. Let C be the matrix
of ι. Since ι−1 ◦ ι = IdV , C−1 is the matrix of ι−1. We have CAC−1 = A′

because ι ◦ ℓ ◦ ι−1 = ℓ′, and |C| |C−1| = |CC−1| = |I| = 1, so

∆b(ℓ) = |A| = |C| |A| |C−1| = |A′| = ∆c(ℓ
′).
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An important special case of the situation considered in the last para-
graph is that V ′ = V , ι = IdV , and ℓ′ = ℓ, so that A is the matrix of ℓ with
respect to b and A′ is the matrix with respect to c. Then

∆b(ℓ) = |A| = |A′| = ∆c(ℓ).

That is, the determinant of an endomorphism doesn’t depend on the basis
used to compute it, as we should expect if the determinant of ℓ is the factor
by which ℓ expands or contracts volume. Now, at long last, we can define
the determinant of ℓ ∈ End(V ), denoted by det(ℓ) or |ℓ|, to be ∆b(ℓ),
where b may be any basis of V .

Here are the main things we know about the function det : End(V ) → k
at this point:

(a) det(IdV ) = 1;

(b) det(·) is multilinear and alternating, in the sense that for any basis b

the function

(w1, . . . , wn) 7→ det([w1, . . . , wn]b)

from V n to k has these properties;

(c) For all ℓ ∈ End(V ), if A is the matrix of ℓ with respect to some basis
(for both the domain and range) then det(ℓ) = |A|. Consequently:

(i) det(m ◦ ℓ) = det(m) det(ℓ) for all ℓ,m ∈ End(V );

(ii) for all ℓ ∈ End(V ), det(ℓ) = 0 if and only if ℓ is singular.

In addition, det is the unique function satisfying (a) and (b).

5.6 The Characteristic Polynomial

Sometimes in mathematics one works very hard to attain conclusions that
can be stated in a few lines. There are other times when a simple obser-
vation unearths an abundance of interesting consequences. Having labored
to develop the theory of the determinant, we will now start with a given
ℓ ∈ End(V ) and study

pℓ(t) := det(ℓ− t · IdV ).

This is called the characteristic polynomial of ℓ, and we can think of it
as a function from k to k.
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Suppose that V ′ is another n-dimensional vector space over k and ℓ′ ∈
End(V ′) is similar to ℓ, so that ℓ′ = ι ◦ ℓ ◦ ι−1 for some linear isomorphism
ι : V → V ′. Then, for any t,

ℓ′ − t · IdV ′ = ι ◦ ℓ ◦ ι−1 − t · (ι ◦ IdV ◦ ι−1) = ι ◦ (ℓ− t · IdV ) ◦ ι−1.

Therefore ℓ−t·IdV and ℓ′−t·IdV ′ are similar and consequently have the same
determinant, so pℓ′(t) = pℓ(t) for all t. That is, the characteristic polynomial
is invariant. Hopefully you don’t need to be told that this should lead you
to suspect that it’s interesting and important.

If A is the matrix of ℓ with respect to any basis, then

pℓ(t) = |A− t · I|,

and the right hand side can be thought of as the determinant of a matrix
with entries in k[t], in which case pℓ(t) is itself an element of k[t]. This
formula can be expressed in a way that is easier to manipulate algebraicly
if we introduce a piece of notation that is often useful. For 1 ≤ i, j ≤ n let

δij :=

{

1, i = j,

0, i 6= j.

This is called the Kronecker delta in honor of Leopold Kronecker. The
n×n identity matrix is now I = (δij), so the entries of A− t ·I are aij− tδij,
and we have

pℓ(t) = |A− t · I| =
∑

σ∈Sn

sgn(σ)(aσ(1)1 − tδσ(1)1) · · · (aσ(n)n − tδσ(n)n). (∗)

Let
pℓ(t) = cnt

n + cn−1t
n−1 + · · · + c1t+ c0 ∈ k[t].

Somehow we started with a single invariant, the determinant, and rather
magically turned it into what seem to be n+1 invariants c0, . . . , cn+1. Let’s
look at a few of these a bit more closely. Imagine expanding the right
hand side of (∗) using the distributive law, obtaining n!2n terms, and then
gathering together the terms involving like powers of t, thereby obtaining
expressions for the coefficients c0, . . . , cn of pℓ(t). The terms that don’t
include a power of t (or include t0, if you prefer to think of it that way) are
precisely the terms in the expansion of the determinant of A, so c0 = |A| =
det(ℓ), which we’ve seen before. In order to get a term in the expansion
that involves tn, and is nonzero, we need to have δσ(i)i = 1 for all i, so
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that σ is the identity permutation e. Clearly there will be exactly one such
term, namely sgn(e)(−t)n = (−1)ntn, so cn = (−1)n is not an interesting
invariant.

But the other coefficients c1, . . . , cn−1 are all new and nontrivial invari-
ants of ℓ. Of these, the last is by far the simplest and most important. To
evaluate it we consider each term

sgn(σ)(aσ(1)1 − tδσ(1)1) · · · (aσ(n)n − tδσ(n)n)

in our formula for pℓ(t). If the degree of this polynomial is n− 1 or n, then
there must be at least n − 1 indices i such that σ(i) = i. But the only
permutation with this property is the identity permutation e. Therefore
cn−1 is the coefficient of tn−1 in the polynomial

(a11 − t) · · · (ann − t).

If we use the distributive law to expand this into 2n terms, the ones that
have t raised to the power n− 1 are a11(−t)n−1, . . . , ann(−t)n−1. Thus cn−1

is (−1)n−1 times the trace of A, which is, by definition,

a11 + · · · + ann.

If 0 6= v ∈ V and ℓ(v) = rv for some scalar r, then we say that v is an
eigenvector of ℓ, and that r is the associated eigenvalue. (‘Eigen’ is the
German word for “self.”) In this circumstance ℓ− r · IdV is singular, so

pℓ(r) = det(ℓ− r · IdV ) = 0.

Conversely, if r is a root of pℓ, then ℓ − r · IdV is singular, so there is a
nonzero v ∈ V such that (ℓ− r · IdV )(v) = 0, i.e., v is an eigenvector. Thus
the eigenvalues of ℓ are precisely the roots of the characteristic polynomial,
and for each eigenvalue there is at least one associated eigenvector. More
precisely, for each eigenvalue r the associated eigenspace is the kernel of
ℓ− rIdV , which has positive dimension.

The next result gives a partial answer to the classification problem that
originally motivated our discussion of the determinant, now rather long ago.

Theorem 5.17. Suppose that pℓ(t) has n distinct roots in k, so that

pℓ(t) = (−1)n(t− r1) · · · (t− rn),

where r1, . . . , rn are all distinct. For each i = 1, . . . , n let vi be an eigenvector
of ℓ associated with ri. Then v1, . . . , vn are linearly independent, hence a
basis of V . If pℓ′ = pℓ, where V ′ is another n-dimensional vector space over
k and ℓ′ ∈ End(V ′), then ℓ and ℓ′ are similar.
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Proof. Aiming at a contradiction, suppose that v1, . . . , vn are linearly depen-
dent, and let 0 = α1v1 + · · · + αnvn be a linear dependence that is minimal
in the sense of having as few nonzero coefficients as any other linear depen-
dence. Each vi is nonzero because it is an eigenvector, so at least two of the
scalars α1, . . . , αn are nonzero. In addition, the eigenvalues are distinct, so,
after reindexing if necessary, we can have α1 6= 0 6= α2 and r1 6= 0.

Applying ℓ to our linear dependence gives

0 = ℓ(α1v1 + · · · + αnvn) = r1α1v1 + · · · + rnαnvn.

Dividing this linear dependence by r1 and subtracting it from the one we
started with yields

0 = (1 − r2/r1)α2v2 + . . .+ (1 − rn/r1)αnvn.

Since (1−r2/r1)α2 6= 0, this is a linear dependence, and it has fewer nonzero
terms than the one we started with, contrary to our assumption of minimal-
ity. In view of this contradiction we now know that v1, . . . , vn are linearly
independent.

For each i = 1, . . . , n let v′i ∈ V ′ be an eigenvector of ℓ′ with associated
eigenvalue ri, so that v′1, . . . , v

′
n is a basis of V ′. Let ι : V → V ′ be the linear

transformation that takes each vi to v′i. Then ι ◦ ℓ ◦ ι−1 = ℓ′, so that ℓ and
ℓ′ are similar, because for any scalars α1, . . . , αn there is the computation

ι(ℓ(ι−1(α1v
′
1 + · · · + αnv

′
n))) = ι(ℓ(α1v1 + · · · + αnvn))

= ι(r1α1v1 + · · · + rnαnvn)

= r1α1v
′
1 + · · · + rnαnv

′
n = ℓ′(α1v

′
1 + · · · + αnv

′
n).

To what extent does this result fail to fully solve the problem of classify-
ing linear endomorphisms? First of all, pℓ can fail to be a product of n linear
factors if k is not algebraically complete. In connection with R and C this
possibility is one instance of an important general principle of mathematics
that flows out of the fundamental theorem of algebra: the world of complex
objects is fairly simple and orderly, but reality is complicated and messy.

The second problem is that even when k is algebraically complete, pℓ
can have fewer than n roots. Consider the linear transformation ℓ : k2 → k2

with matrix
(

1 1
0 1

)

.
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Then pℓ(t) = (1 − t)2, which is the same as pIdV
, and the only root of pℓ is

1. An eigenvector (x, y) is a solution to the system

x+ y = x; y = y,

so the set of eigenvectors { (α, 0) : α ∈ k } is one dimensional. There cannot
possibly be a basis whose elements are all eigenvectors. (Such a basis is
called an eigenbasis.) In contrast any basis of k2 is an eigenbasis for
IdV . In general, if ℓ′ ∈ End(V ′) is similar to ℓ because ι : V → V ′ is an
isomorphism such that ℓ′ ◦ ι = ι ◦ ℓ, then v ∈ V is an eigenvector of ℓ if
and only if ι(v) is an eigenvector of ℓ′, as you can easily verify for yourself.
Therefore ℓ and IdV cannot be similar, even though they have the same
characteristic polynomial.

5.7 The Cayley-Hamilton Theorem

We now study a beautiful theorem of Arthur Cayley (1821-1895) and William
Rowan Hamilton (1805-1865) that will play an important role in the next
section’s analysis of the classification problem. Before diving in, I should say
that the material in this section and the next is quite a bit more advanced
than what we’ve done so far, and it won’t play a role in the rest of the book,
so you are certainly free to skip it if that is your inclination. But it is also
quite beautiful, and one of the high points of 19th mathematics, so if you
choose to skip ahead now, I hope you’ll come back sometime when you are
in the mood for a challenge.

Suppose k is a field, V is a vector space over k, and ℓ ∈ End(V ). The
Cayley-Hamilton theorem considers the result of substituting ℓ for t in the
characteristic polynomial of ℓ. If p(t) = amt

m + · · · a1t + a0 ∈ k[t] is any
univariate polynomial, then p “evaluated” at ℓ is

p(ℓ) = amℓ
m + · · · + a1ℓ+ a0IdV ∈ End(V )

where each ℓi as the i-fold composition ℓ ◦ · · · ◦ ℓ of ℓ with itself.

But what, precisely, are we doing here? We are quite accustomed to
evaluating a polynomial f(t) ∈ R[t], where R is a commutative ring, at an
element of R. Can we think of p(ℓ) in this way?

Well, End(V ) is a ring with unit if we define multiplication in the ring
to be functional composition. To see this you should mentally check that
(R1)-(R7) hold, or observe that once we fix a basis for V , End(V ) can be
identified with the ring Mn(k) of n× n matrices with entries in k. But it’s
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not commutative, except when n = 1, which suggests there might be some
problems. In particular, we haven’t defined a determinant for matrices with
entries in a noncommutative ring. Fortunately, for any fixed ℓ the set Eℓ of
all expressions of the form cmℓ

m + · · · + c1ℓ+ c0IdV is a subring of End(V )
that is commutative. (Again, think about how to prove (R8); it’s not hard,
but there is a rather bulky calculation.) Even so, it may seem strange to
evaluate an element of k[t] by substituting an element of some different ring,
but there is actually a simple way of thinking about this. If we identify each
field element α ∈ k with the linear transformation v 7→ αv, then we can
think of k as a subring of Eℓ, so that we are really evaluating a polynomial
in Eℓ[t] at an element of Eℓ, in the usual way, except that the polynomial
happens to lie in k[t] ⊂ Eℓ[t].

In particular, let

pℓ(t) = (−1)ntn + cn−1t
n−1 + · · · + c1t+ c0

be the characteristic polynomial of ℓ. Suppose that v is an eigenvector of ℓ
with associated eigenvalue r. Then

pℓ(ℓ)v = (−1)nℓn(v) + cn−1ℓ
n−1(v) + · · · + c1ℓ(v) + c0IdV (v)

= (−1)nrnv + cn−1r
n−1v + · · · + c1rv + c0v

= ((−1)nrn + cn−1r
n−1 + · · · + c1r + c0)v

= pℓ(r)v = 0.

If ℓ has an eigenbasis, then pℓ(ℓ) is zero because it maps each element of the
eigenbasis to zero.

When k = C, End(V ) is a finite dimensional vector space that has a
natural topology derived from any norm. Since C is algebraically complete,
the characteristic polynomial of any element of End(V ) is a product of n
linear factors, and it seems intuitively reasonable to guess that the charac-
teristic polynomial of a “typical” or “generic” element of End(V ) will have n
distinct eigenvalues, or that a “random” element will have n distinct eigen-
values “with probability one.” It isn’t necessary to explain these concepts in
detail—they are advanced and beyond the scope of this book—because here
we are only concerned with developing intuition in support of a weaker con-
cept that we will define precisely. A subset of a general topological space X
is said to be dense if its closure is all of X, and hopefully it seems plausible
that the set of elements of End(V ) with n distinct eigenvalues is dense. If ℓ
has n distinct eigenvalues, then pℓ(ℓ) = 0, so the set of such ℓ is a subset of

S := { ℓ ∈ End(V ) : pℓ(ℓ) = 0 },
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and we should expect S to be dense. It is not terribly difficult to show that
ℓ 7→ pℓ(ℓ) is a continuous function from End(V ) to itself, and {0} is closed
in End(V ), so S is a closed subset of End(V ), and if it is also dense, then
it must be all of End(V ). This line of reasoning leads us to expect that
pℓ(ℓ) = 0 even when ℓ does not have an eigenbasis, and in fact this is the
case:

Theorem 5.18 (Cayley-Hamilton Theorem). For all ℓ ∈ End(V ),

pℓ(ℓ) = 0.

It is possible (using some high level results) to prove this when k = C

by fleshing out the ideas described above, but for an algebraist such a proof
would be highly unsatisfactory. A guiding principle of research in algebra
is that if a theorem has a purely algebraic statement, then there should be
an algebraic proof, and when a proof using topology or other techniques of
analysis is known, the search for an algebraic proof becomes an important
goal of algebraic research. This is much more than a matter of wanting to
extend the result to fields other than C or R: when there is an algebraic
theorem with an analytic proof, but no algebraic proof (such situations
have sometimes persisted for years or decades) there must be a gap in our
understanding.

Below we give an algebraic proof, at the heart of which is a fact called
Cramer’s rule, after Gabriel Cramer (1704-1752). Consider an n×nmatrix
C with entries in R where R is commutative ring with unit. The adjugate

or classical adjoint of C is the n×n matrix adj(C) whose ji-entry adjji(C)
is the determinant

∑

σ∈Sn,σ(j)=i

sgn(σ)cσ(1)1 · · · cσ(j−1)j−1 · 1 · cσ(j+1)j+1 · · · cσ(n)n

of the matrix obtained from C by replacing cij with 1 and replacing all other
entries of the ith row and the jth column by 0. (Note the reversal of row
and column indices!)

Theorem 5.19 (Cramer’s Rule). If R is a commutative ring with unit, and
C is an n× n matrix with entries in R, then

adj(C)C = det(C)I.

Proof. We compute each of the entries of adj(C)C. First observe that the
jth diagonal entry, namely the product

∑n
i=1 adjji(C)cij of the jth row of
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adj(C) and the jth column of C, is

n
∑

i=1

(

∑

σ∈Sn,σ(j)=i

sgn(σ)cσ(1)1 · · · cσ(j−1)j−1 · 1 · cσ(j+1)j+1 · · · cσ(n)n

)

cij

=
∑

σ∈Sn

sgn(σ)cσ(1)1 · · · cσ(j−1)j−1 · cσ(j)j · cσ(j+1)j+1 · · · cσ(n)n = det(C).

Now suppose that k 6= j. Then the product
∑n

i=1 adjji(C)cik of the jth

row of adj(C) and the kth column of C is

n
∑

i=1

(

∑

σ∈Sn,σ(j)=i

sgn(σ)cσ(1)1 · · · cσ(j−1)j−1 · 1 · cσ(j+1)j+1 · · · cσ(n)n

)

cik

=
∑

σ∈Sn

sgn(σ)cσ(1)1 · · · cσ(j−1)j−1 · cσ(j)k · cσ(j+1)j+1 · · · cσ(n)n,

and this quantity is zero because it is the determinant of a matrix with two
identical columns, namely the matrix obtained by replacing the jth column
of C with the kth column.

In textbooks Cramer’s rule is usually presented as a method for comput-
ing the determinant “by hand,” and is written as the formula

C−1 = adj(C)/|C|

for the inverse of C. Of course this version is less general, since it doesn’t
make sense unless R is a field, and even then its validity depends on |C| 6= 0.
In addition, it is customary to express Cramer’s rule in terms of the cofac-

tors Mij := (−1)i+jadjij(C), reflecting a feeling that it is psychologically
easier to compute Mij because it is the determinant of the matrix obtained
from C by deleting the jth row and the ith column.

Proof of Theorem 5.18. Let b1, . . . ,bn be a basis of V , let A be the matrix
of ℓ with respect to this basis, and set

B :=







a11IdV − ℓ · · · a1nIdV
...

. . .
...

an1IdV · · · annIdV − ℓ






.

Then pℓ(ℓ) is the determinant of B, so our goal is to show that det(B) =
0 ∈ End(V ).
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Since A is the matrix of ℓ,

ai1b1 + · · · + ainbn − ℓ(bi) = 0

for each i = 1, . . . , n. This equation can be rewritten as

B







b1
...

bn






= 0 ∈ V n.

(This formula is a bit different than anything we’ve seen before, insofar as
we are multiplying a matrix of endomorphisms of V with a column vector
whose entries are elements of V , but it makes perfect sense if we interpret
the product of an endomorphism and a vector as the result of applying the
endomorphism to the vector.) Multiplying both sides of this equation by
the adjugate of B gives

adj(B)
(

B







b1
...

bn







)

= 0.

Below we will show that we can pass from this to

(

adj(B)B
)







b1
...

bn






= 0,

after which Cramer’s rule yields

0 =
(

det(B)







IdV · · · 0
...

. . .
...

0 · · · IdV







)







b1
...

bn






=







det(B) · · · 0
...

. . .
...

0 · · · det(B)













b1
...

bn






.

Since b1, . . . ,bn is a basis, it follows that det(B) is the origin in End(V ).
The remaining step is to show that M(Nw) = (MN)w whenever M and

N are n × n matrices with entries in Eℓ and w is a column vector whose
entries are elements of V . (The only real difficulty here is recognizing that
this needs to be proved!) That the ith entries of M(Nw) and (MN)w are
the same is shown by the calculation
∑

j

mij

(

∑

k

njk(wk)
)

=
∑

k

(

∑

j

mij(njk(wk))
)

=
∑

k

(

∑

j

mij ◦ njk
)

wk

in which the first equality combines linearity and commutativity of addi-
tion, and the second equality is simply the definition of addition of endo-
morphisms.
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5.8 Canonical Forms

We now explain the approach that gives the best understanding of the clas-
sification problem. The material will be a bit more technical than the rest
of the chapter in two senses. First, our approach is rather abstract, taking
advantage of the material on rings and modules introduced in Chapter 2.
But this aspect is not (at least as I see things) very difficult. Quite the
contrary: this section exemplifies how the abstract approach can simplify
and clarify ideas that might seem much more complex if they were presented
only in relation to the particular application under consideration.

But there are also two theorems whose proofs are rather technical. Since
that sort of material is contrary to the spirit of this book, I have decided
not to include these arguments in the main text. Rather paradoxically, it
seems better to leave them for you to work out, and each is sketched in a
sequence of problems, among those at the end of the book related to this
chapter. You don’t have to do them if you prefer not to, but (after being
broken down into smaller steps) they are not that difficult; the arguments
are “technical” primarily in the sense that there are many details that need
to be attended to. Working these problems would certainly strengthen and
deepen your understanding and appreciation of this topic.

Throughout this section we work with a fixed n-dimensional vector space
V and a given endomorphism ℓ ∈ End(V ). The general idea will be to show
that we can find a basis with respect to which the matrix of ℓ has a certain
“canonical” form. If the canonical matrices of two linear transformations are
the same, then the two linear transformations are similar, of course. The
main point will be that if the canonical forms of two linear transformations
are different, then the transformations are not similar, so the canonical form
solves the classification problem.

What might a canonical form look like, and how might one find one?
The usual approach to thinking about a question like this is to first think
about special cases that suggest some sort of answer, hoping that one can
generalize its main features. If ℓ has an eigenbasis b1, . . . ,bn, then its matrix
with respect to this basis has zeros off the main diagonal (such a matrix is
called a diagonal matrix) and the diagonal entries are the eigenvalues. For
each eigenvalue λ, the associated eigenspace includes all the bi such that
ℓ(bi) = λbi. It obviously includes the span of these bi, and by writing an
arbitrary element of V as a linear combination of b1, . . . ,bn, then applying ℓ,
one can easily see that this span includes every element of the eigenspace, so
it is the eigenspace. Note that ℓ maps each eigenspace to itself; a subspace
with this property is called an invariant subspace of ℓ. Every element
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of V can be written as a sum of elements of the eigenspaces, so we have
decomposed V into a sum of invariant subspaces.

In general ℓ won’t have an eigenbasis, but we can always think about
decomposing V into a sum of invariant subspaces. If such a decomposition is,
in some sense, determined by the similarity class of ℓ, we can try to develop
a canonical form for ℓ by looking for canonical forms for the restrictions of ℓ
to each of the invariant subspaces in the decomposition. On the other hand,
if there is no nontrivial decomposition of a particular sort, that information
can be used to guide and refine our search for a canonical form for ℓ. For
each v ∈ V the span of v, ℓ(v), ℓ2(v), . . . is an invariant subspace, and it
turns out that these subspaces are especially useful.

There are some general remarks that will play a role in what follows.
Let A be a k-algebra. (Recall that this means that A is a ring that has k
as a subring.) Then each a ∈ A induces a homomorphism ϕa : k[X] → A
given by the formula

ϕa(p) := p(a).

The formal verification that this is a homomorphism is, as usual, trivial and
mechanical: if p, q ∈ k[X], then

ϕa(p+ q) = (p + q)(a) = p(a) + q(a) = ϕa(p) + ϕa(q)

and

ϕa(pq) = (pq)(a) = p(a)q(a) = ϕa(p)ϕa(q).

As we saw already in the last section, it can be important that the image
of this homomorphism, namely the set of polynomial functions of a, is a
commutative ring even when A is not commutative.

Now recall that in Chapter 2 we showed that k[X] is Euclidean, hence a
PID. The kernel of ϕa is an ideal, of course, hence a principal ideal, and any
generator is called a minimal polynomial for a. If the ideal is (0), then
0 is the unique minimal polynomial. Otherwise we can divide a minimal
polynomial by its leading coefficient to obtain a polynomial that is minimal
(since it generates the same ideal) and monic. There is a terminological
convention that facilitates our discussion, namely agreeing (unless stated
otherwise, or when the kernel is (0)) that a minimal polynomial should
be understood to be monic. There cannot be two distinct monic minimal
polynomials because they would have to have the same degree (each is an
element of the ideal generated by the other) and their difference would be
a nonzero element of the kernel of ϕa that had lower degree than either
(putatively) minimal polynomial, and was consequently outside the ideal
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they each generate. Therefore there is a unique monic minimal polynomial
that will be called the minimal polynomial of a.

Let ϕ : S → R be a ring homomorphism between rings with unit
that takes the unit 1S ∈ S to the unit 1R ∈ R, and let M be a left R-
module. Then ϕ induces an S-module structure on M given by the formula
sm := ϕ(s)m. This is fairly obvious, but it’s “virtuous” to go through the
verification anyway. Of course

1S ·m = ϕ(1S)m = 1R ·m = m

for any m ∈M . If s ∈ S and m1,m2 ∈M , then

s(m1 +m2) = ϕ(s)(m1 +m2) = ϕ(s)m1 + ϕ(s)m2 = sm1 + sm2.

If s1, s2 ∈ S and m ∈M , then

(s1 + s2)m = ϕ(s1 + s2)m = (ϕ(s1) + ϕ(s2))m

= ϕ(s1)m+ ϕ(s2)m = s1m+ s2m

and

(s1s2)m = ϕ(s1s2)m = (ϕ(s1)ϕ(s2))m = ϕ(s1)(ϕ(s2)m) = s1(s2m).

Let’s now apply these generalities to the problem at hand. As we ex-
plained in the last section, if we define multiplication to be functional com-
position, then End(V ) is a ring with unit 1 = IdV , and in fact End(V ) is a
k-algebra if we identify each α ∈ k with the the endomorphism v 7→ αv. It
is easy to see (but you should check the details for yourself) that the vector
space structure of V extends to an End(V )-module structure if we define
the scalar product of l ∈ End(V ) and v ∈ V to be l(v). For this reason (but
also simply because it makes things more attractive visually and easier to
read) we will often write lv rather than l(v). As an element of End(V ), ℓ
induces a homomorphism

ϕℓ : k[X] → End(V ),

and ϕℓ induces a k[X]-module structure on V given by the function (q, v) 7→
ϕℓ(q)v = q(ℓ)v. We will sometimes write Rℓ in place of k[X] when we wish
to emphasize this structure.

We now use the fact that V is finite dimensional. Any basis of V induces
an isomorphism between End(V ) and the ring Mn(k) of n×n matrices with
entries in k, so End(V ) is n2-dimensional. Since k[X] is infinite dimensional
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and ϕℓ is linear (as a map between vector spaces over k) its kernel cannot
be (0), and consequently the minimal polynomial of ℓ cannot be equal to 0.
Concretely, the minimal polynomial is a polynomial

p = a0 + a1X + · · · + am−1X
m−1 +Xm

whose coefficients are the coefficients of a linear dependence

a0IdV + a1ℓ+ · · · + am−1ℓ
m−1 + ℓm = 0

with the additional property that for any m′ < m, ℓm
′
cannot be expressed

as a linear combination of IdV , ℓ, . . . , ℓ
m′−1.

We claim that the minimal polynomial of ℓ is an invariant, i.e., it depends
only on the similarity class of ℓ. Let ι : V → V ′ be an isomorphism. From
a technical point of view the key is the following lemma, which implies that
if ℓ′ = ι ◦ ℓ ◦ ι−1, then q(ℓ′) = ι ◦ q(ℓ) ◦ ι−1 for every q ∈ k[X], so q(ℓ) = 0 if
and only if q(ℓ′) = 0, which is to say that ϕℓ and ϕℓ′ have the same kernel.

Lemma 5.20. If W and W ′ are vector spaces over k, α : W →W ′ is linear,
and l ∈ End(W ) and l′ ∈ End(W ′) satisfy α◦l = l′◦α, then α◦q(l) = q(l′)◦α
for all q ∈ k[X].

Proof. For any nonnegative integer h and any c ∈ k we have

α ◦ clh = c(α ◦ lh) = c(l′ ◦ α ◦ lh−1) = · · · = c(l′
h−1 ◦ α ◦ l) = cl′

h ◦ α.

Thus the claim holds when q is a monomial, and it holds in general because
if l1, . . . , lk ∈ End(W ) and l′1, . . . , l

′
k ∈ End(W ′) with α ◦ lj = l′j ◦α for all j,

then

α◦(l1 + · · ·+ lk) = α◦ l1 + · · ·+α◦ lk = l′1 ◦α+ · · ·+ l′k ◦α = (l′1 + · · ·+ l′k)◦α.

It’s not really germaine to the discussion here, but it is interesting to
note that the minimal polynomial p diagnoses whether ℓ is singular or non-
singular. If the constant term a0 is different from 0, then ℓ is invertible
because

IdV = ℓ
(

− (a1/a0) − (a2/a0)ℓ− · · · − (am/a0)ℓ
m−1

)

.

If, on the other hand, a0 = 0, then ℓ cannot be invertible because if it was
the computation

0 = ℓ−1p(ℓ) = a1 + a2ℓ+ · · · + amℓ
m−1
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would contradict the minimality of p.
The map q + kerϕℓ 7→ ϕℓ(q) is a vector space isomorphism between

k[X]/ ker ϕℓ and the image of ϕℓ. The dimension of k[X]/ kerϕℓ is m
(1 + kerϕℓ, . . . ,X

m−1 + kerϕℓ is a basis) and the dimension of End(V )
is n2, so m ≤ n2. But actually the Cayley-Hamilton theorem is precisely
the assertion that the characteristic polynomial of ℓ is in the kernel of ϕℓ.
The characteristic polynomial has degree n, so m ≤ n. This is crucial! A
quick browse of this section might suggest that what we are doing here is
completely unrelated to the theory of the determinant, but without this
“little fact” it would be impossible to develop the theory. In this sense ev-
erything we have learned about the determinant in earlier sections is not
just “relevant.” It is indispensable.

In general a left R-module M is cyclic if there is some m ∈ M such
that M = Rm. We now study the case in which V is a cyclic Rℓ-module, so
V = Rℓv for some v ∈ V . Note that V = Rℓv if and only if v, ℓ(v), ℓ2(v), . . .
span V . We saw above that m ≤ n, and when V is a cyclic Rℓ-module, the
reverse inequality also holds, so that m = n. To see this observe that for
any µ ≥ m we have

ℓµ(v) = −a0ℓ
µ−m(v) − · · · − am−1ℓ

µ−1(v)

because this equation holds when µ = m since p(ℓ)v = 0, and the general
case can be obtained from this case by applying ℓµ−m to both sides. There-
fore (by induction) ℓm(v), ℓm+1(v), . . . are spanned by v, ℓ(v), . . . , ℓm−1(v).
Since n ≥ m, the vectors v, ℓ(v), . . . , ℓm−1(v) must constitute a basis.

Simply by considering the image under ℓ of each element of this basis,
we find that the matrix of ℓ with respect to it is

C(p) :=



















0 0 0 · · · 0 −a0

1 0 0 · · · 0 −a1

0 1 0 · · · 0 −a2
...

...
...

...
...

0 0 0 · · · 0 −am−2

0 0 0 · · · 1 −am−1



















.

In the cyclic case the minimal polynomial is a complete invariant: if two
linear transformations have the same minimal polynomial p and are cyclic,
in the sense that for each there is an element of the vector space such that
a basis is generated by repeatedly applying the transformation to this ele-
ment, then the matrix of each with respect to this basis is C(p), so the two
transformations are similar. It is not obvious at this point, but eventually it
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will become apparent that in general two elements of End(V ) that have the
same minimal polynomial need not be similar, so the minimal polynomial
does not completely solve the general classification problem.

If M is a left R-module, then the annihilator of m ∈M is

Ann(m) = { a ∈ R : am = 0 }.

Clearly Ann(m) is a left ideal of R. We say that M is the internal direct

sum of submodules M1, . . . ,Mk, and we write

M = M1 ⊕ · · · ⊕Mk,

if each m ∈ M has a unique representation of the form m = m1 + · · · +mk

with mi ∈ Mi for each i. The key to extending our analysis beyond the
cyclic case is the first of the two “technical” results mentioned at the outset:

Theorem 5.21 (Structure Theorem for Principal Ideal Domains). If R is
a PID and M is a finitely generated R-module, then M is a finite internal
direct sum Rg1 ⊕ · · · ⊕Rgr of cyclic submodules where

Ann(g1) ⊃ Ann(g2) ⊃ · · · ⊃ Ann(gr).

If g′1, . . . , g
′
s is another system of generators with these properties, then s = r

and Ann(g′i) = Ann(gi) for all i. In addition r is the minimal number of
elements of any system of generators.

In view of this result we can choose v1, . . . , vr such that

V = Rℓv1 ⊕ · · · ⊕Rℓvr

with Ann(v1) ⊃ · · · ⊃ Ann(vr). For each j = 1, . . . , r let Vj := Rℓvj , let
ℓj := ℓ|Vj , and let πj : V → Vj be the linear map w1 + · · ·+wr 7→ wj. Then
ℓj ◦ πj = πj ◦ ℓ, and consequently (Lemma 5.20) q(ℓj) ◦ πj = πj ◦ q(ℓ) for all
q ∈ k[X]. In particular,

q(ℓ)vj = 0 ⇐⇒ πj ◦ q(ℓ) = 0 ⇐⇒ q(ℓj) ◦ πj = 0 ⇐⇒ q(ℓj) = 0,

so the monic generator of Ann(vj) = kerϕℓj is the minimal polynomial of ℓj.
Denote this polynomial by pj . Then (pj) = Ann(vj) ⊃ Ann(vj+1) = (pj+1),
so pj divides pj+1. Since q(ℓ) = 0 if and only if q(ℓ)vj = 0 for all j, and this
is the case if and only if q(ℓj) = 0 for all j, the minimal polynomial of ℓ is
the least common multiple of p1, . . . , pr, which is pr.
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Since each Vj is a cyclic Rℓj -module, by choosing, for each j, a basis
of Vj consisting of the appropriate initial segment of vj, ℓ(vj), ℓ

2(vj), . . ., we
obtain a basis of V with respect to which the matrix of ℓ is











C(p1)
C(p2)

. . .

C(pr)











.

This is called the coarse canonical form of ℓ.
We now wish to show that the coarse canonical form is an invariant of

ℓ. The objects that determine the coarse canonical form, namely the ideals
Ann(v1), . . . ,Ann(vr), are determined by the Rℓ-module structure of V , so
it suffices to show that if ι : V → V ′ is an isomorphism and ℓ′ = ι ◦ ℓ ◦ ι−1,
then V and V ′ are isomorphic as k[X]-modules. But Lemma 5.20 implies
that ι ◦ q(ℓ) = q(ℓ′) ◦ ι for all q ∈ Rℓ. Formally, the verification that ι is
a k[X]-module homomorphism consists of the linearity of ι, which implies
that ι is a homomorphism of the underlying commutative groups, together
with the fact that for all q ∈ k[X] and v ∈ V we have

ι(qv) = ι(q(ℓ)v) = q(ℓ′)(ι(v)) = qι(v).

Since two linear transformations with the same coarse canonical form are
similar, the coarse canonical form is a complete invariant. In a certain sense
we have solved the classification problem.

In another sense this resolution of the issue is not fully satisfactory, or
at least it leaves a desire for results that give a fuller and more descriptive
picture of the structure of ℓ. When ℓ had an eigenbasis we obtained a related
decomposition of V as an internal direct sum of invariant subspaces, but even
in that special case the relation between the coarse canonical form and the
eigenvalues and eigenspaces of ℓ is at least a bit murky. It would be nice to
have canonical forms that were more closely related to the eigenvalues.

One consequence of the Cayley-Hamilton theorem is that every root of
the minimal polynomial is an eigenvalue, because it is a root of the charac-
teristic polynomial. The converse is true as well—any eigenvalue is a root
of the minimal polynomial—by virtue of a rather clever and elegant argu-
ment. Suppose that λ is an eigenvalue, so ℓ(v) = λv for some nonzero v.
Then ℓ2(v) = ℓ(λv) = λℓ(v) = λ2v, ℓ3(v) = λ3v, and so forth. Multiplying
these equations by field elements and adding them together, we find that
q(ℓ)v = q(λ)v for any polynomial q ∈ k[X]. In particular, for the minimal
polynomial we have 0 = p(ℓ)v = p(λ)v, so p(λ) = 0.



5.8. CANONICAL FORMS 207

But when k is not algebraicly complete it can easily happen that ℓ has no
eigenvalues. Every polynomial in k[X] factors as a product of linear factors
when k is algebraicly complete, and when k is not algebraicly complete it
is still the case that k[X] is a unique factorization domain, as we saw in
Chapter 2. The next result, which is the second of the two mentioned at
the beginning of this section, shows us how to take advantage of this.

Theorem 5.22. Suppose the minimal polynomial of ℓ has the prime factor-
ization

p = pe11 · · · pei
k .

For each i = 1, . . . , k let qi :=
∏

j 6=i p
ej

j , and let Ui be the image of qi(ℓ).
Then V = U1 ⊕ · · · ⊕Uk. In addition, each Ui is the kernel of pei

i (ℓ) and an
invariant subspace, and the minimal polynomial of ℓ|Ui is pei

i .

Let’s apply the earlier analysis to one of the Ui. We have

Ui = Wi1 ⊕ · · · ⊕Wiri

where each Wij is a cyclic Rℓ-submodule of Ui, say with generator vij . We
saw above that the annihilator of vij is the minimal polynomial of ℓ|Wij , and
that the least common multiple of these minimal polynomials is the minimal
polynomial of ℓ|Ui , which is pei

i . In particular, since pi is irreducible, the

annihilator of vij is (p
fij

i ) for some integer fij ≤ ei, and since Ann(vi1) ⊃
· · · ⊃ Ann(viri) we have fi1 ≤ . . . ≤ firi = ei. We have shown that we can
find a basis of Ui with respect to which ℓi has the block diagonal matrix

Ri :=













C(pfi1
i )

C(pfi2
i )

. . .

C(p
firi
i )













,

and doing this for every i gives a basis for V with respect to which the
matrix of ℓ is











R1

R2

. . .

Rk











.

This matrix is called the rational canonical form of ℓ. The objects that
determine the rational canonical form, namely the minimal polynomial p =
pe11 · · · pei

k , the integers r1, . . . , rk, and the integers fij for 1 ≤ i ≤ k and
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1 ≤ j ≤ ri, are all derived from the Rℓ-module structure of V , so they are
invariants of ℓ, and consequently the rational canonical form is a complete
invariant.

In comparison with the coarse canonical form, the rational canonical
form has one significant advantage. Suppose that (with respect to some
basis) the matrix of ℓ is C(qe) where q is an irreducible polynomial. Then
the dimension of V is the degree of qe, which is e times the degree of q.
It turns out that it is impossible to write V as a nontrivial internal direct
sum W1 ⊕W2 of invariant subspaces because, for each i = 1, 2, the minimal
polynomial of ℓ|Wi must divide qe, so it is qei for some integer ei > 0. The
minimal polynomial of ℓ would then be qmax{e1,e2}, and consequently the
dimension of W1 ⊕W2 would be e1 + e2 = e + min{e1, e2} > e times the
degree of q, which is impossible. In this sense the rational canonical form
gives a decomposition of V as an internal direct sum of invariant subspaces
that is as fine as possible, because each of the summands cannot be further
decomposed.

The rational canonical form depends on the field k because in an ex-
tension of k it may no longer be the case that p1, . . . , pk are all irreducible.
Passing to the extension field may or may not be simplifying, but if we have
access to an algebraically complete field that contains k, there is at least a
sense in which working with that field is a bit more “canonical.” For this
reason (and also just because it is simple) we should be particularly inter-
ested in what happens when each pi = X − λi is a linear monic polynomial,
as is the case necessarily when k is algebraically complete. Each such λi is
an eigenvalue because any root of the minimal polynomial is a root of the
characteristic polynomial. As we saw earlier, every eigenvalue is a root of
the minimal polynomial, so λ1, . . . , λk are the eigenvalues of ℓ.

Suppose that (X − λi)
fij is the minimal polynomial of

ℓij := ℓ|Wij : Wij →Wij .

There is a vector v ∈Wij such that (ℓij−λi)fij−1v 6= 0, and for such a v the
vectors v, (ℓij − λi)v, . . . , (ℓij − λi)

fij−1v are linearly independent. (If there
was a linear dependence we could apply an appropriate power of ℓij − λi to
obtain a linear dependence with only one term, which is impossible.) We
know that the dimension of Wij is fij, so this collection of vectors is actually
a basis, and the matrix of ℓij − λi with respect to this basis has a 1 in each
slot right below the main diagonal and 0’s elsewhere. Consequently the
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matrix of ℓij = (ℓij − λi) + λi with respect to this basis is

Jfij
(λi) :=



















λi 0 0 · · · 0 0
1 λi 0 · · · 0 0
0 1 λi · · · 0 0
...

...
...

...
...

0 0 0 · · · λi 0
0 0 0 · · · 1 λi



















.

This matrix is a called the fij-dimensional basic Jordan block belonging
to λi.

For each i let

Si :=











Jfi1
(λi)

Jfi2
(λi)

. . .

Jfiri
(λi)











.

We have shown that if p is a product of linear factors, then we can find a
basis for V with respect to which the matrix of ℓ is











S1

S2

. . .

Sk











This matrix is called the Jordan canonical form of ℓ. Since the similarity
class of ℓ determines the minimal polynomial p, its roots λ1, . . . , λk (which
are the eigenvalues of ℓ) and the numbers fij, the Jordan canonical form is
also a complete invariant for ℓ when its minimal polynomial is a product of
linear factors.



Chapter 6

The Derivative

Sir Isaac Newton (1643-1727) was the most important scientist ever. That’s
not to say that he was the cleverest, or in some other sense the most intel-
ligent. One can mount a respectable argument that Gauss, Riemann, and
a few others were much more talented mathematicians, and the 20th cen-
tury saw a host of extremely brilliant physicists. Other mathematicians, say
Hilbert or Euler, have been more prolific. Newton was, by all accounts, very
far from being the nicest scientist ever. It’s just that his accomplishments,
both in mathematics and in physics, are more important than anyone else’s.

In this chapter we’ll study the calculus, which is Newton’s most impor-
tant contribution to mathematics, and also Leibniz’s. Newton worked out
his method years before Leibniz, but published almost nothing about it at
that time. (Later he claimed that his reluctance to publish grew out of a fear
of being mocked.) Leibniz published a full account in 1684, almost a decade
before Newton’s first publication on the subject in 1693. A few years later
members of the Royal Society accused Leibniz of stealing Newton’s ideas,
and the subsequent priority dispute marred both their lives, with severe
and lingering damage to the collegial spirit of the mathematics profession.
Nowadays the consensus among historians is that the discoveries were inde-
pendent, and both men are regarded as more or less equally the founders of
the subject.

Put very generally, the concept we are going to study is as follows: the
derivative of a function at a point is a linear function that, together with
the value of the function at the point, gives an affine approximation of the
function that is asymptotically accurate near the point. Over the next few
pages we will slowly untangle this description, aiming at a precise definition.
After that we will lay out the most important properties of this concept. Our
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treatment has a rather paradoxical quality: although the focus is entirely
theoretical, with little attention paid to developing the particular knowl-
edge and skills that constitute the ability to compute derivatives, the most
basic and important results are precisely the ones establishing that such
computations are possible in a wide variety of circumstances.

First of all, what do we mean by “affine” here? If V and W are vector
spaces, an affine function from V to W is a function of the form

v 7→ w0 + ℓ(v)

where w0 ∈ W and ℓ : V → W is linear. An affine subspace of V is
a subset of the form v0 + L where L is a linear subspace, so the affine
functions from V to W map affine subspaces of V to affine subspaces of W .
Imagine that you were trying to do physics in some nice vector space, but
you didn’t know where the origin was, and (what is more or less the same
thing) the laws of physics in this space didn’t depend on where the origin
was. (The technical terminology for this is that they are invariant under

translations. This means that if you pick up a collection of particles, or
fields, or whatever, and move them to a different part of the space, they will
behave in the same way.) The path of high principle would seemingly be to
rewrite all of linear algebra in terms of “affine spaces” and “affine functions,”
but it wouldn’t be very much fun, and nothing truly new would come out of
the project. The practical approach is to say that affine functions are just
linear functions with constant terms tacked on, and have all the “obvious”
properties. (Even more bluntly, you could say that because nothing depends
on where the origin is, you are free to put it anywhere you like.)

Next, we should say a bit about what we mean by an “asymptotically
accurate approximation.” The basic idea is concrete and familiar. The
simplest expression of it is that a curve is well approximated near a point,
and very well approximated very near the point, by a line that is tangent
to the curve at that point. The “flat earth” theory of the structure of
the Universe is pretty accurate within a few kilometers of your house or
apartment. On a somewhat larger scale, Newtonian physics works very well
for low velocities and weak gravitational fields.

We now have the gist of the intuition: we are going to be giving an
affine approximation of a function between vector spaces that is asymptot-
ically accurate near some point. But the concepts won’t make sense for
vector spaces over an arbitrary field of scalars because we need to say what
‘aymptotic’ means, so we will need to restrict attention to fields satisfying
certain conditions, and the next section gives an abstract description of the
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required properties. The definition of the derivative also requires that the
vector spaces have norms. (This concept was defined for vector spaces over
R in Section 3.1.) For the sake of simplicity we will only consider finite
dimensional vector spaces, and it turns out that one can impose a variety of
norms on any finite dimensional space over a field of the allowed type, but
(and this will be important!) in our work the choice of norm won’t matter,
as a consequence of certain topological facts. These issues are discussed in
Section 6.3. After these preparations the precise definition of the derivative
is given in Section 6.4.

6.1 Assumptions on Scalars

The word ‘asymptotically’ tips us off that limiting processes will be in-
volved, so we are going to be working with vector spaces that are endowed
with topologies. In the one dimensional case such a topology amounts to a
topology on the field of scalars. Let’s fix a field k with a topology once and
for all. Practically speaking, k is either R or C. There are other topological
fields for which calculus makes sense, but you’ll probably never encounter
that sort of calculus unless you study high level analysis or even higher level
number theory, and you should feel free to (in fact encouraged to) think ex-
clusively in terms of k = R except when we are explicitly considering some
other field.

Whenever one imposes a topology on an algebraic structure it is nat-
ural to (more precisely, very unnatural not to) require that the algebraic
operations are continuous. Thus we should expect that the field operations
(addition, multiplication, negation, inversion) will be continuous, but in fact
we will actually insist that k have a certain structure of the sort enjoyed by
R and C. In the case of C there is the modulus or absolute value

|x+ iy| =
√

x2 + y2,

and for R there is the restriction of this function, which is, of course, the
absolute value. The definition of the derivative, and everything that follows,
depends on certain properties of these functions that were established for C

in Section 3.8. The following definition abstracts them.

Definition 6.1. A valuation on k is a function | · | : k → [0,∞) such that
for all s, t ∈ k:

(i) |s| = 0 if and only if s = 0;
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(ii) |st| = |s| |t|;

(iii) |s+ t| ≤ |s| + |t|.

Before anything else, here are a couple basic properties of a valuation.
From (ii) we have |1| = |1 · 1| = |1| |1|, so |1| = 1. Necessarily | − 1| = 1,
because | − 1| is a positive number whose square is 1: | − 1|2 = |(−1)2| =
|1| = 1. Therefore | − s| = | − 1| |s| = |s| for all s.

The valuation induces a metric on k given by the formula

d(s, t) := |s− t|.

Specifically, (i) implies that d(s, t) = 0 if and only if s = t, the fact just
mentioned gives d(t, s) = d(s, t), and (iii) implies the triangle inequality.

With respect to the topology of k induced by this metric, | · | is a contin-
uous function from k to [0,∞). To see this suppose that {sn} is a sequence
converging to s, so that |sn − s| → 0. Then (iii) gives

|sn| ≤ |sn − s| + |s| and |s| ≤ |s− sn| + |sn|,

so that
∣

∣|sn| − |s|
∣

∣ ≤ |sn − s| → 0.

(In the first expression the outer absolute value signs refer to the absolute
value for R, while the inner ones are the valuation on k.)

The field operations are all continuous, as we now show. Negation is the
simplest. Suppose sn → s. Then

|(−sn) − (−s)| = | − (sn − s)| = |sn − s| → 0,

so −sn → −s.
To prove that inversion is continuous consider a sequence {sn} converging

to some s 6= 0. If |sn − s| < |s|/2, then the triangle inequality implies that
|sn| ≥ |s| − |sn − s| > |s|/2, so if ε > 0 and |sn − s| < 1

2 min{ε|s|2, |s|}, then

∣

∣

∣

1

sn
− 1

s

∣

∣

∣ =
∣

∣

∣

s− sn
sns

∣

∣

∣ =
|sn − s|
|sn| |s|

<
2|sn − s|

|s|2 < ε.

Therefore 1/sn → 1/s.
Since we haven’t done anything related to topology for the last two

chapters, its probably a good idea to review some relevant definitions. If
X and Y are topological spaces, the product topology on X × Y is the
topology whose open sets are the unions of sets of the form U × V where
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U ⊂ X and V ⊂ Y are open. A sequence {(xn, yn)} converges to (x, y) if it
is eventually inside each such “open rectangle,” so it converges if and only if
xn → x and yn → y. In particular, a sequence {(sn, tn)} converges to (s, t)
in k × k if and only if |sn − s| → 0 and |tn − t| → 0.

To see that addition is continuous observe that for any s, t ∈ k we have
sn + tn → s+ t as (sn, tn) → (s, t) because, for any ε > 0,

|(sn + tn) − (s+ t)| ≤ |sn − s| + |tn − t| < ε

whenever |sn − s| < ε/2 and |tn − t| < ε/2. Multiplication is a bit more
complicated. If |sn − s| <

√

ε/3 and |tn − t| <
√

ε/3, then

|sn − s| |tn − t| < ε/3,

and if |sn − s| < ε/3|t| (or t = 0) and |tn − t| < ε/3|s| (or s = 0) then

|s| |tn − t| < ε/3 and |sn − s| |t| < ε/3.

Therefore sntn → st as (sn, tn) → (s, t) because

|sntn − st| = |(sn − s)(tn − t) + s(tn − t) + (sn − s)t|
≤ |(sn − s)(tn − t)| + |s(tn − t)| + |(sn − s)t|
= |sn − s| |tn − t| + |s| |tn − t| + |sn − s| |t|
< ε/3 + ε/3 + ε/3 = ε

whenever |sn − s| < 1
3 min{

√
3ε, ε/|t|} and |tn − t| < 1

3 min{
√

3ε, ε/|s|}.
The topology induced by a metric is automatically Hausdorff, and this

is certainly a condition we would like k to satisfy. In Chapter 2 we showed
that, as a consequence of the Least Upper Bound Axiom, R is complete with
respect to the metric induced by the absolute value: every Cauchy sequence
has a limit. Since a Cauchy sequence (with respect to the modulus) in C

can be thought of as a pair of Cauchy sequences in R, C is also complete in
this sense. So, we might guess that the critical properties of R and C that
we need are summarized by saying that k has a valuation, and it is complete
with respect to the derived metric.

Not so fast. For any k there is a trivial valuation given by setting
|0| = 0 and |s| = 1 if s ∈ k∗. (Recall that for any field k, k∗ := k \ {0}.)
The associated metric induces the topology in which every set is open, so
the induced topology is Hausdorff, the field operations are continuous, and
in fact the metric is complete, but none of this is true in an interesting way.
It is important that there be some s ∈ k∗ with |s| 6= 1. If 0 < |s| < 1
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(otherwise 0 < |1/s| < 1) then, by choosing a sufficiently large interger r,
we can make |sr| = |s|r is arbitrarily small and |s−r| = |s|−r arbitrarily
large. Among other things, this implies that 0 is in the closure of k∗.

There is actually one more property we will need the field k to satisfy,
namely that for all R ≥ 0 the closed ball

J(R) := { t ∈ k : |t| ≤ R }

is compact. It is enough to assume that one such ball is compact.

Lemma 6.2. If J(1) is compact, then J(R) is compact for all R ≥ 0.

Proof. Choose a β ∈ k with |β| ≥ R. Then the map s 7→ βs is a bijection
between J(1) and J(|β|) (its inverse is s 7→ s/β) so J(|β|) is compact because
(Theorem 3.47) it is the image of a compact set under a continuous function.
Therefore J(R) is a closed (as the preimage of the closed interval [0, R]
under the continuous function | · |) subset of a compact set, hence compact
by Theorem 3.38.

Summarizing, we are assuming that k has a valuation, and that the
topology induced by the metric derived from this valuation has the following
properties:

• k is complete;

• 0 is in the closure of k∗, and the valuation is unbounded above;

• every closed ball J(R) is compact.

Once again, we are really only interested in R and C. The reason we work
with an abstractly described k is not that we wish to extend the theory to
other fields, although this is possible. The point is to call your attention to
the properties of R and C that figure in our work.

6.2 A Weird Valuation

It is a digression, but the cost at this point is pretty low, so I’d like to
mention another interesting valuation. (You may find it reassuring to learn
that the material in this section is not a prerequisite for anything later in
the book.) Let p be a prime number. Any s ∈ Q∗ can be written in exactly
one way as s = a

bp
r where a, b, and r are integers with a nonzero, b positive,
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a and b relatively prime1, and neither a nor b divisible by p. The exponent
r is called the power of p in s. Fixing an arbitrary α with 0 < α < 1, let

|s|p := αr.

If s′ = a′

b′ p
r′ , then

|ss′|p = αr+r
′
= αrαr

′
= |s|p|s′|p.

If r′ ≥ r, then

s+ s′ =
(a

b
+
a′

b′
pr

′−r
)

pr =
ab′ + a′bpr

′−r

bb′
pr.

Since b and b′ aren’t divisible by p, neither is bb′. If r′ > r, then ab′+a′bpr
′−r

is not divisible by p, but if r′ = r, then ab′ + a′b may be divisible by p, so
| · |p actually satisfies the ultrametric inequality

|s+ s′|p ≤ max{|s|p, |s′|p},

and |s|p = |s′|p whenever the ultrametric inequality holds strictly.
The valuation | · |p seems bizarre at first, and takes some getting used

to. A sequence s1, s2, . . . of rational numbers converges to s, relative to the
metric induced by | · |p, if, for any positive integer R, there is an integer
N such that the power of p in sn − s is greater than R whenever n > N .
Among other things, a sequence of larger and larger (in the normal sense)
integers can converge to a finite quantity. To take a quite simple example,
the sequence 1, p, p2, . . . converges to 0! The limit of a sequence of integers
can even be a fraction:

pn + · · · + p+ 1 =
pn+1 − 1

p− 1
→ − 1

p− 1
.

The sequence
sn = p+ p2 + p4 + · · · + p2n

can be used to show that Q is not complete with respect to the metric
induced by | · |p. This sequence is Cauchy because the power of p in sm− sn
is 2min{m,n} when m 6= n, but it has no limit in Q: the power of p in sn is
one, so zero is not a limit, and if s = a

bp
r is a nonzero rational, then

sn − s =
b(p+ · · · + p2n

) − apr

b
,

1Two integers are relatively prime if they have no common factor, so that their
greatest common divisor is 1.
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and the power of p in b(p + · · · + p2n
) − apr eventually stops changing as n

increases.

In the same way that we constructed the real numbers from the rationals,
it is possible to embed Q (endowed with the metric derived from | · |p) in a
larger field. In fact the method of construction is feasible, and important,
for a general metric space (X, d). Two Cauchy sequences {xn} and {yn}
in X are said to be equivalent if limn→∞ d(xn, yn) = 0. With obvious
modifications, the argument given in Section 2.9 can be used to show that
this is actually an equivalence relation, and we denote the equivalence class of
{xn} by [{xn}]. Let X be the set of equivalence classes of Cauchy sequences.

If {xn} and {yn} are Cauchy sequences, then for anym and n the triangle
inequality gives

d(xm, ym) ≤ d(xm, xn) + d(xn, yn) + d(yn, ym),

and the same inequality holds with m and n reversed, so

|d(xm, ym) − d(xn, yn)| ≤ d(xm, xn) + d(ym, yn)

and consequently d(x1, y1), d(x2, y2), . . . is a Cauchy sequence. Suppose that
{x′n} is equivalent to {xn} and {y′n} is equivalent to {yn}, and observe that

d(x′n, y
′
n) ≤ d(x′n, xn) + d(xn, yn) + d(yn, y

′
n).

Since d(x′n, xn) → 0 and d(yn, y
′
n) → 0, we have lim d(x′n, y

′
n) ≤ lim d(xn, yn),

and of course the reverse inequality also holds. Therefore we can define a
function d : X ×X → [0,∞) by setting

d
(

[{xn}], [{yn}]
)

:= lim
n→∞

d(xn, yn).

It is easy to see that d is a metric: symmetry and the triangle inequality
follow from the fact that d has these properties, and the definition of equiv-
alence insures that d

(

[{xn}], [{yn}]
)

= 0 precisely when [{xn}] = [{yn}].
There is a function ι : X → X taking each x to the equivalence class of
the sequence x, x, . . ., and this is an isometry: d(ι(x), ι(y)) = d(x, y) for all
x, y ∈ X. (Usually it is simpler to think of obtaining X by “adding” points
to X, so that X is a subset of X.)

The metric space (X, d) is called the completion of (X, d). As the
terminology suggests, we tend to think that all the points of X are present
implicitly even if, for whatever reason, we are particularly interested in the
points in X. If (X, d) is already a complete metric space, then X doesn’t
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have any points that aren’t already in X, so ι is a bijection. It’s not that
hard to show that (X, d) is complete, but a full explanation would be rather
lengthy, so we’ll leave it as an exercise if you like.

Now suppose that X is a field, and that the metric is derived from a
valuation. We briefly review the main points of the discussion in Section 2.9
that do not depend on the order axioms, which are equally valid in this more
general setting. Term-by-term negations, sums, and products of Cauchy
sequences are Cauchy, and the sequence {x−1

n } is Cauchy, and inequivalent
to 0, 0, . . . whenever {xn} is a Cauchy sequence that has no zero terms and
is not equivalent to 0, 0, . . .. If we define addition and multiplication of
elements of X by setting

[{xn}] + [{yn}] := [{xn + yn}] and [{xn}] · [{yn}] := [{xnyn}],

then these definitions do not depend on the choices of representatives, and
the field axioms (F1)-(F9) are easily seen to be satisfied, simply by examining
each one and asking whether it holds. (As we explained in Section 2.9, in
truth (F7) is a bit trickier than the others.)

The field obtained in this way from | · |p is called the field of p-adic

numbers. It was introduced by Kurt Hensel (1861-1941) in 1897, it has
played an increasingly important role in number theory since then, and
calculus with respect to this field is an active topic of contemporary research
in number theory. There are valuations on algebraic number fields, and on
other sorts of fields as well, so the general idea has a larger significance than
this particular example might suggest.

6.3 Normed Spaces

We now know that we will be working with vector spaces over a field k that
is endowed with a certain type of valuation. Of course these vector spaces
must also be endowed with topologies, but it turns out that the definition
of the derivative actually requires that the topologies are of a rather special
sort, namely that they are derived from norms. For vector spaces over R we
already know what this means. To handle vector spaces over C we extend
Definition 3.7 to vector spaces over a field with a valuation.

Definition 6.3. Let k be a field with a valuation | · |, and let V be a vector
space over k. A norm on V is a function

‖ · ‖ : V → [0,∞)

such that:
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(i) for all x ∈ V , ‖x‖ = 0 if and only if x = 0;

(ii) ‖αx‖ = |α| · ‖x‖ for all x ∈ V and all α ∈ k;

(iii) ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ V .

The discussion in Section 3.1 applies to this slightly extended defini-
tion with very minor modifications, and you might want to review it now.
Actually, there was only one issue for the case k = R that was not straight-
forward, namely showing that the function

x 7→ ‖x‖2 :=
√

x2
1 + · · · + x2

n

was a norm for Rn. In the end this followed from the Cauchy-Schwartz
inequality. For Cn it is clear that the function

‖z‖2 :=
√

|z1|2 + · · · + |zn|2

satisfies (i) and (ii), and it satisfies (iii) because if zi = xi + iyi, then |zi|2 =
x2
i + y2

i , so it reduces to ‖ · ‖2 on R2n. The functions

‖z‖1 := |z1| + · · · + |zn| and ‖z‖∞ := max{|z1|, . . . , |zn|}

also satisfy (i) and (ii) obviously, and they satisfy (iii) by virtue of the
calculations

‖z+w‖1 = |z1+w1|+· · ·+|zn+wn| ≤ |z1|+|w1|+· · ·+|zn|+|wn| = ‖z‖1+‖w‖1

and

‖z+w‖∞ = max{|z1 +w1|, . . . , |zn+wn|} ≤ max{|z1|+ |w1|, . . . , |zn|+ |wn|}

≤ max{|z1|, . . . , |zn|} + max{|w1|, . . . , |wn|} = ‖z‖∞ + ‖w‖∞.
As was the case in Chapter 3, any norm determines a metric defined by

the formula d(x, y) = ‖x− y‖. For δ > 0 let

B(δ) := { v ∈ V : ‖v‖ ≤ δ }

be the closed unit ball of radius δ centered at the origin in V . Then a set
U ⊂ V is open if, for each v ∈ U , there is some δ > 0 such that v+B(δ) ⊂ U .
Here are some basic properties that are applied very frequently:

Lemma 6.4. Addition, scalar multiplication, and the norm itself, are con-
tinuous functions.
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Proof. Addition: For any x, y, x′, y′ ∈ V we have

‖(x′ + y′) − (x+ y)‖ ≤ ‖x′ − x‖ + ‖y′ − y‖,

so x′ + y′ ∈ x+ y +B(δ) whenever x′ ∈ x+B(δ/2) and y′ ∈ y +B(δ/2).

Scalar Multiplication: For any x, x′ ∈ V and α,α′ ∈ k we apply (iii), then
(ii), obtaining

‖α′x′ − αx‖ = ‖α′(x′ − x) + (α′ − α)x‖ ≤ |α′| ‖x′ − x‖ + |α′ − α| ‖x‖.

If |α′−α| < min{1, δ/2‖x‖}, so that |α′| ≤ 1+|α|, and x′ ∈ x+B(δ/2(1+|α|))
then α′x′ ∈ αx+B(δ) because

|α′| ‖x′ − x‖ + |α′ − α| ‖x‖ ≤ (1 + |α|) · δ/2(1 + |α|) + (δ/2‖x‖) · ‖x‖ = δ.

The Norm: For any v, v′ ∈ V the triangle inequality (iii) gives

‖v′‖ ≤ ‖v‖ + ‖v′ − v‖ and ‖v‖ ≤ ‖v′‖ + ‖v − v′‖,

so for any v and δ > 0 we have ‖v′‖ ∈ (‖v‖−δ, ‖v‖+δ) whenever v′ ∈ v+B(δ)
because

∣

∣‖v′‖ − ‖v‖
∣

∣ ≤ ‖v′ − v‖ ≤ δ.

Corollary 6.5. Any linear function ℓ : kn → V is continuous if kn has the
product topology.

Proof. For some v1, . . . , vn we can regard ℓ as the composition

(α1, . . . , αn) → (α1v1, . . . , αnvn) → α1v1 + · · · + αnvn.

The first map is continuous because each αi 7→ αivi is scalar multiplication
and a cartesian product of continuous functions is continuous (Lemma 3.41).
Of course the second map is continuous because addition is continuous.

The differential calculus, as described here, can be generalized, in a fairly
straightforward manner, to certain types of infinite dimensional spaces, but
there are some technical details that would need to be addressed, and, in
relation to the rest of what we do in this book, there wouldn’t be that much
reward. Perhaps even more important, attending to the infinite dimensional
case would weaken the focus on what is, in the end, the central aspect of our
discussion of the calculus, namely calculating stuff. Henceforth we assume
that V is n-dimensional.



6.3. NORMED SPACES 221

The following notation will appear in two of the proofs below: for ε > 0
let the n-fold cartesian product of J(ε) be

Jn(ε) := { (α1, . . . , αn) ∈ kn : max{|α1|, . . . , |αn|} ≤ ε }.

We also need to introduce a very important piece of topological terminology.
If f : X → Y is a bijection, where X and Y are topological spaces, then
we say that f is a homeomorphism if f and f−1 are both continuous.
Homeomorphisms are the isomorphisms of the category of topological spaces
and continuous functions.

Proposition 6.6. If ℓ : kn → V is a linear isomorphism and kn has the
product topology, then ℓ is a homeomorphism.

Proof. We know that ℓ is continuous, so we need to show that ℓ−1 is also
continuous, which amounts to ℓ(U) being open in V whenever U ⊂ kn is
open. If U ⊂ kn is open, then for each x ∈ U there is some ε > 0 such
that x + Jn(ε) ⊂ U , so to show that ℓ(U) is open it suffices to show that
ℓ(x+Jn(ε)) contains ℓ(x)+B(δ) when δ > 0 is sufficiently small. Therefore it
suffices to show that for any ε > 0 there is δ > 0 such that B(δ) ⊂ ℓ(Jn(ε)).

Fix ε > 0, and let

∂Jn(ε) := { (α1, . . . , αn) : max{|α1|, . . . , |αn|} = ε } ⊂ Jn(ε).

The function (α1, . . . , αn) 7→ max{|α1|, . . . , |αn|} is continuous (the valua-
tion is continuous, a cartesian product of continuous functions is continuous
(Lemma 3.41), and the maximum operator is continuous) so ∂Jn(ε) is a
closed subset of Jn(ε). Since Jn(ε) is a cartesian product of compact sets,
it is compact, so (Theorem 3.38) ∂Jn(ε) is compact.

We are assuming that k contains scalars β with |β| arbitrarily small, and
it suffices to demonstrate the claim with ε replaced by a smaller number, so
we may assume that ε = |β| for some β ∈ k. This implies that ∂Jn(ε) is
nonempty. Let

δ := min
α∈∂Jn(ε)

‖ℓ(α)‖.

Since ‖ℓ(α)‖ is a continuous function of α (because ℓ and the norm are
continuous) and ∂Jn(ε) is nonempty and compact, Theorem 3.48 implies
that δ = ‖ℓ(α∗)‖ for some α∗ ∈ ∂Jn(ε). Since ∂Jn(ε) does not contain the
origin it follows that δ > 0.

We still have to show that B(δ) ⊂ ℓ(Jn(ε)), so fix x ∈ B(δ). Since ℓ is
a linear isomorphism, x = ℓ(α) for some α ∈ kn. There is an index i such
that |αi| = max{|α1|, . . . , |αn|}. We want to show that |αi| ≤ ε because
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this implies that x ∈ ℓ(Jn(|αi|)) ⊂ ℓ(Jn(ε)). Of course |αi| ≤ ε holds
automatically if αi = 0, so we may assume that αi 6= 0.

The key point is that (β/αi)α ∈ ∂Jn(ε) because

max{|(β/αi)α1|, . . . , |(β/αi)αn|} = |(β/αi)αi| = |β| = ε.

We now obtain |αi| ≤ ε because the definition of δ gives

δ ≤ ‖ℓ
(

(β/αi)α
)

‖ = |β/αi| ‖ℓ(α)‖ = (ε/|αi|)‖x‖ ≤ (ε/|αi|)δ.

A linear isomorphism between two n-dimensional normed spaces can
be written as a composition of linear isomorphisms from the first space
to kn and from kn to the second space, so it too is a homeomorphism.
In particular, the identity function from V endowed with one norm to V
endowed with a second norm is a homeomorphism, which means that any
two norms are topologically equivalent in the sense of inducing the same
topology on V .

The most general and flexible expression of this idea is as follows:

Proposition 6.7. If V and W are normed spaces with V finite dimensional,
and ℓ : V →W is linear, then ℓ is continuous.

Proof. If ι : kn → V is a linear isomorphism, then (by the last two results)
ℓ ◦ ι and ι−1 are continuous, and ℓ = (ℓ ◦ ι) ◦ ι−1.

We conclude this section with two important technical results.

Lemma 6.8. For any δ > 0, B(δ) is compact.

Proof. Let ℓ : kn → V be a linear isomorphism. For any R > 0, Jn(R) is
compact because (Theorem 3.42) it is a finite cartesian product of compact
sets, and consequently ℓ(Jn(R)) is compact because (Theorem 3.47) ℓ is con-
tinuous. Since the norm is continuous, B(δ) is closed, so (Theorem 3.38) it
is compact if it is contained in ℓ(Jn(R)) for some R. Since ℓ−1 is continuous,
B(ε) ⊂ ℓ(Jn(1)) for some ε > 0. Let β be a scalar with |β| ≥ δ/ε. Then

B(δ) ⊂ B(|β|ε) = βB(ε) ⊂ βℓ(Jn(1)) = ℓ(βJn(1)) = ℓ(Jn(|β|)).

The definition of the derivative considers the ratio of the norms of two
vectors, so for technical purposes, the sense in which different norms are
equivalent is, at least on its surface, stronger than topological equivalence.
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Proposition 6.9. For any norms ‖ · ‖ and ‖ · ‖∗ on V there are numbers
M,m > 0 such that m‖v‖ ≤ ‖v‖∗ ≤M‖v‖ for all v ∈ V .

Proof. Let M := max‖v‖≤1 ‖v‖∗. Since B(1) is nonempty and compact, and
‖ · ‖∗ is continuous, M is well defined and finite. If M = 0 (this happens
when V = {0}) replace M with any positive number. Then for all v we have

‖v‖∗ =
∥

∥v/‖v‖
∥

∥

∗
· ‖v‖ ≤M‖v‖.

A symmetric argument gives m > 0 such that ‖v‖ ≤ (1/m)‖v‖∗ for all v.

6.4 Defining the Derivative

Finally we are in a position to define this chapter’s central concept. Fix
V and W , two finite dimensional vector spaces over k, and assume that
each is endowed with a norm. The definition of a derivative will be applied
to functions whose domains are subsets of V , and which have W as their
range. We would like to to allow more general domains than all of V , but
at the same time the definition will be a matter of placing restrictions on
the behavior of the function in a neighborhood of a point, and it would have
little force, and be hard to work with, if the domain didn’t contain at least
one neighborhood of the point in question, so it makes sense to insist that
the domain be open. Therefore we fix an open U ⊂ V .

Definition 6.10. Let f : U → W be a function, and let x be a point in U .
We say that f is differentiable at x if there is a linear function ℓ : V →W
such that for any ε > 0 there is δ > 0 such that

∥

∥f(x) − [f(x) + ℓ(x− x)]
∥

∥ ≤ ε‖x− x‖

for all x ∈ U with ‖x − x‖ < δ. If this is the case we say that ℓ is the
derivative of f at x, and we denote it by Df(x).

That is, the affine function x 7→ f(x)+ℓ(x−x) is an asymptotically accurate
approximation of f near x in the sense that its error, in proportion to ‖x−x‖,
can be made arbitrarily small by restricting x to be sufficiently close to x.

As we have seen on various occasions, it is sometimes necessary to show
that a definition makes sense, and of course from a logical point of view this
needs to be done before we can use the definition. Definition 6.10 defines
the derivative of f at x to be a linear function with certain properties, but
how do we know that there’s only one linear function satisfying the specified
conditions?
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Let’s suppose that ℓ′ : V → W is also a linear transformation such that
for any ε > 0 we have

∥

∥f(x) − [f(x) + ℓ′(x− x)]
∥

∥ ≤ ε‖x− x‖

when ‖x− x‖ is sufficiently small. Then

‖ℓ′(x− x) − ℓ(x− x)‖
=
∥

∥

(

f(x) − [f(x) + ℓ′(x− x)]
)

−
(

f(x) − [f(x) + ℓ′(x− x)]
)∥

∥

≤
∥

∥f(x) − [f(x) + ℓ′(x− x)]
∥

∥+
∥

∥f(x) − [f(x) + ℓ′(x− x)]
∥

∥

≤ 2ε‖x − x‖

when ‖x−x‖ is sufficiently small. Now consider any v ∈ V , and recall that we
are assuming that there are nonzero scalars α ∈ k with |α| arbitrarily small,
so that ‖αv‖ can be made small enough to imply that ‖ℓ′(αv) − ℓ(αv)‖ ≤
2ε‖αv‖, in which case

|α| ‖ℓ′(v) − ℓ(v)‖ = ‖ℓ′(αv) − ℓ(αv)‖ < 2ε‖αv‖ = 2ε|α| ‖v‖.

Dividing by |α| gives ‖ℓ′(v) − ℓ(v)‖ ≤ ε‖v‖. This is true for all ε and v, so
ℓ′(v) = ℓ(v) for all v, which means that ℓ′ = ℓ.

The next priority is to show that, as we have mentioned more than once,
the definition of the derivative doesn’t depend on the choice of norms for V
and W . Once we’ve settled the question we’ll be free to use whichever norm
happens to be most convenient, and this will often simplify arguments and
calculations.

Suppose that in addition to the given norms on V and W , both of which
are denoted by ‖ · ‖, we have another norm for each of the spaces, which
is denoted by ‖ · ‖∗. Proposition 6.9 gives numbers MV > mV > 0 and
MW > mW > 0 such that

mV ‖v‖ ≤ ‖v‖∗ ≤MV ‖v‖ and mW‖w‖ ≤ ‖w‖∗ ≤MW ‖w‖

for all v ∈ V and all w ∈ W . Assuming that f is differentiable at x with
respect to the given norms, we want to show that ℓ = Df(x) is also the
derivative of f at x with respect to the new norms. Fix ε∗ > 0, and set
ε := (mV /MW )ε∗. Choose δ > 0 such that

∥

∥f(x) − [f(x) + ℓ(x− x)]
∥

∥ ≤ ε‖x− x‖

for all x ∈ U with ‖x− x‖ < δ, and set δ∗ := mV δ. If ‖x− x‖∗ < δ∗, then

‖x− x‖ ≤ ‖x− x‖∗/mV < δ∗/mV = δ,
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so that

∥

∥f(x) − [f(x) + ℓ(x− x)]
∥

∥

∗
≤MW

∥

∥f(x) − [f(x) + ℓ(x− x)]
∥

∥

≤MW ε‖x− x‖ ≤MW ε‖x− x‖∗/mV = ε∗‖x− x‖∗,
which is just what we want.

Before going further we give two basic results that appear frequently
in proofs. Since an affine function is a perfect approximation of itself, the
definition of the derivative (Definition 6.10) has the following immediate and
obvious consequence:

Proposition 6.11. Suppose V and W are finite dimensional vector spaces
over k, U ⊂ V is open, and a : U → W is affine, so that there is w0 ∈ W
and a linear transformation ℓ : V → W such that a(x) = w0 + ℓ(x) for all
x ∈ U . Then for any x ∈ U , a is differentiable at x and

Da(x) = ℓ.

The following fact will soon seem so obvious as to be beneath mention.

Lemma 6.12. If f : U → W is differentiable at x, then it is continuous at
x.

Proof. Consider a particular ε > 0. Since Df(x) is linear, it is continuous
(Proposition 6.7) so there is δ > 0 such that ‖Df(x)v‖ < ε/2 whenever
‖v‖ < δ. Replacing δ with a smaller number if need be, we can insist
that the inequality in the definition of the derivative is satisfied whenever
‖x− x‖ < δ, and that δ < 1/2. When ‖x− x‖ < δ we have

∥

∥f(x) − f(x)
∥

∥ ≤
∥

∥f(x) − [f(x) +Df(x)(x− x)]
∥

∥ +
∥

∥Df(x)(x− x)
∥

∥

< ε‖x− x‖ + ε/2 < ε · δ + ε/2 < ε.

6.5 The Derivative’s Significance

Especially if you have never studied the derivative before, it’s a good idea to
pause for a bit and just look at it. Figure 6.1 is the picture that haunts the
dreams of first year calculus students. The curve is the graph of a function
f : R → R. The straight line is the graph of the affine approximation

t 7→ f(t) +Df(t)(t− t).
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In the figure the magnitude of the error,

∣

∣f(t) − (f(t) +Df(t)(t− t))
∣

∣,

is fairly large, but when |t− t| is small the error is small, not only absolutely
but also in relation to |t− t|. With a little imagination you should be able
to “transport this into the third dimension” so that it applies to a function
f : R → R2 whose graph is a curve in R3.

b

b

b

b

b

t t

(

t, f(t) +Df(t)(t− t)
)

(

t, f(t)
)

Figure 6.1

Figure 6.2 shows the affine approximation

(x, y) 7→ f(x, y) +Df(x, y)(x− x, y − y)

of a function f : R2 → R. Its graph is the plane tangent to the graph of f .

b

b

b

b

b

(x, y)
(x, y)

(

x, y, f(x, y)
)

(

x, y, f(x, y) +Df(x, y)(x− x, y − y)
)

Figure 6.2
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Figure 6.3 illustrates the derivative of a function f : R2 → R2. Now
it would take four dimensions to show the graphs of f and its affine ap-
proximation, so we need a different method of visualizing the situation. We
take a coordinate system near (x, y) and show the image of this coordinate
system under f , and its image under the affine approximation.

f

b

b

(x, y)

(x, y)

b

b

f(x, y)

f(x, y) +Df(x, y)(x− x, y − y)

b

f(x, y)

Figure 6.3

Why are differentiability and the derivative so important? The remain-
der of the book describes certain applications, but these don’t really add
up to more than a hint at an answer to this question. Here are very brief
descriptions of some of the main themes in the overall significance of the
concept.

(A) Let L(V,W ) be the set of linear functions from V to W . It is a
finite dimensional vector space if addition and scalar multiplication are
defined in the obvious “pointwise” manner: (ℓ+ ℓ′)(v) := ℓ(v) + ℓ′(v);
(αℓ)(v) := αℓ(v). (In fact for any set S the space of functions from S
to W is a vector space if the vector operations are defined pointwise,
and L(V,W ) is a evidently a linear subspace of the space of functions
from V to W .) Suppose that f : U → W is differentiable at every
point in U . Then there is a derived function Df : U → L(V,W )
which may have interesting properties and be useful in various ways.
For example, it might be differentiable everywhere, in which case the
second derivative

D(Df) : U → L(V,L(V,W ))

might be interesting and useful. And so forth.
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(B) Requiring that a function f be differentiable at every point at U ,
and in particular requiring that Df be continuous, imposes conditions
on f that are powerful and useful in analysis, and at the same time
most functions we would typically be inclined to consider have these
properties.

(C) If V = W = k and f is differentiable at u, then there is a scalar
f ′(u) ∈ k such that Df(u) is the linear transformation v 7→ f ′(u)v.
(Warning: in elementary calculus courses the derivative of f at u is
defined to be f ′(u).) In the particular case k = C, if f is differentiable
at every point of U , then (quite remarkably!) the function f ′ : U → C

is also differentiable at every point of U , and in fact f is holomorphic.
As we will see in Section 7.6, if U is connected, then a holomorphic
f : U → C is determined by its power series at any point z0 ∈ U .
Holomorphic functions are in this sense quite “rigid,” and there are
intricate relationships between their local and global properties that
have been and continue to be one of mathematic’s richest sources of
subtle problems and deep theorems.

(D) If k = R and f : U → R attains its maximum, or its minimum, at
a point x where f is differentiable, then Df(x) = 0. Hilltops and
valley floors are flat. This fundamental insight affects the theory of
optimization in numerous ways, and deserves a formal statement:

Theorem 6.13. Suppose U ⊂ Rn is open and f : U → R is differentiable
at x. Then Df(x) = 0 if either f(x) ≥ f(x) for all x ∈ U or f(x) ≤ f(x)
for all x ∈ U .

Proof. Suppose that f(x) ≥ f(x) for all x ∈ U . (The proof when x is a
minimizer is similar.) Aiming at a contradiction, suppose that Df(x)v 6= 0
for some v ∈ Rn. For any ε > 0 we have

f(x+ αv) − [f(x) +Df(x)(αv)] > −ε‖αv‖

when |α| is sufficiently small, so that

Df(x)(αv) +
(

f(x+ αv) − [f(x) +Df(x)(αv)]
)

≥ αDf(x)v − ε|α| ‖v‖.

If ε < |Df(x)v|/‖v‖, then the right hand side is positive when Df(x)v > 0
and α > 0, and also when Df(x)v < 0 and α < 0, so that f(x+αv) > f(x)
for some α, contrary to assumption.
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(E) As we will see shortly, there are powerful methods for actually com-
puting derivatives. The information about f extracted in this fashion
is useful in all sorts of ways. Algorithms for computing derivatives
contribute to many, many other algorithms including, obviously, algo-
rithms related to optimization.

(F) Let the motion of a particle in space during the time interval (a, b) be
described by p : (a, b) → R3. The velocity of the particle at time t is

v(t) = (v1(t), v2(t), v3(t))

where, for each i = 1, 2, 3, vi(t) = p′i(t) is the derivative (in the sense
described in (C)) of the corresponding component of p. In turn the
acceleration of the particle at time t is

a(t) = (a1(t), a2(t), a3(t))

where each ai(t) = v′i(t) is the derivative of the corresponding compo-
nent of v. Let m be the mass of the particle. The force acting on the
particle at time t is

f(t) = ma(t).

Newton’s theory of gravitation, as it affects a small particle in the
gravitation field of a mass M located at the origin, is given by the
equation

f = −GMm

‖p‖3
p

whereG is the universal gravitational constant. (Note that the acceler-
ation does not depend on m, as was shown by Galileo.) A relationship
between the various derivatives of a function is called a differential

equation. The empirical substance of Newton’s theory is that the
trajectories that could be observed in this system are precisely those
functions p that satisfy this differential equation at all times. Differ-
ential equations are also used to describe other fundamental physical
theories, and a host of theories in other sciences, with enormous suc-
cess.

(G) Suppose we are given a function f : (a, b) → R and we wish to find a
function F : (a, b) → R such that F ′(t) = f(t) for all t. The process of
going from f to some such F is called integration. Like the theory
of the derivative, the theory of integration has evolved continuously
since its initial development by both Leibniz and Newton, and it has
roughly coequal status in terms of its importance to mathematics as
a whole.
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6.6 The Chain Rule

The chain rule characterizes the derivative of a composition of two differ-
entiable functions. It is by far the most important theorem concerning the
derivative, in part because it is the key to computing the derivative of almost
every function you’ll ever encounter, but also because it has a conceptual
importance that is best appreciated when expressed in the language of cat-
egory theory.

Suppose that, in addition to V and W , there is a third vector space X,
and, in addition to f : U → W , there is a function g whose domain is an
open superset of the image of f and whose range is X. Assume that f is
differentiable at x ∈ U and g is differentiable at f(x). Now imagine that
you are very small, or your world is very large, so that even with precise
measurements it is difficult to tell whether life is governed by f and g or
their affine approximations. It seems reasonable, and after reflection almost
inevitable, that you should also have a hard time distinguishing between
g ◦ f and the composition of the affine approximation of f with the affine
approximation of g. That is, the composition of the affine approximations of
f and g should be an asymptotically accurate approximation of g ◦ f . This
is what the chain rule says.

Based on this intuition, we “know” that the chain rule is true, but if
you tried to read the proof below without appreciating this, it could easily
seem like a rather messy and unmotivated calculation that just happened to
work out. What makes for the mess is that several sorts of error need to be
controlled. There is the difference between g and its affine approximation,
and there is the difference between f and its affine approximation, as trans-
mitted by composition with g. Finally there is a third term that reflects an
interaction or compounding of the two sorts of error.

The argument involves a technical point that we deal with first. Recall
that L(V,W ) is the vector space of linear transformations ℓ : V →W . Let

BV := { v ∈ V : ‖v‖ ≤ 1 }.

(This set was denoted by B(1) in the notational system of Section 6.3.) For
ℓ ∈ L(V,W ) let

‖ℓ‖ := sup
v∈BV

‖ℓ(v)‖ ∈ [0,∞].

We say that ℓ is bounded if ‖ℓ‖ < ∞. (When V is finite dimensional this
is automatic: applying Lemmas 6.8 and 6.4, Proposition 6.7, and Theorem
3.47, we see that BV is compact and ℓ and the norm are continuous, so
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{ ‖ℓ(v)‖ : v ∈ BV } is compact, hence bounded.) For any ℓ, ℓ′ ∈ L(V,W ) we
have

‖ℓ+ ℓ′‖ := sup
v∈BV

‖ℓ(v) + ℓ′(v)‖ ≤ sup
v∈BV

(‖ℓ(v)‖ + ‖ℓ′(v)‖)

≤ sup
v∈BV

‖ℓ(v)‖ + sup
v∈BV

‖ℓ′(v)‖ = ‖ℓ‖ + ‖ℓ′‖,

so ℓ+ ℓ′ is bounded whenever ℓ and ℓ′ are bounded. Similarly, for any α ∈ k
we have

‖αℓ‖ = sup
v∈BV

‖αℓ(v)‖ = sup
v∈BV

|α| ‖ℓ(v)‖ = |α| sup
v∈BV

‖ℓ(v)‖ = |α| ‖ℓ‖,

so αℓ is bounded whenever ℓ is bounded. Therefore the set of bounded
elements of L(V,W ) is a linear subspace of L(V,W ).

The restriction of the function ℓ 7→ ‖ℓ‖ to this subspace is called the
operator norm on the space of bounded linear functions from V to W .
Clearly ‖ℓ‖ = 0 if and only if ℓ = 0, and the calculations above establish
that properties (ii) and (iii) of the definition of a norm hold, so the operator
norm is actually a norm. Aside from the definition itself, which gives a
useful piece of notation for expressing the ideas in the proof below, the only
property of the operator norm that we will use in this chapter (the operator
norm will appear again in Chapter 7) is the operator norm inequality

‖ℓ(v)‖ =
∥

∥ℓ(v/‖v‖)‖v‖
∥

∥ = ‖ℓ(v/‖v‖)‖ · ‖v‖ ≤ ‖ℓ‖ · ‖v‖,
which is an immediate consequence of the definition.

Proceeding to the main event:

Theorem 6.14 (The Chain Rule). Suppose that V , W , and X are finite
dimensional vector spaces over k, UV ⊂ V and UW ⊂W are open, f : UV →
UW is differentiable at x, and g : UW → X is differentiable at f(x). Then
g ◦ f is differentiable at x, and

D(g ◦ f)(x) = Dg(f(x)) ◦Df(x).

Proof. To achieve more compact formulas we set

ℓ := Df(x) and m := Dg(f(x)).

The argument is a matter of analyzing the difference between g(f(x)) and
the affine approximation g(f(x)) + m(ℓ(x − x)) given by m ◦ ℓ. We first
decompose the error into two parts: for any x ∈ UV ,

g(f(x)) − [g(f(x)) +m(ℓ(x− x))]

= g(f(x)) − [g(f(x)) +m(f(x) − f(x))]

+m[f(x) − (f(x) + ℓ(x− x))].
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Fix norms for V , W , and X. The triangle inequality gives

∥

∥g(f(x)) − [g(f(x)) +m(ℓ(x− x))]
∥

∥

≤
∥

∥g(f(x)) − [g(f(x)) +m(f(x) − f(x))]
∥

∥

+
∥

∥m[f(x) − (f(x) + ℓ(x− x))]
∥

∥.

For any εg > 0 there is δg > 0 such that

∥

∥g(f(x)) − [g(f(x)) +m(f(x) − f(x))]
∥

∥ ≤ εg‖f(x) − f(x)‖

whenever ‖f(x) − f(x)‖ < δg. The operator norm inequality gives

∥

∥m[f(x) − (f(x) + ℓ(x− x))]
∥

∥ ≤ ‖m‖ · ‖f(x) − (f(x) + ℓ(x− x))‖,

and for any εf > 0 the definition of ℓ = Df(x) gives a δf > 0 such that

‖f(x) − (f(x) + ℓ(x− x))‖ ≤ εf‖x− x‖

whenever ‖x − x‖ < δf . Since (Lemma 6.12) f is continuous at x, if δf is
sufficiently small, then ‖f(x) − f(x)‖ < δg whenever ‖x − x‖ < δf . If all
this is the case, then

∥

∥g(f(x)) − [g(f(x)) +m(ℓ(x− x))]
∥

∥ ≤ εg‖f(x) − f(x)‖ + εf‖m‖ · ‖x− x‖

whenever ‖x−x‖ < δf . In order to bound the right hand side by a multiple
of ‖x− x‖ we apply the operator norm inequality again, finding that

‖f(x) − f(x)‖ ≤ ‖f(x) − (f(x) + ℓ(x− x))‖ + ‖ℓ(x− x)‖

≤ (εf + ‖ℓ‖)‖x− x‖

whenever ‖x− x‖ ≤ δf , in which case

∥

∥g(f(x)) − [g(f(x)) +m(ℓ(x− x))]
∥

∥ ≤
(

εg(εf + ‖ℓ‖) + εf‖m‖
)

‖x− x‖.

Since, for any given ε > 0, it is possible to choose εf , εg > 0 small enough
that εg(εf + ‖ℓ‖) + εf‖m‖ ≤ ε, this establishes the result.

Soon we will study how the chain rule can be used to perform myriad
concrete calculations, but first I want to show how the power of the chain
rule is, in a certain sense, “explained” by a concept from category theory.
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If C and D are categories, a covariant2 functor F : C → D consists of an
assignment of an object F (X) ∈ Ob(D) to each object X ∈ Ob(C), together
with a system of functions

F : C(X,Y ) → D(F (X), F (Y ))

for the various pairs of objects X,Y ∈ Ob(X), such that identities are
preserved and F commutes with composition:

(a) for each X ∈ Ob(C),
F (IdX) = IdF (X);

(b) for all X,Y,Z ∈ Ob(C), f ∈ C(X,Y ), and g ∈ C(Y,Z),

F (g ◦ f) = F (g) ◦ F (f).

Here are two examples:

Example 1:

• Let C be the category with the following objects and morphisms:

– Ob(C) is the class of triples (V,U, x) in which V is a finite dimen-
sional vector space over k, U ⊂ V is open (relative to some norm,
hence any norm because they are all equivalent) and x ∈ U ;

– for each pair of objects (V,U, x) and (V ′, U ′, x′),

C
(

(V,U, x), (V ′, U ′, x′)
)

is the set of functions f : U → U ′ with f(x) = x′ that are
differentiable at x.

The composition of any two morphisms is in turn a morphism because
if f ∈ C

(

(V,U, x), (V ′, U ′, x′)
)

and g ∈ C
(

(V ′, U ′, x′), (V ′′, U ′′, x′′)
)

,
then the chain rule implies that g ◦ f is differentiable at x, so it is an
element of C

(

(V,U, x), (V ′′, U ′′, x′′)
)

.

• Let D be the category with the following objects and morphisms:

2The term ‘covariant’ serves the purpose of distinguishing the functors discussed here
from “contravariant” functors. A contravariant functor K : C → D associates an
object K(X) ∈ Ob(D) with each X ∈ Ob(C) and a map K : C(X, Y )→ D(Y, X) (note the
reversal of X and Y ) to each pair X, Y ∈ Ob(X). Like covariant functors, contravariant
functors must preserve identities and commute with composition. In general contravariant
functors are about as important as covariant ones, but they won’t figure in our work.



234 CHAPTER 6. THE DERIVATIVE

– Ob(D) is the class of finite dimensional vector spaces over k;

– for all pairs of objects V and V ′, D(V, V ′) is the space L(V, V ′)
of linear transformations from V to V ′.

Then there is a functor F : C → D given by

F (V,U, x) = V and F (f) = Df(x)

when (V,U, x) ∈ Ob(C) and f ∈ C
(

(V,U, x), (V ′, U ′, x′)
)

. Preservation of
identities—that is, DIdU (x) = IdV —follows immediately from Proposition
6.11. The chain rule says precisely that F commutes with composition: if
f : (V,U, x) → (V ′, U ′, x′) and g : (V ′, U ′, x′) → (V ′′, U ′′, x′′) are morphisms,
then

F (g ◦ f) = D(g ◦ f)(x) = Dg(x′) ◦Df(x) = F (g) ◦ F (f).

Example 2: Fix a finite dimensional vector space V over k. Let DV be
the category whose only object is V , with D(V, V ) = End(V ). Let Ek be
the category with a single object, denoted by Ok, and Ek(Ok,Ok) = k, with
“composition” of morphisms defined to be multiplication. (In particular,
IdOk

= 1 ∈ k.) Then there is a functor GV : DV → Ek with GV (V ) = Ok

(of course) and

GV (ℓ) = det(ℓ)

for ℓ ∈ End(V ). Preservation of identities was built into the theory of the
determinant when we imposed the requirement that det(IdV ) = 1. The
multiplicative property of the determinant (Theorem 5.13) implies that GV
commutes with composition:

GV (ℓ′ ◦ ℓ) = det(ℓ′ ◦ ℓ) = det(ℓ′) · det(ℓ) = GV (ℓ′) ◦GV (ℓ).

There is a general principle of mathematics that is quite possibly just an
empty tautology, at least if it is interpreted completely literally, namely that
the only way to say something about a mathematical object is to compute
the value of some function that has the object in its domain. Functors
do this in a very systematic way, and consequently the derivative and the
determinant have a relentlessness that goes a long way toward explaining
why they are so useful.

Functors can be composed: if, in addition to F : C → D, we have a
second covariant functor G : D → E , then there is a functor G ◦ F given by
X 7→ G(F (X)) for all X ∈ Ob(C) and f 7→ G(F (f)) for all X,Y ∈ Ob(C)
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and f ∈ C(X,Y ). The conditions defining a functor hold automatically: if
X ∈ Ob(C), then

G(F (IdX)) = G(IdF (X)) = IdG(F (X)),

and if f ∈ C(X,Y ) and g ∈ C(Y,Z), then

G(F (g ◦ f)) = G(F (g) ◦ F (f)) = G(F (g)) ◦G(F (f)).

After all of my incessant harping on such points, you will, I am sure, be
completely unsurprised to learn that there is a category whose objects are
categories and whose morphisms are covariant functors.

To display a concrete example, fix a finite dimensional vector space V ,
let CV be the restriction of the category C in Example 1 to those (V,U, x)
with this first component, so that a morphism in CV is essentially a function
between open subsets of V , together with a particular point in the domain
where the function is differentiable. Let FV be the restriction of F to CV .
If GV is the functor given by Example 2, then the composition

GV ◦ FV : CV → Ek
computes the determinant GV (FV (f)) = det(Df(x)) of the derivative of a
morphism f ∈ C

(

(V,U, x), (V,U ′, x′)
)

.
Systems of interacting categories and functors seemingly present the

possibility of encompassing a huge amount of mathematical information in
structures that are tractable because of this fact. Indeed, during the last
half century, particularly in topology and algebraic geometry, categories and
functors have been the fundamental building blocks of some very elaborate
and powerful machines. We will get a small taste of this in Section 9.5 when
we study one of the most important topological functors.

6.7 Partial Derivatives

There is a one-to-one relationship between elements of k and linear functions
from k to k. While thinking about a derivative as a linear function is always
the “proper” thing to do, computations always boil down to arithmetical
operations with numbers, and numbers are convenient in other ways as well.
In recognition of this we introduce the following notation. Let W be a finite
dimensional vector space over k, let U ⊂ k be open, and let g : U → W be
a function. If g is differentiable at a point t ∈ U , then g′(t) is the element
of W such that

Dg(t)t = tg′(t).
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On the left hand side we are evaluating the linear transformation Dg(t) at
the “vector” t ∈ k1, and on the right hand side we are multiplying the vector
g′(t) by the scalar t. In many applications, such as the one coming up next,
W is one dimensional, and in these cases we regard g′(t) as an element of k
rather than a “vector” in k1.

Now consider an open set U ⊂ km, a function f : U → k, and a point
x ∈ U . For i = 1, . . . ,m let τi : k → km be the linear function

τi(t) = (x1, . . . , t, . . . , xm).

Then the partial derivative of f with respect to xi at x is defined to be

∂f
∂xi

(x) := (f ◦ τi)′(xi).

That is, ∂f
∂xi

(x) is a scalar measuring the rate at which f changes as we move

away from x by changing the ith coordinate.

If you’ve already had one or more calculus courses, you are certainly
aware that the usual presentation of the subject begins with the calculation
of the derivatives of simple univariate functions. Various techniques are
developed, and the derivatives of more advanced functions are computed,
all within the univariate world. This might lead you to expect that, when
you finally arrive at the higher level, the notion of a partial derivative will
be sophisticated and subtle, but from a computational point of view this
isn’t true at all: the way to compute a partial derivative is to treat the
other variables, say y and z, in the same way that you dealt with constants
like a and b when you were differentiating univariate functions. And it’s not
especially difficult to find simple, intuitive examples of multivariate functions
one might differentiate, such as area being a function of height and width.

To the extent that there are subtleties, they largely revolve around the
fact that partial derivatives are mostly used to represent linear functions,
and linear algebra is frequently a course that comes after beginning calculus.
In our approach this aspect is already built into the definition. Later we’ll
see that there actually are some technical subtleties arising from the fact
that the existence of all partial derivatives isn’t the same as differentiability,
but at this point we give only a brief explanation of the central idea.

Consider a function f : U → kn. From a technical point of view it works
perfectly well to think of f as an n-tuple (f1, . . . , fn) of functions from U to

k; in this point of view the partial
∂fj

∂xi
(x) has already been defined. If all
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such partials exist, then the Jacobian matrix is






∂f1
∂x1

(x) · · · ∂f1
∂xm

(x)
...

...
∂fn

∂x1
(x) · · · ∂fn

∂xm
(x)






.

At least for those with a certain minimum level of experience, it is intuitive
and obvious that this is the matrix of Df(x) with respect to the standard
bases e1, . . . , em and f1, . . . , fn for km and kn, but we will now give a formal
proof, partly in order to practice some manipulations involving the relation-
ships between the various pieces of notation.

Let πj : (y1, . . . , yn) → yj be the projection of kn onto the jth coordinate.
Then fj = πj ◦ f , so we can use the chain rule to compute that

D(πj ◦ f ◦ τi)(xi) = Dπj(f(x)) ◦Df(x) ◦Dτi(xi) ∈ L(k, k).

Since τi is affine and πj is linear, Proposition 6.11 gives Dτi(xi) : t 7→ tei
and Dπj(y) = πj for any y ∈ kn. Therefore, for any t ∈ k,

D(πj ◦ f ◦ τi)(xi)t = πj
(

Df(x)(tei)
)

= tπj(Df(x)ei).

In general the (j, i)-entry of the matrix of a linear transformation ℓ : km →
kn with respect to the standard bases is defined to be πj(ℓ(ei)), so

∂fj
∂xi

(x) = (πj ◦ f ◦ τi)′(xi) = πj(Df(x)ei)

is the (j, i)-entry of the matrix of Df(x).
What else are partial derivatives good for? Well, lots of things, actu-

ally, and to get a representative sample, as well as to develop facility in
computing with them, you will really need to take a course in multivariate
calculus, or at least spend some time with a textbook for such a course.
You won’t need to understand all the details in order to understand the
theoretical overview given here, but it will help to have some sense of the
sorts of problems that motivate much of the material. While reading the
rest of the chapter you might want to imagine the process of solving some
particular chemistry problem, say determining how rapidly the viscosity of
a liquid changes as you increase the concentration of some chemical. This
might begin with certain theoretical relationship, which can be manipulated
algebraicly. At some point certain partial derivatives have to be computed.
Possibly after additional algebraic manipulation, the relevant expression has
to be evaluated numerically. Although we won’t do concrete calculations of
this sort, the theory developed here is largely concerned with providing a
useful toolkit for such tasks.
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6.8 Computation of Derivatives

These days the word ‘calculus’ mostly refers to the processes of differenti-
ation (which we are studying) and integration (which we are not, except
for a small taste in Chapter 9) developed by Leibniz and Newton, but it
also is used more generally to describe any “machine” for calculating things,
especially if it involves processes that generate new instances from some col-
lection of basic examples. In order to describe this sort of machine we need
to specify the methods for generating new examples, and we need to give
a collection of basic examples, which may be expanded later. This section
presents the process of differentiation in this fashion, emphasizing the for-
mal apparatus. As we’ll explain in the next section, it is somewhat more
“technical” than the typical presentation in beginning calculus courses, but
in exchange for this cost there is the benefit of a clearer and more systematic
understanding of the subject.

The central components of our computational machine are methods of
computing the derivatives of functions obtained by constructing new func-
tions from functions whose derivatives we already know. There are three
mains ways to construct new functions from given functions: composition;
inversion; bundling. As we explained in Section 6.6, the chain rule com-
putes the derivative of a composition of two functions, so we’ll now discuss
the other two.

Assume that V and W are vector spaces of the same (finite) dimension,
U ⊂ V is open, f : U → W is an injection, and f(U) is open. If we
already knew that the inverse of an invertible differentiable function was
differentiable at the image of each point in its domain where its derivative
was nonsingular, we could use the chain rule to compute the derivative of
the inverse:

IdV = DIdU (x) = D(f−1 ◦ f)(x) = Df−1(f(x)) ◦Df(x),

so Df−1(f(x)) = Df(x)−1. But the proof that this formula is correct is
complicated by the need to establish differentiability, which requires some
rather messy concrete analysis based on the definition of the derivative.

Theorem 6.15. If f is differentiable at x ∈ U with Df(x) nonsingular,
and f−1 is continuous at y := f(x), then f−1 is differentiable at y with

Df−1(y) = Df(x)−1.

One of the key ideas of the proof is that if ℓ is nonsingular and ℓ(x− x)
is a sufficiently accurate approximation of y − y, then ‖y − y‖ cannot be
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very small in comparison with ‖x − x‖. The calculations that lead to a
quantitative expression of this intuition are best dealt with separately.

Lemma 6.16. If ℓ : V → W is a nonsingular linear transformation, 0 <
ε < ‖ℓ−1‖−1, x, x ∈ V , y, y ∈W , and

‖y − [y + ℓ(x− x)]‖ ≤ ε‖x− x‖

then

‖x− x‖ ≤ ‖y − y‖
‖ℓ−1‖−1 − ε

.

Proof. For any v ∈ V the operator norm inequality gives ‖v‖ = ‖ℓ−1(ℓ(v))‖ ≤
‖ℓ−1‖ · ‖ℓ(v)‖, so ‖ℓ(v)‖ ≥ ‖v‖/‖ℓ−1‖. Since

y − y = ℓ(x− x) + y − [y + ℓ(x− x)],

the triangle inequality for the norm gives

‖y − y‖ ≥ ‖ℓ(x− x)‖ − ‖y − [y + ℓ(x− x)]‖ ≥ (1/‖ℓ−1‖ − ε)‖x − x‖.

We proceed to the heart of the argument.

Proof of 6.15. The proof will be explained in terms of a point y ∈ f(U) and
a number ε > 0 that will be fixed throughout. Our goal is to find δ > 0 such
that if ‖y − y‖ < δ, then

∥

∥f−1(y) − [f−1(y) −Df(x)−1(y − y)]
∥

∥ ≤ ε‖y − y‖. (∗)

To simplify notation let ℓ := Df(x) and x := f−1(y), and note that

f−1(y) − [f−1(y) − ℓ−1(y − y)] = −ℓ−1
(

y − [y + ℓ(f−1(y) − f−1(y))]
)

= −ℓ−1
(

y − [y + ℓ(x− x)]
)

.

The operator norm inequality gives

∥

∥− ℓ−1
(

y − [y + ℓ(x− x)]
)∥

∥ ≤ ‖ℓ−1‖ ·
∥

∥y − [y + ℓ(x− x)]
∥

∥.

Choose ε̃ > 0 small enough that ε̃ < ‖ℓ−1‖−1 and ε̃‖ℓ−1‖/(‖ℓ−1‖−1− ε̃) ≤ ε.
The definition of Df(x) gives a δ̃ > 0 such that

∥

∥y − [y + ℓ(x− x)]
∥

∥ ≤ ε̃‖x− x‖
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whenever ‖x− x‖ < δ̃, so that (by the result above)

‖x− x‖ ≤ ‖y − y‖
‖ℓ−1‖−1 − ε̃

.

By assumption f−1 is continuous at y, so there is δ > 0 such that ‖x−x‖ =
‖f−1(y)−f−1(y)‖ < δ̃ whenever ‖y−y‖ < δ, in which case these inequalities
evidently combine to give (∗).

Differentiation of new functions created by bundling together existing
functions is simpler than inversion. We will only explicitly deal with the case
of two functions, but it will be obvious that the method could be extended
to any finite number of functions, and you should understand the discussion
in this more general sense.

Suppose that W and W ′ are two vector spaces over k. Their direct

sum W ⊕W ′ is the cartesian product W ×W ′ endowed with the obvious
vector operations:

(w1, w
′
1) + (w2, w

′
2) := (w1 + w2, w

′
1 + w′

2) and α(w,w′) := (αw,αw′).

(You should quickly run through the conditions defining a vector space,
verifying that they are satisfied by these operations.)

If V is another vector space over k, U ⊂ V is open and f : U →W and
f ′ : U →W ′ are functions, then we can define a function

f ⊕ f ′ : U →W ⊕W ′

by setting
(f ⊕ f ′)(x) := (f(x), f ′(x)).

If ℓ : V → W and ℓ′ : V → W ′ are linear, then ℓ⊕ ℓ′ : V → W ⊕W ′ is also
linear, obviously.

Theorem 6.17. If f : U → W and f ′ : U → W ′ are differentiable at x,
then so is f ⊕ f ′, and

D(f ⊕ f ′)(x) = Df(x) ⊕Df ′(x).

Proof. Fix norms on V , W , and W ′. The definition of the derivative is
unaffected by the choice of norm, so we can impose any norm we like on
W ⊕W ′. For the relevant computations it is convenient to choose the norm

‖(w,w′)‖ := ‖w‖ + ‖w′‖.
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(You should verify that for any norms on W and W ′, this is a norm on
W ⊕W ′.) Let ℓ := Df(x) and ℓ′ := Df ′(x).

Fix ε > 0. There is δ > 0 such that

‖f(x) − [f(x) + ℓ(x− x)]‖ ≤ (ε/2)‖x − x‖

and

‖f ′(x) − [f ′(x) + ℓ′(x− x)]‖ ≤ (ε/2)‖x − x‖

whenever ‖x− x‖ < δ. The definition of the direct sum now gives

(

f ⊕ f ′
)

(x)−
[

(f ⊕ f ′)(x) + (ℓ⊕ ℓ′)(x− x)
]

=
(

f(x), f ′(x)
)

−
[

(f(x), f ′(x)) + (ℓ(x− x), ℓ′(x− x))
]

=
(

f(x) − [f(x) + ℓ(x− x)], f ′(x) − [f ′(x) + ℓ′(x− x)]
)

.

In view of our choice of norm for W ⊕W ′ it is now clear that

∥

∥(f ⊕ f ′)(x) − [(f ⊕ f ′)(x) + (ℓ⊕ ℓ′)(x− x)]
∥

∥ ≤ ε‖x− x‖

whenever ‖x− x‖ < δ.

There is a slightly different sort of bundling that also comes up frequently.
Suppose that V ′ is another finite dimensional vector space, and U ′ ⊂ V ′ is
open. If f : U → W and g : U ′ →W ′ are functions, then there is the obvious
derived function (x, x′) 7→ (f(x), g(x′)). To express this in terms of the
bundling operation above we can introduce the projections π : (x, x′) 7→ x
and π′ : (x, x′) 7→ x′ from V ⊕V ′ to V and V ′ respectively. Then the function
in question can be thought of as

(f ◦ π) ⊕ (g ◦ π′) : U × U ′ →W ⊕W ′.

Since π and π′ are linear, the result above, the basic facts about differenti-
ating affine functions (Proposition 6.11) and the chain rule provide the tools
we need to compute the derivative of this function.

Now that we understand how to compute the derivatives of compositions,
inverses, and direct sums, we should start to gather some basic functions
whose derivatives are known. We have already dealt with affine functions,
and this is as good a point as any to mention a quite trivial but extremely
important special case. If U,U ′ ⊂ V are open with U ⊂ U ′ and iU,U ′ :
U → U ′ is the inclusion, then Proposition 6.11 gives DiU,U ′(x) := IdV .
If f : U ′ → W is a function, then the restriction f |U of f to U is the
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composition f ◦ iU,U ′ , and for any x ∈ U we can (to be quite formal about
things) use the chain rule to compute that

Df |U(x) = Df(x) ◦DiU,U ′(x) = Df(x) ◦ IdV = Df(x).

The inclusion functions are so trivial that it’s easy to not even notice them,
but they come up all the time.

Addition of scalars and negation are linear, so we have:

Proposition 6.18. Let A : k2 → k be addition—that is, A(s, t) := s + t.
Then A is differentiable at each (s, t) ∈ k2, and DA(s, t) = A.

Proposition 6.19. Let N : k → k be negation—that is, N(s) := −s. Then
N is differentiable at each s ∈ k, and DN(s) = N .

Multiplication is a bit more complicated, but the underlying intuition is
simple, and will eventually become quite familiar: for any s, t, ∆s, and ∆t
we have

(s+ ∆s)(t+ ∆t) = st+ s∆t+ t∆s+ ∆s∆t,

and if ∆s and ∆t are both very small, then ∆s∆t is negligible.

Proposition 6.20. Let M : k2 → k be multiplication—that is, M(s, t) :=
st. Then M is differentiable at each (s, t) ∈ k2, and DM(s, t) is the linear
transformation (s, t) 7→ st+ ts.

Proof. We endow k2 with the norm ‖(s, t)‖ := |s|+ |t|. If ε > 0, δ ≤ 2ε, and
‖(s, t) − (s, t)‖ < δ, then |s− s|, |t− t| < 2ε, so

∣

∣st− [st+ (s(t− t) + t(s− s))]
∣

∣ = |st− st− st+ st− ts+ ts|

= |st− st− st+ st| = |(s − s)(t− t)| = |s − s| |t− t|
= |s− s|(1

2 |t− t|) + (1
2 |s− s|)|t− t|

≤ ε(|s − s| + |t− t|) = ε‖(s, t) − (s, t)‖.

We can illustrate the application of the results above by computing the
derivative of inversion. The formal details are ponderous, but again there
is a simple calculation that suggests the right answer: if Is = 1 and (I +
∆I)(s + ∆s) = 1, then I∆s+ s∆I + ∆I∆s = 0, so

∆I = −I
s
∆s− 1

s
∆I∆s = − 1

s2
∆s− 1

s
∆I∆s.

If ∆s is very small, then so is ∆I, so that ∆I∆s is negligible.
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Proposition 6.21. Let I : k∗ → k be inversion—that is, I(s) := 1/s. Then
I is differentiable at each s ∈ k∗, and DI(s) : s 7→ −s/s2.

Proof. Since M ◦ (Idk ⊕ I) is a constant function, its derivative is zero (by
Proposition 6.11) so the chain rule gives

0 = D(M ◦ (Idk ⊕ I))(s) = DM(s, 1/s) ◦D(Idk ⊕ I)(s).

Theorem 6.17 implies thatD(Idk⊕I)(s) = DIdk(s)⊕DI(s), and Proposition
6.11 gives DIdk(s) = Idk, so for any s ∈ k we have (DIdk(s) ⊕ DI(s))s =
(s,DI(s)s). Applying the formula for the derivative of M gives

0 = DM(s, 1/s)(s,DI(s)s) = sDI(s)s+ s/s,

and the desired result is obtained by solving for DI(s)s.

Our formalism is a bit like a Swiss Army Knife. It can do pretty much
anything, but it doesn’t do any one thing in the most efficient or elegant
way, and you wouldn’t say it was “sleek.” These aspects are all on display in
the proof above, and in the proof of the next result, which gives formulas for
addition and multiplication of univariate functions. Combining univariate
functions in this way is quite common, so these formulas are quite useful.

Proposition 6.22. Suppose that U ⊂ k is open and f, g : U → k are
differentiable at t. Then:

• D(f + g)(t) = Df(t) +Dg(t);

• D(fg)(t) = f(t)Dg(t) + g(t)Df(t).

Proof. Clearly, f + g = A ◦ (f ⊕ g), so

D(f + g)(t) = D(A ◦ (f ⊕ g))(t) = DA((f ⊕ g)(t)) ◦D(f ⊕ g)(t)

= A ◦ (Df(t) ⊕Dg(t)) = Df(t) +Dg(t).

Here the second equality is the chain rule, the third applies the results
concerning the derivative of A and the differentiation of direct sums, and
the last follows from the definitions of A and the direct sum. Similarly,
fg = M ◦ (f ⊕ g), so

D(fg)(t) = D(M ◦ (f ⊕ g))(t) = DM((f ⊕ g)(t)) ◦D(f ⊕ g)(t)

= DM(f(t), g(t)) ◦ (Df(t) ⊕Dg(t)) = f(t)Dg(t) + g(t)Df(t).



244 CHAPTER 6. THE DERIVATIVE

6.9 Practical Computation

It’s interesting to compare what we’ve done so far with the standard presen-
tation of differentiation in calculus courses. As we mentioned earlier, usually
the derivative of a univariate function f : U → k on an open set U ⊂ k at a
point t is defined to be the slope f ′(t) of the line that is tangent to the graph
of the function at (t, f(t)). Consider the formulas for differentiation of sums,
products, and compositions of univariate functions in the two frameworks:

D(f + g)(t) = Df(t) +Dg(t);

(f + g)′(t) = f ′(t) + g′(t);

D(fg)(t) = f(t)Dg(t) + g(t)Df(t);

(fg)′(t) = f(t)g′(t) + g(t)f ′(t);

D(g ◦ f)(t) = Dg(f(t)) ◦Df(t);

(g ◦ f)′(t) = g′(f(t))f ′(t).

On the left we have elements of End(k) = L(k, k) which are added, multi-
plied by scalars, and composed. On the right we have elements of k which are
added and multiplied. For any vector space V , End(V ) is a vector space over
k, and a ring if we define multiplication to be functional composition. The
standard approach to calculus depends on the fact that End(k) is isomorphic
to k, with multiplication in k representing both composition of elements of
End(k) and multiplication of an element of End(k) by a scalar.

Is this a wonderful blessing or a confusing dirty trick? Probably a bit
of both. In the explanation of differentiation given here there is a direct
connection between what the derivative represents and what it is, and the
passage from definitions to computational methods is overtly systematic,
but we had to develop an overarching theoretical framework before we could
work in this style. (One might argue that this is a benefit and not a cost!)
Our approach is inherently multi-dimensional, but in the standard approach
the transition from univariate functions to multivariate functions is difficult,
in large part because the concepts from linear algebra that the standard
approach finesses so cleverly can no longer be avoided.

When it comes to actual computations the standard approach has clear
advantages. If f ′(u) is defined at every point in U and f ′ : U → k is dif-
ferentiable at u, then f ′′(u) := (f ′)′(u) denotes the second derivative.
In general the rth derivative (including when r = 0, 1, 2, if the context is
suitable) is denoted by f (r) when it exists. Within our formalism just writ-
ing down the space L(V,L(V,W )) in which the second derivative lives is a
nuisance. The advantages of the numerical approach can be illustrated by
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deriving some basic formulas. For m = 0, 1, 2, . . . let gm : k → k be the
function gm(t) := tm. Since g0 and g1 are affine we have g′0(t) = 0 and
g′1(t) = 1 for all t. Using induction, we find that g′m(t) = mgm−1(t) for all t,
since the rule for differentiating products gives

g′m = (gm−1g1)
′ = gm−1g

′
1 + g′m−1g1 = tm−1 · 1 + (m− 1)tm−2 · t = mtm−1.

Differentiating gm repeatedly gives

g(r)
m (t) = m(m− 1) · · · (m− r + 1)tm−r =

m!

(m− r)!
tm−r = r!

(

m

r

)

tm−r,

so g
(m)
m (t) = m!. The derivative of a constant function is zero (of course it

is affine) so for any c ∈ k and any f : U → k the product formula gives

(cf)′ = 0 · f + c · f ′ = cf ′.

For a univariate polynomial

f(t) = crt
r + · · · + c1t+ c0

we obtain ch = 1
h!f

(h)(0) for each h = 0, . . . , r, so we have the interesting
formula

f(t) =
1

r!
f (r)(0)tr +

1

(r − 1)!
f (r−1)(0)tr−1 + · · · + f (1)(0)t+ f (0)(0).

In our framework these computations would be extremely cumbersome
due to all the distinctions between the spaces k, L(k, k), L(k, L(k, k)), etc.,
that have no real bearing on the calculations. Still, at the end of a compu-
tation, when you are thinking about what it means and why it is or isn’t
interesting or to the point, the conceptual stuff can be important. “Think
conceptually, act computationally” seems to be an appropriate motto.

In the one dimensional case there is a one-to-one relationship between our
notion of derivative and the concept taken as definitional in the standard
approach. The relationship between partial derivatives and our notion of
differentiability for multivariate functions is more complex. It turns out
that simply requiring that the partial derivatives of f : U → W be defined
at each point is not very useful, because some very poorly behaved functions
meet this condition. We’ll illustrate the pathologies of partial derivatives,
and practice the computational methods described above, by studying the
function f̃ : R2 → R given by

f̃(x, y) :=

{

x3y3

x6+y6
, x > 0 and y > 0,

0, otherwise.
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First of all, observe that f̃(z, z) = 1/2 for all z > 0, so f̃ is not even
continuous at (0, 0).

Before we can deal with f̃ we need to learn how to differentiate quotients.
Suppose that U ⊂ k is open and g, h : U → k with g(t)h(t) = 1 for all t, so
that g = 1/h. Applying the product rule gives g′h+ h′g = 0, so that

(1/h)′(t) = g′(t) = −h′(t)g(t)/h(t) = −h′(t)/h2(t).

(One can also obtain this by applying Proposition 6.21 and the chain rule to
I ◦g where I : s 7→ 1/s is inversion.) Applying the formula for differentiation
of products gives the general formula for the derivative of a quotient:

(g/h)′ = g′(1/h) + g(1/h)′ = g′/h− gh′/h2 =
g′h− gh′

h2
.

By the way, the best way to learn these formulas is to force yourself to
not memorize them, instead remembering that they can be derived from
the product formula. After you’ve been through the derivations yourself a
couple times, they’ll start to stick, and you’ll have the added confidence of
knowing that if you are ever the least bit uncertain about the details (“Is it
g′h− gh′ or gh′ − g′h on top?”) you can just work it out again quickly.

The way to compute a partial derivative, say with respect to the variable
x, is to treat all the other variables as “parameters,” which means that they
are treated as (perhaps unknown) constants in the calculation, even though
they might be thought of as varying in some larger context, or from the point
of view of a different sort of question. So, when x > 0 and y > 0 we can
apply the formula above and what we learned earlier about differentiating
polynomials to f̃ , viewed as a function of x with y treated as a parameter:

∂f̃

∂x
(x, y) =

(3x2y3)(x6 + y6) − (x3y3)(6x5)

(x6 + y6)2
=

3x2y3(y6 − x6)

(x6 + y6)2

when x > 0 and y > 0.

If y < 0 or x < 0, then ∂f̃
∂x(x, y) = 0 because f̃(x′, y) = 0 for all x′ in

some interval (x − δ, x + δ), and in fact this is true even when x ≥ 0 and
y = 0. The remaining case is x = 0 and y > 0. For any ε > 0, if δ ≤

√

εy3

and |x| < δ, then |f̃(x, y) − f̃(0, y)| = 0 if x < 0, and

|f̃(x, y) − f̃(0, y)| =
x3y3

x6 + y6
≤ x2

y3
x ≤ ε|x|

when x ≥ 0, so ∂f̃
∂x (0, y) = 0. We have shown that

∂f̃

∂x
(x, y) =

{

3x2y3(y6−x6)
(x6+y6)2 , x > 0 and y > 0,

0, otherwise.
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The analysis of ∂f̃∂y is symmetric. The point of this example is that f̃ has well

defined partials at every point of R2 even though it is actually discontinuous
at the origin.

Before continuing the discussion of this example we need to introduce the
terminology and notation associated with higher order partial derivatives,
which are partial derivatives of the partial derivative functions. Suppose
that U ⊂ kn is open, f : U → k is a function, x ∈ U , and 1 ≤ i ≤ n. When
it is defined the second partial derivative of f with respect to xi is

∂2f

∂x2
i

(x) :=
∂( ∂f∂xi

)

∂xi
(x).

If 1 ≤ i, j ≤ n, then the so-called mixed second partial of f with respect
to xi and xj is

∂2f

∂xi∂xj
(x) :=

∂( ∂f∂xi
)

∂xj
(x).

More generally, if 1 ≤ i1, . . . , ir ≤ n, then ∂rf
∂xi1

···∂xir
(x) denotes the result of

partial differentiation first with respect to xi1 , then with respect to xi2 , and
so forth. We say that this is a partial derivative of order r. The higher

order partial derivatives of f are those of order 2 and higher.
Calculations similar to those above, which are left to you, show that each

second partial derivative of f̃ is defined at every point of R2. If we wanted
all third partials to exist, we could replace the exponents ‘3’ and ‘6’ in the
definition of f̃ with ‘4’ and ‘8.’ In fact extending this pattern shows that
for any integer r there are functions from R2 to R that are discontinuous
in spite of having all partial derivatives up to order r defined at every point
of the domain.

The most popular assumption in analytic work is that all partial deriva-
tives up to order r are defined and continuous everywhere in the domain.
A function satisfying this condition is said to be Cr. (The pronunciation is
“see-are.”) If a function is Cr for every integer r, then it is C∞. In this
system of terminology ‘C0’ is a synonym for ‘continuous.’

As we will see in the next section, a real valued function whose domain
is an open subset of a vector space over R is differentiable everywhere, in
our sense, with a continuous derivative, if and only if it is C1. Since the
definition of Df does not depend on a choice of coordinate system, it follows
that the choice of a coordinate system does not affect whether a function
is C1. In contrast, as the example above makes very clear, the existence of
partial derivatives can easily depend on the coordinate system.
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6.10 Rolle, Clairaut, Taylor

The guiding intuition of our work has been that differentiability means that
an accurate affine approximation exists. It would be consistent with this
outlook to say that the meaning of “differentiability of order r” is that the
function can be well approximated by a polynomial of degree r. In the
standard approach definitions of higher order differentiability are typically
expressed in terms of partial derivatives, which at first sight might seem a bit
to the side of the real point. However, Taylor’s theorem (due to Brook Taylor
(1685-1731)) states that a function can be approximated by a polynomial
of degree r, with error that is “small of order r,” if it is Cr. Thus the
assumption that the function is Cr is strong enough to imply the property
of conceptual interest, and in addition to this it is easy to work with and
there is little interest in functions with partial derivatives that exist but are
discontinuous. For all these reasons the assumption that the function is Cr

has become part of the standard framework.

Up until this point we have been working over a rather general field k,
but the next theorem due to Michel Rolle (1652-1719), which is at the heart
of the proofs in this part of the theory, is specifically about the case k = R.
We’ll use it in the rest of the section to prove Clauraut’s theorem, which is
about second order partial derivatives, and Taylor’s theorem. These results
will be extended to the case k = C in the next chapter, but the proofs there
will not be straightforward extensions of the arguments below.

b b

b b

b

b

a bt

Figure 6.4

Theorem 6.23 (Rolle’s Theorem). If a < b, f : [a, b] → R is continuous,
f(a) = f(b), and f is differentiable at each t ∈ (a, b), then f ′(t) = 0 for
some t ∈ (a, b).

Proof. Since [a, b] is compact (Lemma 3.37) and f is continuous, f attains
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maximum at some point t∗. (Theorem 3.48.) If a < t∗ < b, then f ′(t∗) = 0,
by Theorem 6.13 applied to f |(a,b). Similarly, f attains its minimum at
some t∗, and f ′(t∗) = 0 if a < t∗ < t. The remaining possibility is that
t∗, t∗ ∈ {a, b}, but then f(t) = f(a) for all t, so that f ′(t) = 0 for all t.

In proofs the following (very slight and obvious) generalization typically
saves a step in the argument. For this reason it has its own name.

Theorem 6.24 (Mean Value Theorem). If a < b, f : [a, b] → R is contin-
uous, and f is differentiable at each t ∈ (a, b), then for some t ∈ (a, b) we
have

f ′(t) =
f(b) − f(a)

b− a
.

Proof. Let g : [a, b] → R be the function

g(t) := f(t) − f(b) − f(a)

b− a
(t− a).

Then g(a) = g(b), and Rolle’s theorem gives a number t ∈ (a, b) with

0 = g′(t) = f ′(t) − f(b) − f(a)

b− a
.

b

b

b b

b

b

a bt

Figure 6.5

Earlier we saw that if f is a univariate polynomial of degree r, then

f(t) =
1

r!
f (r)(0)tr +

1

(r − 1)!
f (r−1)(0)tr−1 + · · · + f (1)(0)t+ f (0)(0).

The general idea of Taylor’s theorem is that even if f isn’t itself a polynomial,
it will still (under suitable hypotheses) be well approximated by this sort
of polynomial. We begin with the univariate version because the proof is a
straightforward reflection of the underlying logic.
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Theorem 6.25 (Univariate Taylor’s Theorem). If a and b are real numbers
with a < b, r ≥ 0 is an integer, and f : (a, b) → R is Cr, then for each
t ∈ (a, b) and ε > 0 there is δ > 0 such that

∣

∣

∣f(t+ t) −
r
∑

i=0

1

i!
f (i)(t)ti

∣

∣

∣ ≤ ε|t|r

whenever |t| < δ.

Proof. Fix t and ε. To reduce the amount of clutter we define a new function
g : (a− t, b− t) → R by setting

g(t) := f(t+ t) −
r
∑

i=0

1

i!
f (i)(t)ti.

It is clear, in view of our rules for differentiating sums and products, that g
is Cr and g(i)(0) = 0 for each 1 ≤ i ≤ r. Our goal is to find δ > 0 such that
|g(t)| ≤ ε|t|r whenever |t| < δ.

We will argue by induction on r. When r = 0 the assertion is simply
that g is continuous, which is true because f is C0 (i.e., continuous) by
assumption, so suppose the claim has already been demonstrated with r− 1
in place of r. The hypotheses of that case are satisfied by g′, so there is
δ > 0 such that |g′(t)| ≤ ε|t|r−1 whenever |t| < δ. Consider such a t. If
t = 0, then the claim holds simply because g(0) = 0. Otherwise the mean
value theorem implies that there is t′ strictly between 0 and t such that
g′(t′) = g(t)/t, so that

|g(t)| = |g′(t′)| · |t| ≤ ε|t′|r−1|t| < ε|t|r.

The most important fact about higher order partial derivatives is that,
provided that k = R and suitable continuity assumptions hold, the order
of differentiation doesn’t matter. This result is sometimes called Young’s
theorem, but it is properly attributed to Alexis Clairaut (1713-1765).

Theorem 6.26 (Clairaut’s Theorem). Suppose that U ⊂ Rn is open, f :
U → R is a function, and for some 1 ≤ i < j ≤ n the partial derivatives
∂f
∂xi

, ∂f
∂xj

, ∂2f
∂xi∂xj

, and ∂2f
∂xj∂xi

are defined everywhere in U , with ∂2f
∂xi∂xj

and

∂2f
∂xj∂xi

continuous at x. Then

∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x).



6.10. ROLLE, CLAIRAUT, TAYLOR 251

Proof. Let ei and ej be the standard unit basis vectors. Since U is open,
for sufficiently small δi, δj > 0 the rectangle

{x+ siei + sjej : 0 ≤ si ≤ δi, 0 ≤ sj ≤ δj }

is contained in U . We will use the mean value theorem to express the
quantity

A := f(x+ δiei + δjej) − f(x+ δiei) − f(x+ δjej) + f(x)

in terms of the relevant second partials.
For 0 ≤ si ≤ δi let

g(si) := f(x+ siei + δjej) − f(x+ siei).

Then A = g(δi) − g(0). The mean value theorem implies that there is some
si strictly between 0 and δi such that

A = g′(si)δi =
[ ∂f

∂xi
(x+ siei + δjej) −

∂f

∂xi
(x+ siei)

]

δi.

Applying the mean value theorem a second time, there is a number sj strictly
between 0 and δj such that

A

δi
=

∂f

∂xi
(x+ siei + δjej) −

∂f

∂xi
(x+ siei) =

∂2f

∂xi∂xj
(x+ siei + sjej)δj .

The same argument can be applied with i and j reversed to get s′i ∈ (0, δi)
and s′j ∈ (0, δj) such that

∂2f

∂xi∂xj
(x+ siei + sjej) =

A

δiδj
=

∂2f

∂xj∂xi
(x+ s′iei + s′jej).

Since the second partials are continuous at x, by choosing δi and δj suffi-
ciently small we can force the left hand side to belong to any neighborhood of
∂2f

∂xi∂xj
(x) and the right hand side to belong to any neighborhood of ∂2f

∂xj∂xi
(x),

and of course this is impossible unless these two quantities are equal.

The multivariate version of Taylor’s theorem asserts that a certain poly-
nomial provides a good approximation of a Cr real valued function. We now
define and characterize this polynomial, not just for the case of the reals,
but for a general field. (This generality will be useful in connection with
the complex version of Taylor’s theorem.) If U ⊂ kn is open, r ≥ 0 is an
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integer, x ∈ U , and the partial derivatives up to order r of the function
f : U → k are defined at x, then the rth order Taylor’s series of f at x is
the polynomial

T r(f ;x)(y) =
r
∑

j=0

Tj(f ;x)(y)

where T0(f ;x)(y) = f(x) (regarded as a polynomial) and for j = 1, . . . , r,

Tj(f ;x)(y) :=
1

j!

(

n
∑

i1,...,ij=1

∂jf

∂xi1 · · · ∂xij
(x)yi1 · · · yij

)

∈ k[y1, . . . , yn].

To simplify the notation we will often suppress reference to x, since it will
remain fixed throughout the analysis, for instance writing T r(f)(y) in place
of T r(f ;x)(y), and sometimes y will also be implicit.

We will need to check that T r(f)(y) has the same partial derivatives as
f . The next result presents a single step in the calculation that proves this.

Lemma 6.27. If Clairaut’s theorem holds for the field k, so that higher
order partials do not depend on the order of differentiation, then for each
k = 1, . . . , n,

∂T r(f)

∂yk
(y) = T r−1

( ∂f

∂xk

)

(y).

Proof. The derivative of the constant term vanishes, of course, so the de-
sired formula is obtained by summing the following computation (which is
explained in detail below) over j = 1, . . . , r.

∂Tj(f)

∂yk
(y) =

∂

∂yk

( 1

j!

n
∑

i1,...,ij=1

∂jf

∂xi1 · · · ∂xij
yi1 · · · yij

)

=
1

j!

n
∑

i1,...,ij=1

j
∑

h=1

∂jf

∂xi1 · · · ∂xij
yi1 · · · yih−1

∂yih
∂yk

yih+1
· · · yij

=
1

j!

n
∑

i1,...,ij=1

ih=k

∂j−1(∂f/∂xk)

∂xi1 · · · ∂xih−1
∂xih+1

· · · ∂xij
yi1 · · · yih−1

yih+1
· · · yij

=
1

(j − 1)!

(

n
∑

i1,...,ij−1=1

∂j−1(∂f/∂xk)

∂xi1 · · · ∂xij−1

yi1 · · · yij−1

)

= Tj−1

( ∂f

∂xk

)

(y).
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Here the first and last equality are just the definition. The second applies
the rule for differentiating sums, then the rule for differentiating products,
generalized to any number of factors. (The general idea of the inductive
proof should be clear after you’ve seen the computation (fgh)′ = f ′(gh) +

f(gh)′ = f ′(gh) + f(g′h + gh′) = f ′gh + fg′h + fgh′.) Note that
∂yih
∂yk

is
a constant function with value 1 or 0 according to whether k = ih. The
third equality first removes those terms with k 6= ih, then uses Clairaut’s
theorem to interchange the order of differentiation, putting differentiation
with respect to xih = xk at the beginning. The fourth equality applies the
fact that the function

(i1, . . . , ij , h) 7→ (i1, . . . , ih−1, ih+1, . . . , ij)

is a j-to-one (so that 1/j! is replaced with 1/(j − 1)!) map from

{ (i1, . . . , ij , h) : 1 ≤ i1, . . . , ij ≤ n, 1 ≤ h ≤ j, and ih = k }

to

{ (i1, . . . , ij−1) : 1 ≤ i1, . . . , ij−1 ≤ n }.

We can apply the last result repeatedly to compute higher order partial
derivatives of the Taylor’s series.

Lemma 6.28. If Clairaut’s theorem holds for the field k, then for all j =
1, . . . , r and 1 ≤ k1, . . . , kj ≤ n,

∂jT r(f)

∂yk1 · · · ∂ykj

= T r−j
( ∂f

∂xk1 · · · ∂xkj

)

.

Proof. The last result is the case j = 1, so, by induction, we may assume
that the result has already been established with j replaced by any h =
1, . . . , j − 1, and also by j − h, and these combine to give us what we want:

∂jT r(f)

∂yk1 · · · ∂ykj

=
∂j−h

∂ykh+1
· · · ∂ykj

[

T r−h
( ∂hf

∂xk1 · · · ∂xkh

)]

= T r−j
( ∂jf

∂xk1 · · · ∂xkj

)

.
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In its overall outline the proof of the general version of Taylor’s theorem
follows the argument give for the univariate case, but naturally everything
is a bit more complicated.

Theorem 6.29 (Multivariate Taylor’s Theorem). Suppose that U ⊂ Rn is
open, r ≥ 0 is an integer, and f : U → R is Cr. Then for each x ∈ U and
ε > 0 there is δ > 0 such that

∣

∣f(x+ y) − T r(f ;x)(y)
∣

∣ ≤ ε‖y‖r

whenever ‖y‖ < δ.

When r = 0 the assertion is simply that f is continuous. This is already
present in the assumptions, but it will be a nice place to start an induction.
In the case r = 1 the claim is just that T 1(f) is an asymptotically accurate
approximation of f near x: that is, Df(x) is defined and x 7→ T 1(f ;x)(x−
x) = f(x) +Df(x)(x− x) is the associated affine approximation of f .

Proof. Fix x and ε. As in the univariate case, we simplify the calculations
by introducing a new function g : {x− x : x ∈ U } → R given by

g(y) := f(x+ y) − T r(f)(y).

Our goal is to find δ > 0 such that |g(y)| ≤ ε‖y‖n whenever ‖y‖ < δ. For
all j = 1, . . . , r and 1 ≤ k1, . . . , kj ≤ n the last result gives

∂jT r(f)

∂yk1 · · · ∂ykj

(0) = T r−j
( ∂f

∂xk1 · · · ∂xkj

)

(0) =
∂f

∂xk1 · · · ∂xkj

(x)

and thus
∂jg

∂yk1 · · · ∂ykj

(0) = 0.

In this sense the remainder of the argument can be understood as a matter
of demonstrating that the theorem holds when all the partials of f up to
order r vanish.

The case r = 0 follows from the continuity of g, so, by the principle of
induction, we may suppose the claim has already been demonstrated with
r−1 in place of r. The hypotheses of that case are satisfied by ∂g

∂y1
, . . . , ∂g∂yn

,
so there is δ > 0 such that

∣

∣

∣

∂g

∂yi
(y)
∣

∣

∣
≤ (ε/n)‖y‖r−1
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for all i whenever ‖y‖ < δ. Fix such a y, and define h : [0, 1] → R by setting
h(t) := g(ty). The mean value theorem implies that there is some t between
0 and 1 such that

g(y) = g(y) − g(0) = h(1) − h(0) = h′(t).

The chain rule, and the rules for differentiating sums and products, give

h′(t) =

n
∑

i=1

∂g

∂yi
(ty)yi.

It is not hard to see that if the theorem holds for one norm on Rn, then
it holds for any other equivalent norm, and since all norms are equivalent
we can specify that the norm is ‖y‖ =

√

y2
1 + · · · + y2

n. For this norm we
have |yi| ≤ ‖y‖ for all i, so

|g(y)| = |h′(t)| ≤
n
∑

i=1

∣

∣

∣

∂g

∂yi
(ty)

∣

∣

∣
· |yi| ≤

n
∑

i=1

(ε/n)‖ty‖r−1|yi| ≤ ε‖y‖r .

6.11 Derivatives of Sequences of Functions

If a function is defined by a power series, and is consequently the limit of
a sequence of polynomials, one would naturally guess that the derivative of
the limiting function is the limit of the sequence of derivatives of the polyno-
mials. This is true, as we will see in the next chapter, but there are certain
subtleties. It can happen that a sequence {fk} of C1 functions converges
to a C1 function f , but the sequence of derivatives {f ′k} doesn’t converge.
Properly speaking, we don’t yet have the tools to complete the analysis, but
readers who have any familiarity with the trigonometric functions will be
able to recognize that if fk : R → R is the function fk(t) = sin(kt)/k, then
{fk} converges uniformly to the constant zero function, but f ′k(t) = cos(kt)
oscillates in the interval [−1, 1], and in fact the sequence {f ′k} is not even
pointwise convergent.

The key result for this topic has quite strong hypotheses: we are given
a sequence of C1 functions that converges pointwise and whose sequence of
derivative functions converges uniformly on compacta. (As stated, these hy-
potheses are, in a sense, artificially weak, since they imply that the sequence
itself converges uniformly on compacta, but we won’t bother to prove this.)
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The only additional information we obtain is that the limit of the sequence
of derivatives is the derivative of the limit of the sequence of functions. How-
ever, this conclusion is just what we need to understand the derivatives of
functions defined by power series like exp(·), sin(·), and cos(·).

We begin with the univariate case for k = R because we can apply Rolle’s
theorem. Actually, the proof in this case already contains the essential ideas,
although perhaps not in a transparent form, and you might find it completely
convincing and at the same time not much of an explanation. To get a better
sense of the analysis it may help to just draw some figures illustrating the
situation described in the hypotheses when f is a constant function.

Lemma 6.30. Suppose U ⊂ R is open, {fk} is a sequence of functions from
U to R that converges pointwise to f , f ′k is defined and continuous for each
k, and {f ′k} converges uniformly on compacta to g : U → R. Then f is C1

with f ′ = g.

Proof. Proposition 3.51 implies that g is continuous on some neighborhood
of each of its points, which (Proposition 3.21) is the same as simply being
continuous, so if we can show that f ′ = g, then f ′ is continuous and f is
C1. Fixing t ∈ U , it suffices to show that f ′(t) = g(t).

Fix ε > 0. Since U is open and g is continuous we can choose δ > 0
such that [t− δ, t+ δ] ⊂ U and

∣

∣g(s) − g(t)
∣

∣ < 1
6ε whenever |s− t| ≤ δ. For

sufficiently large k we have |f ′k(s)−g(s)| < 1
6ε for all s ∈ [t−δ, t+δ] because

f ′k → g uniformly on compacta, so that

∣

∣f ′k(s) − g(t)
∣

∣ ≤
∣

∣f ′k(s) − g(s)
∣

∣+
∣

∣g(s) − g(t)
∣

∣ < 1
3ε. (∗)

Fix a particular t ∈ [t − δ, t + δ] with t 6= t. (The inequality we are
trying to establish holds automatically when t = t.) For sufficiently large k
we have

∣

∣f(t) − fk(t)
∣

∣ < 1
3ε|t− t| and

∣

∣f(t) − fk(t)
∣

∣ < 1
3ε|t− t|

because fk → f pointwise. (A key point here is that we are allowed to choose
k after we have committed to a particular t.) For any k the mean value
theorem gives a number sk strictly between t and t such that fk(t)−fk(t) =
f ′k(sk)(t− t), so (∗) gives

∣

∣fk(t) − [fk(t) + g(t)(t− t)]
∣

∣ =
∣

∣(f ′k(sk) − g(t))(t− t)
∣

∣ ≤ 1
3ε|t− t|.

For large k the inequalities above combine to give

∣

∣f(t) − [f(t) + g(t)(t− t)]
∣

∣ ≤
∣

∣f(t) − fk(t)
∣

∣+
∣

∣f(t) − fk(t)
∣

∣
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+
∣

∣fk(t) − [fk(t) + g(t)(t− t)]
∣

∣ < ε|t− t|.

Extending this result to the multivariate case is easy: we restrict to a
one dimensional subset of the domain, then apply the univariate case. In
the next chapter we’ll extend this to a sequence of complex valued functions
defined on an open subset of Cn.

Theorem 6.31. Suppose U ⊂ Rn is open, {fk} is a sequence of functions
from U to R that converges pointwise to f , ∂fk

∂xj
is defined and continuous

for each k and each j = 1, . . . , n, and each {∂fk
∂xj

} converges uniformly on

compacta to a function gj : U → R. Then f is C1 with

∂f

∂x1
= g1, . . . ,

∂f

∂xn
= gn.

Proof. Proposition 3.51 implies that each gj is continuous, so f is necessarily

C1 if we show that ∂f
∂xj

= gj for all j. Fix a particular x ∈ U and j = 1, . . . , n.

Let ej be the jth standard unit basis vector of Rn, and let

Uj := { s ∈ R : x+ sej ∈ U }.

Let ϕk, ϕ, γ : Uj → R be the functions

ϕk(s) := fk(x+ sej), ϕ(s) := f(x+ sej), γ(s) := gj(x+ sej).

Then {ϕk} converges pointwise to ϕ. In addition, ϕ′
k(s) = ∂f

∂xj
(x + sej),

so each ϕ′
k is defined and continuous, and {ϕ′

k} converges uniformly on
compacta to γ. The last result now implies that ϕ′(0) = γ(0), which is the
same as ∂f

∂xj
(x) = gj(x).



Chapter 7

Complex Differentiation

The last chapter covered the main facts concerning differentiation of real
valued functions, so we now turn to the special properties of differentiation
for a complex valued function f : U → C where U ⊂ Cn is open. These
functions are special in several ways, and for this reason (and also because
complex numbers occur less frequently in scientific modelling than real num-
bers) they are of somewhat less interest to science as a whole, but they are
extremely important in pure mathematics. The study of their properties is
one of the main entry points to “higher” mathematics.

We’ll always assume that f is differentiable at each point of U , and all
our arguments will be based on simple facts about differentiation. But it
turns out that the slightly stronger assumption that f is C1 implies quite
a bit more, and there is consequently a certain potential for terminological
confusion. So, we first explain how things can become muddled and what
we will do about it.

For those who have achieved a certain level of education a function is
analytic if each point in the domain has a power series centered at that
point that agrees with the function in a neighborhood of the point. This
notion is meaningful over the field of complex numbers, in the sense that
the coefficients in the power series are complex numbers, and the variables
are understood as taking complex values, but it is also meaningful over the
real field. Thus one tends to speak of complex analytic functions and real

analytic functions.

We’ve already encountered the notion of a Cr real valued function on an
open subset of Rn. The definition for the complex field is formally the same:
all the partial derivatives up to order r (in the sense of partial differentiation
given by the complex field) exist everywhere and are continuous. An open

258
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subset of Cn can be regarded as an open subset of R2n, and in this sense
one may regard a complex valued function on an open subset of Cn as
a pair of real valued functions defined on an open subset of R2n. If the
complex function is Cr then, as we will see shortly, the associated real
valued functions are Cr in the real sense, but the converse is very far from
being true. One of the most remarkable facts of mathematics is that our
function f is C1 in the complex sense if and only if it is complex analytic,
and if this is the case then each partial derivative function is also C1 so that,
by induction, f is C∞. That is, if f is C1, then it is both C∞ and complex
analytic. For those who have already mastered the basics, this happy state
of affairs is described by saying that f is holomorphic.

The problem is that although, in the end, there is only one type of
function in question, there are various states of knowledge concerning it,
and any proof of a property of such functions begins in one such state and
terminates in another. Some complex analysis texts use the word ‘analytic’
to describe a function from an open subset of C to C that is differentiable
everywhere. This approach may make sense in the context of a large body
of material focused on such functions, but I don’t think it would work very
well here. We’ll sometimes use the word ‘holomorphic’ to describe a function
satisfying any set of conditions implying all the properties described above,
but we’ll be careful to explain clearly just which properties are being applied
in each argument. For the time being this means that we are assuming only
that the given f is differentiable everywhere.

7.1 The Cauchy-Riemann Equations

We begin with the case n = 1, so f is a complex valued function defined
on an open subset of C. Under Argand’s identification of C with the plane
R2 we can also think of f as a map from an open subset of the plane to
the plane. We wish to maintain a clear distinction between the two ways of
looking at f , so we describe the situation as follows. Let

ι : R2 → C be the function ι(x, y) := x+ iy.

Setting Ũ := ι−1(U), the function associated with f is

f̃ = (u, v) := ι−1 ◦ f ◦ ι|Ũ : Ũ → R2.

Assuming that f is differentiable at a point z, we will aim at an understand-
ing of this condition in terms of properties of f̃ , u, and v at (x, y) := ι−1(z).



260 CHAPTER 7. COMPLEX DIFFERENTIATION

The real and imaginary parts of the derivative of f at z can be expressed
in terms of u and v:

f ′(z) = lim
∆x→0

f(z + ∆x) − f(z)

∆x

= lim
∆x→0

u(x+ ∆x, y) − u(x, y)

∆x
+ i

v(x+ ∆x, y) − v(x, y)

∆x

=
∂u

∂x
(x, y) + i

∂v

∂x
(x, y).

But it is also the case that

f ′(z) = lim
∆y→0

f(z + i∆y) − f(z)

i∆y

= lim
∆y→0

u(x, y + ∆y) − u(x, y)

i∆y
+ i

v(x, y + ∆y) − v(x, y)

i∆y

= −i∂u
∂y

(x, y) +
∂v

∂y
(x, y).

Equating the real and imaginary parts of these expressions for f ′(z) gives

∂u

∂x
(x, y) =

∂v

∂y
(x, y) and

∂v

∂x
(x, y) = −∂u

∂y
(x, y).

These are called the Cauchy-Riemann equations, in honor of the work
of these two men in developing the theory of differentiable functions of a
complex variable, even though they had appeared in works of d’Alembert
in 1752 and were subsequently studied by Euler. They are very famous
and very important. One simple and rather unexpected consequence is that
complex conjugation x + iy 7→ x − iy is not differentiable in the complex
sense because the first of the two equations does not hold.

It turns out that the Cauchy-Riemann equations are not just necessary
conditions of complex differentiability but also (for functions that are C1 in
the real sense) sufficient.

Lemma 7.1. Assume that u and v are C1. Fixing z = x+ iy ∈ U , let

ux :=
∂u

∂x
(x, y), uy :=

∂u

∂y
(x, y), vx :=

∂v

∂x
(x, y), vy :=

∂v

∂y
(x, y).

If ux = vy and uy = −vx, then f ′(z) is defined and

f ′(z) = ux + ivx = vy − iuy.
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Proof. For ξ, ψ such that (x+ ξ, y + ψ) ∈ Ũ let

A(ξ, ψ) := u(x+ ξ, y + ψ) − [u(x, y) + uxξ + uyψ]

and
B(ξ, ψ) := v(x+ ξ, y + ψ) − [v(x, y) + vxξ + vyψ].

Taylor’s theorem implies that there is δ > 0 such that

∣

∣A(ξ, ψ)
∣

∣ ≤ ε√
2
(ξ2 + ψ2)1/2 and

∣

∣B(ξ, ψ)
∣

∣ ≤ ε√
2
(ξ2 + ψ2)1/2

whenever (ξ2 + ψ2)1/2 < δ. (Here we are using our freedom to work with
whichever norm on R2 happens to be convenient.)

If ζ := ξ + iψ, then the equations ux = vy and uy = −vx give

(ux + ivx)ζ = (uxξ − vxψ) + i(vxξ + uxψ)

= (uxξ + uyψ) + i(vxξ + vyψ).

Since f = u+ iv, these equations combine to give

f(z + ζ) − [f(z) + (ux + ivx)ζ] = A(ξ, ψ) + iB(ξ, ψ).

We conclude that

∣

∣f(z + ζ) − [f(z) + (ux + ivx)ζ]
∣

∣ =
√

A2 +B2 ≤ ε(ξ2 + ψ2)1/2 = ε|ζ|

whenever ζ = ξ + iψ with z + ζ ∈ U and |ζ| < δ, which is just what we
need.

The extension of these results to the multivariate case is straightforward.
Let Ũ ⊂ R2n be open, and let u, v : Ũ → R be functions. For (x, y) =
(x1, . . . , xn, y1, . . . , yn) ∈ R2n let

ι(x, y) := x+ iy = (x1 + iy1, . . . , xn + iyn).

Let U := ι(Ũ ), and let f : U → C be the function

f(x+ iy) := u(x, y) + iv(x, y).

The following proof (which you might want to skim quickly without studying
in detail) simply applies our findings in the univariate case to the restrictions
of f , u, and v to a one dimensional (in the complex sense) subset of U and
the corresponding subset of Ũ .
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Theorem 7.2. Assume that u and v are C1. For any z = x+ iy ∈ U and
j = 1, . . . , n, if ∂f

∂zj
(z) is defined, then

∂f

∂zj
(z) =

∂u

∂xj
(x, y) + i

∂v

∂xj
(x, y) =

∂v

∂yj
(x, y) − i

∂u

∂yj
(x, y). (∗)

Conversely, if

∂u

∂xj
(x, y) =

∂v

∂yj
(x, y) and

∂u

∂yj
(x, y) = − ∂v

∂xj
(x, y),

then ∂f
∂zj

(z) is defined and (∗) holds.

Proof. Let ej ∈ Rn and fj ∈ Cn be the respective jth standard unit basis
vectors. (That is, ej and fj are both (0, . . . , 1, . . . , 0) where the 1 is the jth

component.) Let
V := {w ∈ C : z +wfj ∈ U },

and let ϕ : V → C be the function ϕ(w) := f(z + wfj). By virtue of the

definition of partial derivatives, for all w ∈ V the partial ∂f
∂zj

(z + wfj) is

defined if and only if ϕ′(w) is defined, in which case they are equal.
Let

Ṽ := { (s, t) ∈ R2 : s+ it ∈ V },
and let µ, ν : Ṽ → R be the functions

µ(s, t) := u(x+ sej, y + tej) and ν(s, t) := v(x+ sej, y + tej).

Then ϕ(s+ it) = µ(x, t) + iν(s, t) for all (s, t) ∈ Ṽ . Again, the definition of
partial derivatives gives

∂u

∂xj
(x+ sej, y + tej) :=

∂µ

∂s
(s, t),

∂v

∂xj
(x+ sej, y + tej) :=

∂ν

∂s
(s, t),

∂u

∂yj
(x+ sej, y + tej) :=

∂µ

∂t
(s, t),

∂v

∂yj
(x+ sej, y + tej) :=

∂ν

∂t
(s, t),

for all (s, t) ∈ Ṽ . The results for the univariate case now state that ϕ′(0) is
defined if and only if

∂µ

∂s
(s, t) =

∂ν

∂t
(s, t) and

∂µ

∂t
(s, t) = −∂ν

∂s
(s, t),

in which case

ϕ′(0) =
∂µ

∂s
(0, 0) + i

∂ν

∂s
(0, 0) =

∂ν

∂t
(0, 0) − i

∂µ

∂t
(0, 0),

which is exactly what we want.
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This section’s final result considers a sequence of C1 functions on U that
converges uniformly on compacta, and whose associated sequence of deriva-
tive functions also converges uniformly on compacta. Extending Theorem
6.31 to the complex case, we will show that the derivative of the limiting
function is the limit of the sequence of derivatives. The idea of the proof
is to first apply the real version of the result to the real and complex parts
of the sequence of functions, then observe that, by continuity, the Cauchy-
Riemann equations hold in the limit.

Theorem 7.3. Suppose U ⊂ Cn is open, {fk} is a sequence of functions
from U to C that converges uniformly on compacta to f , ∂fk

∂zj
is defined

and continuous for each k and each j = 1, . . . , n, and each {∂fk
∂zj

} converges

uniformly on compacta to a function gj : U → C. Then f is C1 with

∂f

∂z1
= g1, . . . ,

∂f

∂zn
= gn.

Proof. Fix a particular j between 1 and n. As above let fk(z) = uk(x, y) +
ivk(x, y) and f(z) = u(x, y) + iv(x, y). Then {uk} and {vk} converge uni-
formly on compacta to u and v. For each k the Cauchy-Riemann equations
are satisfied:

∂fk
∂zj

(z) =
∂uk
∂xj

(x, y) + i
∂vk
∂xj

(x, y) =
∂vk
∂yj

(x, y) − i
∂uk
∂yj

(x, y).

Let gj(z) = sj(x, y) + itj(x, y). Then {∂uk/∂xj} and {∂vk/∂yj} converge
uniformly on compacta to sj and {∂vk/∂xj} and {−∂uk/∂yj} converge uni-
formly on compacta to tj . In view of all this the real version of the result
(Theorem 6.31) implies that

∂u

∂xj
(x, y) = sj(x, y) =

∂v

∂yj
(x, y),

∂v

∂xj
(x, y) = tj(x, y) = − ∂u

∂yj
(x, y).

In particular, the Cauchy-Riemann equations are satisfied, so Theorem 7.2
tells us that ∂f

∂zj
= ∂u

∂xj
+ i ∂v∂xj

= sj + itj = gj , as desired.

7.2 Conformal Mappings

Let’s go back to the univariate framework, so U ⊂ C is open, Ũ = ι−1(U),
f̃ = (u, v) : Ũ → R2 is C1, and f := ι ◦ (u, v) ◦ ι−1 : U → C. We would like
a better geometric understanding of complex differentiation. The basic idea
of the derivative is that near a point z ∈ U , f(z + w) is well approximated
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by f(z) + f ′(z)w. In Section 3.9 we showed that any complex number can
be written in the form reiθ for some r ≥ 0 and some θ ∈ R, which may be
taken in the interval [0, 2π) if we like. If f ′(z) = reiθ and w = seiφ, then
f ′(z)w = rsei(θ+φ). Multiplication induces an action of the group C∗ (with
multiplication as the group operation) on C; in terms of the geometry of
the Argand plane the action of reiθ is counterclockwise rotation through the
angle θ, followed by compression or dilation by the factor r.

f

b

b

z w1

w2

f(z)

f ′(z)w1

f ′(z)w2

θ

Figure 7.1

Suppose now that f ′(z) = a + ib and w = s + it. Then f ′(z)w =
(as− bt) + i(at+ bs), so we may also think of the action of f ′(z) as a linear
transformation from R2 to itself with matrix

(

a −b
b a

)

.

Note that the determinant a2 + b2 of this matrix is nonnegative.
We would like to achieve a clear understanding of the relationship be-

tween this algebraic description of f ′(z) and the geometric properties iden-
tified above. To this end, we will now lay out the basic properties of linear
transformations that preserve distance. Suppose ℓ : Rn → Rn is such a
linear transformation, so that ‖ℓ(v) − ℓ(w)‖ = ‖v − w‖ for all v,w ∈ Rn.
Since ℓ(v) − ℓ(w) = ℓ(v −w), this is the case if and only if ‖ℓ(v)‖ = ‖v‖ for
any v ∈ Rn. Substituting the definition of the norm, then squaring both
sides of this equation, gives

〈

ℓ(v), ℓ(v)
〉

=
〈

v, v
〉

.

In order to get a better idea of what this means we replace v with v−w
in this equation, then expand both sides using basic properties of the inner
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product, obtaining

〈

ℓ(v), ℓ(v)
〉

− 2
〈

ℓ(v), ℓ(w)
〉

+
〈

ℓ(w), ℓ(w)
〉

=
〈

v, v
〉

− 2
〈

v,w
〉

+
〈

w,w
〉

.

The leftmost terms on the two sides of this equation are equal, as are the
rightmost terms. Subtracting these and dividing by −2 yields

〈

ℓ(v), ℓ(w)
〉

=
〈

v,w
〉

.

If this is true for all v and w, then it holds when w = v, of course, so we
have shown that ℓ preserves distances if and only if this last equation holds
for all v,w ∈ Rn. We say that ℓ is an orthogonal transformation if it
has these properties.

There is a remarkably simple algebraic characterization of this condition.
Recall that the inner product

〈

v,w
〉

can be written as the matrix product
vTw if we ignore the distinction between the resulting 1 × 1 matrix and
its entry. In general, if A and B are conformable matrices, then (AB)T =
BTAT : the (j, i)-entry of (AB)T is the (i, j)-entry of AB, namely the inner
product of the ith row of A and the jth column of B, and of course this is
the inner product of jth row of BT and the ith column of AT . In particular,
(Av)T = vTAT , so if A is the matrix of an orthogonal transformation ℓ, then

vT (ATA)w = (Av)T (Aw) =
〈

ℓ(v), ℓ(w)
〉

=
〈

v,w
〉

= vTw

for all v,w ∈ Rn. Letting v and w vary over the standard unit basis vectors
e1, . . . , en shows that ATA is the n×n identity matrix. The converse is true
as well: if ATA is the identity matrix, then

〈

ℓ(v), ℓ(w)
〉

= (Av)T (Aw) = vTATAw = vTw =
〈

v,w
〉

for all v,w ∈ Rn. We have shown that:

Proposition 7.4. An n× n matrix A with real entries is the matrix of an
orthogonal transformation if and only if it is invertible with A−1 = AT .

What does this mean concretely for a 2 × 2 matrix? Suppose that

[

1 0
0 1

]

=

[

a b
c d

] [

a c
b d

]

=

[

a2 + b2 ac+ bd
ac+ bd c2 + d2

]

.

Then ac = −bd because the off diagonal entries are zero, so a2c2 = b2d2 and

a2 = a2(c2 + d2) = (b2 + a2)d2 = d2,
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from which it follows that

b2 = 1 − a2 = 1 − d2 = c2.

Therefore c = ±b, d = ±a, and ac = −bd, so the matrix of an orthogonal
transformation ℓ : R2 → R2 is either

[

a −b
b a

]

or

[

a b
b −a

]

for numbers a and b such that a2 + b2 = 1. (It’s easy to check that, in fact,
the product of either of these matrices with its transpose is the identity.)
Note that the determinant of the first matrix is positive and the determinant
of the second matrix is negative.

Definition 7.5. If Ũ ⊂ R2 is open, a function f̃ : Ũ → R2 is a conformal

mapping if it is C1 and, for each (x, y) ∈ Ũ , Df̃(x, y) is a nonnegative
multiple of an orthogonal transformation with positive determinant.

We have seen that if f : U → C is C1, then f̃ : Ũ → R2 is conformal. But
we have also developed the tools that prove the converse. If f̃ is conformal,
the analysis above implies that for each (x, y) ∈ Ũ we have

(

∂u
∂x(x, y) ∂u

∂y (x, y)
∂v
∂x(x, y) ∂v

∂y (x, y)

)

=

(

a −b
b a

)

for some a, b ∈ R, which means that the Cauchy-Riemann equations hold
everywhere, implying that f is C1 in the complex sense. Summarizing:

Theorem 7.6. Suppose U ⊂ C is open, f : U → C, Ũ = ι−1(U), and
f̃ := ι−1 ◦ f ◦ ι|Ũ . Then f is differentiable if and only if f̃ is conformal.

7.3 Complex Clairaut and Taylor

Our next task is to show that the main results concerning higher order
partial derivatives in the real case—mixed partials do not depend on the or-
der of differentiation, and Taylor’s series approximations are asymptotically
accurate—extend to the complex case. We begin with a precise statement
of the desired results:

Theorem 7.7. Suppose that U ⊂ Cn is open, f : U → C is Cr for some
r ≥ 1, and z ∈ U . Then for each ε > 0 there is δ > 0 such that whenever
‖w‖ < δ,

∣

∣f(z + w) − T r(f ; z)(w)
∣

∣ ≤ ε‖w‖r .
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If, for some 1 ≤ j, k ≤ n with j 6= k, the second order partial derivatives
∂2f

∂zj∂zk
and ∂2f

∂zk∂zj
are defined everywhere in U and continuous at z ∈ U (of

course this is automatic when r ≥ 2) then

∂2f

∂zj∂zk
(z) =

∂2f

∂zk∂zj
(z).

The rest of the section is devoted to the proofs of these claims. We will
use the same framework as before: ι : R2n → Cn is the function ι(x, y) :=
x + iy, Ũ := ι−1(U), and f = (u ◦ ι−1) + i(v ◦ ι−1). Explicit reference to ι
will often be suppressed, in the sense that in equations involving x, y, and
z, or s, t, and w, it will be understood that z = ι(x, y) and w = ι(s, t).

The main tool underlying the arguments in the real case, namely the
mean value theorem, does not apply to the complex case. Instead, as in the
proof of Theorem 7.3, we will obtain the complex versions of these results
by combining the real versions with what we already know about complex
differentiation. This style of argument, in which a theorem is used to prove
a generalization, variant, or extension of itself, is called a bootstrap, after the
phrase “pull yourself up by your bootstraps.”

For the complex case of Clairaut’s theorem this is quite simple: when
1 ≤ j < k ≤ n we have the following calculation:

∂2f

∂zj∂zk
=

∂

∂zk

( ∂u

∂xj
+ i

∂v

∂xj

)

=
∂2u

∂xj∂xk
+ i

∂2v

∂xj∂xk

=
∂2u

∂xk∂xj
+ i

∂2v

∂xk∂xj
=

∂

∂zj

( ∂u

∂xk
+ i

∂v

∂xk

)

=
∂2f

∂zk∂zj
.

Here the third equality is the real case of Clairaut’s theorem, and all other
equalities follow from the fact that the (complex) partial derivative with re-
spect to a variable zh can be computed by taking the (real) partial derivative
with respect to zh’s real part.

You should take note of how, in this calculation, we left out the argu-
ments of the partial derivative functions because including them would make
a mess, and it is very clear that all the partial derivatives are to be evalu-
ated at z or (x, y). This sort of abbreviation is essential to readability in all
but the simplest discussions of theories expressed in terms of multivariate
calculus, and we will see several more examples below. More generally, the
readability of mathematics is enhanced by notation that is spare and light,
even if that involves quite a bit in the way of requiring the reader to fill in
the (hopefully obvious) missing information.
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We now turn to the complex version of Taylor’s theorem. The first order
partial derivatives of u and v are the real and complex parts of the first
order partial derivatives of f , and by applying this principal repeatedly we
see that the partials of u and v up to order r are the real and complex parts
of various partials of f of the same order. The reason for mentioning this is
that it implies that u and v are Cr, so the real version of Taylor’s theorem
tells us that u and v are well approximated in a neighborhood of (x, y) by
their rth order Taylor series. Thus, for any ε > 0 there is δ > 0 such that

∣

∣u(x+ s, y + t) − T r(u)(s, t)
∣

∣ ≤ ε√
2
‖(s, t)‖r

and
∣

∣v(x+ s, y + t) − T r(v)(s, t)
∣

∣ ≤ ε√
2
‖(s, t)‖r

whenever ‖(s, t)‖ < δ, in which case

∣

∣f
(

(x+ s) + i(y + t)
)

− T r(u)(s, t) − iT r(v)(s, t)
∣

∣ ≤ ε‖(s, t)‖r .

Since we are using the Euclidean norms, if w = ι(s, t), then

‖w‖ =
√

‖w1‖2 + · · · + ‖wn‖2 =
√

s21 + t21 + · · · + s2n + t2n = ‖(s, t)‖,

so it follows immediately1 that if ‖w‖ < δ, then

∣

∣f(z + w) − T r(u)(ι−1(w)) − iT r(v)(ι−1(w))
∣

∣ ≤ ε‖w‖r .

Therefore the complex version of Taylor’s theorem holds if T r(f) = (T r(u)+
iT r(v)) ◦ ι−1, which is the same thing as

T r(f) ◦ ι = T r(u) + iT r(v) ∈ C[s1, . . . , sn, t1, . . . , tn]. (∗)

The rest of the section is devoted to the proof of this formula.
At first glance it somehow “feels” strange that there is even anything

here in need of proof. The “hard” work of taking limits has already been
done, and what remains is “just algebra.” How could it be that deep or
complex? However, a typical term

∂f

∂zi1 · · · ∂zij
(z)wi1 · · ·wij

1In view of Proposition 6.9, Taylor’s theorem is actually valid for any norms, but the
proof for arbitrary norms has a few additional details.
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of T r(f) breaks into 2j terms when expanded in terms of si1, . . . , sij and
ti1, . . . , tij , and while there are various ways to express this expansion, they
are cumbersome and hard to manipulate, or at least so it seems. Instead of
making a frontal assault, our argument will employ a rather clever induction
over both n and r.

We first explain the general nature of our methods. Consider a polyno-
mial g = amX

m + · · ·+ a1X + a0 ∈ R[X] where R may be any commutative
ring with unit. We can define a formal derivative by applying the rules
for differentiating polynomials:

Dg := mamX
m−1 + · · · + 2a2X + a1 ∈ R[X].

The formal derivative will agree with the analytic derivative of a function
defined by g whenever there is such a thing, but even if there is no analytic
sense in whichDg is the derivative of a function, the purely formal properties
of this “derivative” may still be interesting. For example, purely algebraic
computations can be used to prove (give it a try!) that, for all g, h ∈ R[X],

D(gh) = Dg · h+ g ·Dh.
It is obvious that D(g + h) = Dg + Dh, so computation of formal deriva-
tives is governed by the same rules that we used to compute derivatives of
polynomial functions.

This idea extends to partial derivatives: if g =
∑

0≤i+j≤r ai,jX
iY j ∈

R[X,Y ], then we can define the formal partial derivative

∂g

∂X
:=

∑

1≤i+j≤r,1≤i

iai,jX
i−1Y j,

and of course ∂g/∂Y is defined similarly. The specific result we will use is:

Lemma 7.8. Assume that R is an integral domain, and that the homomor-
phism from ZZ to R taking 1 to 1 is injective. If

g =
∑

0≤i+j≤r

ai,jX
iY j and h =

∑

0≤i+j≤r

bi,jX
iY j

are elements of R[X,Y ] with ∂g/∂X = ∂h/∂X, ∂g/∂Y = ∂h/∂Y , and
a0,0 = b0,0, then g = h.

Proof. We need to show that ai,j = bi,j for all relevant i and j. By assump-
tion a0,0 = b0,0. Since ∂g/∂X = ∂h/∂X , we have iai,j = ibi,j whenever
i ≥ 1. Since i (that is, the image in R of i ∈ ZZ) is nonzero and an inte-
gral domain has no zero divisors, it follows that ai,j = bi,j whenever i ≥ 1.
Similarly, ai,j = bi,j whenever j ≥ 1 because ∂g/∂Y = ∂h/∂Y .
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We will prove (∗) by applying this result to T r(f)◦ ι and T r(u)+ iT r(v),
where we regard these as polynomials in the variable sn and tn with co-
efficients in C[s1, . . . , sn−1, t1, . . . , tn−1]. The remainder of the argument
verifies the hypotheses of the lemma, namely that

(T r(f) ◦ ι)(s1, . . . , sn−1, 0, t1, . . . , tn−1, 0) =

= T r(u)(s1, . . . , sn−1, 0, t1, . . . , tn−1, 0)

+ iT r(v)(s1, . . . , sn−1, 0, t1, . . . , tn−1, 0),

and that

∂(T r(f) ◦ ι)
∂sn

=
∂T r(u)

∂sn
+ i

∂T r(v)

∂sn
and

∂(T r(f) ◦ ι)
∂tn

=
∂T r(u)

∂tn
+ i

∂T r(v)

∂tn
.

If either n = 0 or r = 0, then (∗) holds trivially, so, by the principle of
induction, we may assume that (∗) has already been established when the
pair (n, r) is replaced by either (n− 1, r) or (n, r − 1). The first hypothesis
of the lemma is simply (∗) evaluated at

(s1, . . . , sn−1, 0, t1, . . . , tn−1, 0),

which is (∗) for the pair (n − 1, r). (A bit more precisely, it is (∗) for the
function ϕ : { ζ ∈ Cn−1 : (ζ, zn) ∈ U } → C given by ϕ(ζ) := f(ζ, zn).)

In the following computation the first equality is from the chain rule,
Lemma 6.27 gives the second and final equalities, and the third equality is
the case (n, r − 1) applied to ∂f

∂zn
= ∂u

∂xn
+ i ∂v∂xn

:

∂(T r(f) ◦ ι)
∂sn

=
∂T r(f)

∂wn
◦ ι = T r−1( ∂f∂zn

) ◦ ι = T r−1( ∂u
∂xn

) + iT r−1( ∂v
∂xn

)

=
∂T r(u)

∂sn
+ i

∂T r(v)

∂sn
.

(It is a good idea to slow down here and really make sure you understand
each equality!)

The computation for the partial with respect to tn follows the same
pattern, but with one additional complication, namely the fourth equality
below applies the Cauchy-Riemann equations:

∂(T r(f) ◦ ι)
∂tn

= i
(∂T r(f)

∂wn
◦ι
)

= i
(

T r−1( ∂f∂zn
)◦ι
)

= i
(

T r−1( ∂u
∂xn

)+iT r−1( ∂v
∂xn

)
)

= T r−1( ∂u∂yn
) + iT r−1( ∂v∂yn

) =
∂T r(u)

∂tn
+ i

∂T r(v)

∂tn
.

We have now established the hypotheses of the lemma, thereby proving (∗)
and completing the proof of the complex version of Taylor’s theorem.
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7.4 Functions Defined by Power Series

In this section, and the two that come after it, we study functions, such
as the exponential and trigonometric functions, that are defined by power
series. We will show that the function defined by the series in the disk given
by the radius of convergence is C1, and that it’s derivative (or any partial
derivative in the multivariate case) coincides with the function defined by the
power series obtained by term-by-term differentiation. Since this analysis
can be repeated, it follows that a power series defines a C∞ function.

Recall that a function is analytic if, for each point in its domain, there
is a power series centered at that point that converges to the function in
some neighborhood of that point. Of course a function defined by a power
series satisfies this condition at the point where the series is centered, and
we will show that it is analytic by giving an explicit formula for its power
series at a nearby point.

The current section develops the results described above in the univari-
ate case, and the multivariate case is considered in the next section. The
underlying ideas in the two cases are really the same, and if you have a clear
understanding of the univariate case you should be well equipped to deal
with the technical complexities of the general case.

Consider a power series

∞
∑

k=0

ck(z − a)k

centered at a ∈ C whose coefficients c0, c1, c2, . . . are in C. In Section 3.9
we defined the radius of convergence to be

R := lim inf
k→∞

1/ k
√

|ck|.

Assume that R is positive, and let

D = { z ∈ C : |z − a| < R }.

We showed (Lemma 3.54) that if 0 < r < R, then the series converges
uniformly and absolutely on the closed disk { z ∈ C : |z − a| ≤ r }. Any
compact subset of D is contained in some such disk (the interiors of such
disks are an open cover that must have a finite subcover) so the series con-
verges uniformly on compacta to a function

f : D → C.
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Now consider the power series
∑∞

k=1 kck(z−a)k−1 obtained by applying
the rules for differentiating sums and products. Since

k−1
√

|kck| =
k−1
√
k( k
√

|ck|)
k
k−1

and k−1
√
k → 1, the radius of convergence of this power series is also R, and

it also converges uniformly on compacta in D. Theorem 7.3 now implies
that the function defined by this series is f ′ because, for each K = 1, 2, . . .,

K
∑

k=1

kck(z − a)k−1 is the derivative of

K
∑

k=0

ck(z − a)k.

In particular, f is C1, but of course this argument applies equally to the
power series for f ′, so, by induction, f is C∞.

For the exponential and trigonometric functions

exp(z) :=
∞
∑

k=0

zk

k!
, cos(z) :=

∞
∑

k=0

(−1)kz2k

(2k)!
, sin(z) :=

∞
∑

k=0

(−1)kz2k+1

(2k + 1)!

differentiating the power series term-by-term gives

exp′(z) = exp(z), cos′(z) = − sin(z), sin′(z) = cos(z).

(To get the second equation first replace k with k + 1, then differentiate.)
If U ⊂ C is open, f : U → C is differentiable at t ∈ U ∩ R, and f(U ∩

R) ⊂ R, then the derivative of f |U∩R
with respect to the field R is the same

as the derivative of f at t with respect to the field C. (Make sure you see that
this is an automatic consequence of the definitions of the two derivatives.)
Therefore the same formulas characterize the derivatives of the exponential
and trigonometric functions when these are regarded as functions from R to
R. Now that we know how to differentiate these functions and polynomials,
and we have the rules for differentiating sums, products, quotients, and
compositions of functions, we have purely mechanical procedures that allow
us to differentiate an enormous variety of functions. Of course those of you
who have already taken first year calculus know this very well.

We now turn to this section’s second issue, which is to prove that f
is analytic. For a given point b ∈ D we will show that there is a power
series

∑∞
k=0 c

′
k(z − b)k centered at b that converges to f absolutely in a

neighborhood of b. In view of the relationship between the coefficients of a
power series and the derivatives of the function it defines, necessarily

c′k =
1

k!
f (k)(b) =

1

k!

∞
∑

ℓ=k

ℓ(ℓ− 1) · · · (ℓ− k + 1)cℓ(b− a)ℓ−k
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=
1

k!

∞
∑

ℓ=k

ℓ!

(k − ℓ)!
cℓ(b− a)ℓ−k =

∞
∑

ℓ=k

(

ℓ

k

)

cℓ(b− a)ℓ−k.

Let R′ be the radius of convergence of the power series
∑∞

k=0 c
′
k(z− b)k.

One would hope that R′ ≥ R − |b − a|, and this is in fact the case, but
it’s not exactly clear how one might prove this by working directly with the
definition of R′. Instead recall that, by Proposition 3.55, if |z−b| < R′, then
the series converges absolutely, and if |z − b| > R′, then the series does not
converge absolutely. Consequently the inequality R′ ≥ R − |b − a| follows
if we can show that the series

∑∞
k=0 c

′
k(z − b)k converges absolutely when

|z − b| < R− |b− a|. The following computation does this by first changing
the order of summation, then applying basic facts about the absolute value,
after which the binomial theorem can be invoked:

∞
∑

k=0

∞
∑

ℓ=k

∣

∣

∣cℓ

(

ℓ

k

)

(b− a)ℓ−k(z − b)k
∣

∣

∣ =

∞
∑

ℓ=0

ℓ
∑

k=0

∣

∣

∣cℓ

(

ℓ

k

)

(b− a)ℓ−k(z − b)k
∣

∣

∣

=

∞
∑

ℓ=0

|cℓ|
(

ℓ
∑

k=0

(

ℓ

k

)

|b− a|ℓ−k|z − b|k
)

=

∞
∑

ℓ=0

|cℓ|
(

|z − b| + |b− a|
)ℓ
<∞.

The final inequality follows from the fact that |z − b| + |b − a| < R, as was
explained in detail in Section 3.9.

We still need to show that the function defined by the power series
∑∞

k=0 c
′
k(z− b)k agrees with f near b. The absolute convergence established

above implies that the various terms can be summed in any order. This fact
validates the following computation applying the binomial theorem:

∞
∑

k=0

c′k(z − b)k =

∞
∑

k=0

(

∞
∑

ℓ=k

(

ℓ

k

)

cℓ(b− a)ℓ−k
)

(z − b)k

=

∞
∑

ℓ=0

cℓ

(

ℓ
∑

k=0

(

ℓ

k

)

(b− a)ℓ−k(z − b)k
)

=
∞
∑

ℓ=0

cℓ
(

(z − b) + (b− a)
)ℓ

=
∞
∑

ℓ=0

cℓ(z − a)ℓ = f(z).
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7.5 Multivariate Power Series

We now generalize the analysis above to multivariate power series. Aside
from the fact that we have to do it before we can say we’ve done it, the
main point of interest here is actually the system of notation, which allows
lots of stuff to be compressed into tight little packages. This tends to in-
crease the mental distance between the symbols and what they represent,
and the calculations are still a bit messy, so you may find this rather dif-
ficult and tedious reading. (The details won’t reappear later, so if things
start to get difficult you can skip ahead to the last few paragraphs of this
section, intending to return some morning after you’ve had a good night’s
sleep and a strong cup of coffee.) At the same time the excellent match
between the notation and the analysis is, in my opinion, extremely elegant
and aesthetically pleasing.

We’ll work with the variables z = (z1, . . . , zn). An exponent vector for
this system of variables is an n-tuple α = (α1, . . . , αn) whose components
are nonnegative integers. Let En be the set of exponent vectors. We achieve
a compact notation for monomials by setting

zα := zα1
1 · · · zαn

n .

A power series in z centered at a ∈ Cn is then an infinite sum

∑

α∈En

cα(z − a)α (∗)

where the coefficients cα are in C.
The total degree of an exponent vector α is

|α| := α1 + · · · + αn.

For each k = 0, 1, 2, . . . let Ekn be the set of exponent vectors of total degree
k. We can now define the radius of convergence of the series to be

R := lim inf
k→∞

1

maxα∈Ek
n

k
√

|cα|
.

The analysis of uniform absolute convergence is only slightly more com-
plicated than in the univariate case, the one new idea being that the number
of elements in Ekn, which we will denote by |Ekn|, grows slowly enough as k
increases that it doesn’t affect the conclusion. The number |Ekn| can be
analyzed with considerable sophistication and precision, but for us a quite
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crude bound is good enough, so we will simply show that |Ekn| ≤ (k+ 1)n−1

whenever n ≥ 1 and k ≥ 0. When n = 1 the unique exponent of total degree
k corresponds to zk1 , so |Ek1 | = 1, and (by induction) we may assume that the
inequality holds with n replaced by n−1. An element of Ekn may be thought
of as a pair whose first element is α1 ∈ {0, . . . , k} and whose second element
is an element of Ek−α1

n−1 , so |Ekn| can be written as a sum |E0
n−1|+ · · ·+ |Ekn−1|

of k+ 1 terms, each of which is no greater than (k+ 1)n−2, so the sum is no
greater than (k + 1)n−1.

When 0 < r < R let

B(r) := { z ∈ Cn : ‖z − a‖∞ ≤ r }

be the closed disk of radius r centered at a. (Recall that the norm ‖ · ‖∞
on Cn is given by ‖w‖∞ := max{|w1|, . . . , |wn|}.) We claim that the series
(∗) converges absolutely and uniformly on each such B(r). Fixing r, choose
numbers r1 and r2 with r < r1 < r2 < R. If K is large enough, then for
all k > K we have (k + 1)n−1 < (r1/r)

k for all k > K (because exponential
growth dominates the growth of any polynomial) and maxα∈Ek

n

k
√

|cα| <
1/r2. For any w ∈ Cn we have |wα| =

∏

i |wi|αi ≤ ‖w‖|α|∞ . In view of all
this, if ‖z − a‖∞ ≤ r, then

∣

∣

∣

∞
∑

k=K+1

∑

α∈Ek
n

cα(z − a)α
∣

∣

∣ ≤
∞
∑

k=K+1

∑

α∈Ek
n

|cα|r|α| ≤
∞
∑

k=K+1

|Ekn|(1/r2)krk

≤
∞
∑

k=K+1

(r1/r)
k(r/r2)

k =

∞
∑

k=K+1

(r1/r2)
k =

(r1/r2)
K

1 − r1/r2
.

The final expression goes to 0 as K → ∞, so the series converges absolutely,
and it converges uniformly on B(r).

Fix an index j with 1 ≤ j ≤ n and let ej = (0, . . . , 1, . . . , 0) be the
jth standard unit basis vector. Applying the rules for computing partial
derivatives shows that the partial derivative of the given power series with
respect to zj is

∞
∑

k=0

∑

α∈Ek
n,αj>0

αjcα(z − a)α−ej =

∞
∑

k=0

∑

α∈Ek
n

(αj + 1)cα+ej (z − a)α.

Of course {α+ ej : α ∈ Ekn } ⊂ Ek+1
n and αj ≤ k when α ∈ Ekn, so

lim inf
k→∞

1

maxα∈Ek
n

k

√

∣

∣(αj + 1)cα+ej

∣

∣

≥ R.
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Therefore the series above also converges absolutely and uniformly on B(r).
Now Theorem 7.3 implies that this limit is the partial with respect to zj of
the function defined by the given power series. Since this argument can be
applied iteratively, it follows that the function defined by the given power
series is C∞. Summarizing the analysis to this point:

Theorem 7.9. Let
∑

α∈En
cα(z − a)α be a power series whose radius of

convergence

R := lim inf
k→∞

1

maxα∈Ek
n

k
√

|cα|
is positive, and let D = { z ∈ Cn : ‖z − a‖∞ < R }. Then the series
converges absolutely and uniformly on compacta to a function f : D → C

that is C∞, and its partial derivatives are the functions defined by the power
series obtained from term-by-term differentiation.

We need some more notation to handle the calculations related to ana-
lyticity of f . For α ∈ En we define

α! := α1! × · · · × αn!.

For α, β ∈ En with β ≤ α let
(

α

β

)

:=
α!

β!(α− β)!
.

There is now the following multivariate extension of the binomial theorem.

Lemma 7.10. For all z,w ∈ Cn and all α ∈ En,

(z + w)α =
∑

0≤β≤α

(

α

β

)

zα−βwβ .

Proof. This is a big calculation employing the univariate binomial theorem
and the distributive law:

(z +w)α = (z1 + w1)
α1 · · · (zn + wn)

αn

=
(

α1
∑

β1=0

(

α1

β1

)

zα1−β1
1 wβ1

)

· · ·
(

αn
∑

βn=0

(

αn
βn

)

zαn−βn
n wβn

)

=
∑

0≤β≤α

(

α1

β1

)

· · ·
(

αn
βn

)

zα1−β1
1 · · · zαn−βn

n wβ1
1 · · ·wβn

n

=
∑

0≤β≤α

(

α

β

)

zα−βwβ.
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If U ⊂ Cn is open, f : U → Cn is Cr, and α ∈ En with |α| ≤ r, then, in
order to have more compact notation, we write ∂αf in place of

∂|α|f

∂zα1
1 · · · ∂zαn

n
.

When 0 ≤ β ≤ α the rules for differentiating polynomials give

∂βizα

∂zβi
i

= αi(αi − 1) · · · (αi − βi + 1)zα1
1 · · · zαi−1

i−1 zαi−βi
i z

αi+1

i+1 · · · zαn
n

=
αi!

(αi − βi)!
zα1
1 · · · zαi−1

i−1 z
αi−βi
i z

αi+1

i+1 · · · zαn
n .

Since we have established Clairhaut’s theorem for functions on Cn, we can
do this repeatedly for i = 1, . . . , n without worrying about the order of
differentiation, and the end result boils down to the tight little formula

∂βzα =
α!

(α− β)!
zα−β .

Under the hypotheses of Theorem 7.9, when ‖b− a‖∞ < R we can compute
∂βf(b) by term-by-term partial differentiation:

∂βf(b) =
∑

α∈En,α≥β

cα
α!

(α− β)!
(b− a)α−β .

In particular, when b = a every term in this sum other than the constant
term vanishes, so ∂βf(a) = β!cβ .

Theorem 7.11. Under the hypotheses of Theorem 7.9, fix b ∈ D, and for
β ∈ En let

c′β :=
1

β!
∂βf(b) =

∑

α∈En,α≥β

cα

(

α

β

)

(b− a)α−β .

Then the series
∑

β∈En
c′β(z − b)β converges absolutely to f on

{ z ∈ Cn : ‖z − b‖∞ < R− ‖b− a‖∞ },

and consequently (since b was arbitrary) f is analytic.
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Proof. Absolute convergence of
∑

β∈En
c′β(z−b)β follows if we establish that

S :=
∑

β∈En

∑

α∈En,α≥β

cα

(

α

β

)

(b− a)α−β(z − b)β

converges absolutely. We adopt the following notation: if z ∈ Cn then
|z| := (|z1|, . . . , |zn|). For any exponent vector α we have |zα| = |z|α where
the left hand side is the usual modulus for C. Therefore

|S| ≤
∑

β∈En

∑

α∈En,α≥β

|cα|
(

α

β

)

|b− a|α−β|z − b|β

=
∑

α∈En

|cα|
[

∑

0≤β≤α

(

α

β

)

|b− a|α−β|z − b|β
]

.

(The second relation reorders the series, even though we haven’t yet shown
absolute convergence, but this is permitted because all terms are nonnegative
real numbers, so the sum under one ordering has the same, possibly infinite,
limit as the sum under any other ordering.) The multivariate binomial
theorem now gives

|S| ≤
∑

α∈En

|cα|(|b− a| + |z − b|)α.

We claim that

(|b− a| + |z − b|)α ≤ ‖ |b− a| + |z − b| ‖|α|∞ ≤ (‖b− a‖∞ + ‖z − b‖∞)|α|

for all α ∈ En. The first inequality comes from the fact that xα ≤ ‖x‖|α|∞

for any x ∈ Rn and α ∈ En. The second inequality is justified by the
observation that

‖ |z| + |w| ‖∞ = max{|z1| + |w1|, . . . , |zn| + |wn|}

≤ max{|z1|, . . . , |zn|} + max{|w1|, . . . , |wn|} = ‖z‖∞ + ‖w‖∞
for all z,w ∈ Cn. We now have |S| ≤ ∑

α∈En
|cα|r|α| for some r < R, and

in our analysis of the absolute convergence of
∑

α∈En
cα(z − a)α on D we

showed that
∑

α∈En
|cα|r|α| is finite.

Now that we know that S converges absolutely we are free to rearrange
the terms in the summation. This (together with the multivariate binomial
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formula) justifies the computation

∑

β∈En

c′β(z − b)β =
∑

β∈En

[

∑

α∈En,α≥β

(

α

β

)

cα(b− a)α−β
]

(z − b)β

=
∑

α∈En

cα

[

∑

0≤β≤α

(

α

β

)

(b− a)α−β(z − b)β
]

=
∑

α∈En

cα(z − a)α = f(z).

We’ve shown that functions defined by power series are analytic and C∞.
There is one more element of the overall picture:

Theorem 7.12. If U ⊂ Cn is open and f : U → C is C1, then it is analytic.

This is certainly one of the most remarkable results in all of mathematics,
and also one of the most important. Of course it seems magical that C1

functions are automatically C∞, but analyticity is actually much stronger
still. As we’ll explain in detail in the next section, a holomorphic function
on a connected domain is completely determined by its power series at any
point in the domain, and in particular the entire function can be recovered
from the restriction of the function to an arbitrarily small neighborhood of
that point. In contrast, in Section 7.7 we’ll see that real valued C∞ functions
defined on open subsets of Rn are, in a certain sense, completely flexible.

Although we have mentioned various famous results that are not proven
here, the treatment to this point has been rigorous in the sense of proving
all the results used in our own analysis. As we explained in the first chapter,
from a psychological point of view, real skill and facility with mathematics is
impossible without this sort of rigorous understanding of foundations. Due
to the use of advanced concepts and results not covered here, and its overall
length and complexity, the proof of Theorem 7.12 is at a quite different level
from anything else in this book, and it cannot be included. Although we
won’t make much use of it to prove other things (it says that certain types
of objects don’t exist, and mostly we simply won’t consider them) Theorem
7.12 plays an important role in the next two chapters because it informs our
expectations concerning the properties of the objects studied there, and the
failure to prove it is our primary violation of this standard of self-contained,
exact understanding.
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7.6 Analytic Continuation

Suppose that X and Y are topological spaces, and x0 ∈ X. We say that
two functions f : X → Y and f ′ : X → Y have the same germ at x0 if there
is a neighborhood W of x0 such that f |W = f ′|W . This is an equivalence
relation. (Reflexivity and symmetry are immediate, and transitivity is easy,
but you should think through the details for yourself.) The equivalence class
containing f is called the germ of f at x0.

Our goal in this section is:

Theorem 7.13. If U ⊂ Cn is open and connected, f, g : U → C are
analytic functions, and a0 ∈ U is a point at which f and g have the same
power series, or the same germ, then f = g.

In this sense analytic functions are “rigid.”
If f : U → C is analytic and a0 ∈ U , then the definition of analyticity

implies that the power series of f at a0 determines the germ of f at a0. But
Theorem 7.11 implies that the germ determines the power series: at each
point in the domain of an analytic function the power series is determined
by the partial derivatives (of all orders) of the function. To prove Theorem
7.13 it is enough to show that the conclusion holds when f and g have the
same power series at a0.

Recall that if z ∈ Cn and r > 0, then the ball of radius r centered at z,
with respect to the norm ‖ · ‖∞, is

Ur(z) := { z′ ∈ Cn : ‖z′ − z‖∞ < r }.

For z ∈ U let rz be the supremum of the set of r such that:

(a) Ur(z) ⊂ U ;

(b) the radii of convergence of the power series of f and g centered at z
are greater than r;

(c) f |Ur(z) and g|Ur(z) agree with the functions defined by the power series
of f and g centered at z.

The definition of an analytic function implies that rz > 0.
Consider any two points z, z′ ∈ U with z′ ∈ Urz(z). To show that

rz′ ≥ rz − ‖z′ − z‖∞ (∗)

we check the three conditions above. The triangle inequality gives

Urz−‖z′−z‖∞(z′) ⊂ Urz(z) ⊂ U.
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Since f and g agree on Urz(z) with the functions defined by their power
series at z, Theorem 7.11 implies the radii of convergence of the power
series of f and g at z′ are at least rz − ‖z′ − z‖∞, and that f and g agree
with the functions defined by these power series on Urz−‖z′−z‖∞(z′).

In order to prove Theorem 7.13 it suffices to show that f(a1) = g(a1)
for any a1 ∈ U . Fix such an a1. The proof uses a process called analytic

continuation which develops a quite simple idea. Consider a point z1 ∈
Ura0

(a0). The definition of ra0 implies that f and g agree in Ura0
(a0) with

the function defined by their common power series, so f and g have the
same power series at z1. If z2 is a point in Urz1

(z1), then f and g agree
on a neighborhood of z2, so they have the same power series there, we can
choose a point z3 ∈ Urz2

(z2), and so forth. If we can continue this process
until a1 ∈ Urzk

(zk), then f(a1) = g(a1) as desired.

b b

b

b
b

b
b

b

b

a0 = z0

z1
z2

z3 z4 z5
z6

z7

z8 = a1

Figure 7.3

The remaining task is to show that there are points

a0 = z0, z1, . . . , zk−1, zk = a1

in U such that ‖zh+1 − zh‖∞ < rzh
for all h = 0, . . . , k − 1. Below we will

show that there is a continuous γ : [0, 1] → U with γ(0) = a0 and γ(1) = a1.
Assuming that we have such a γ, let S be the set of t such that there exist

0 = t0 < t1 < · · · < tk−1 < tk = t

such that ‖γ(th+1)−γ(th)‖∞ < rγ(th) for all h = 0, . . . , k−1. We would like
to show that 1 ∈ S. Of course S is nonempty because it contains 0, and it
is bounded above by 1; let t be its least upper bound.
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Now observe that (∗) implies that z ∈ Urz′ (z
′) whenever z′ ∈ Urz/2(z),

and in particular γ(t) ∈ Urγ(tk)
(γ(tk)) whenever t0, . . . , tk is a sequence as

above with ‖γ(tk) − γ(t)‖ < 1
2rγ(t). The definition of t implies that such

a sequence exists, and we can extend it by setting tk+1 := t. Moreover, if
t < 1 we can extend it again by letting tk+2 be some number greater than
t with ‖γ(tk+2) − γ(t)‖ < rγ(t). This shows both that t ∈ S and that t < 1
implies a contradiction of the definition of t. Therefore 1 = t ∈ S.

All that remains now is to show that a suitable γ exists. A path in
a topological space X is a continuous function γ : [0, 1] → X, and we say
that X is path connected if, for any a0, a1 ∈ X, there is a path γ with
γ(0) = a0 and γ(1) = a1. So, we need to show that any connected open
U ⊂ Cn is path connected. This may seem obvious, but there is a bit more
to say about it than one might expect, and we will see a famous example
that “everyone” knows, so you should know it too.

A path connected space is necessarily connected. To show this suppose
that X is disconnected, so that X = U0∪U1, where U0 and U1 are nonempty,
open, and disjoint. Then X is not path connected because if γ : [0, 1] → X
was a path with γ(0) ∈ U0 and γ(1) ∈ U1, then γ−1(U0) and γ−1(U1) would
be nonempty, open, disjoint sets whose union was all of [0, 1], and this is
impossible because [0, 1] is connected (Lemma 3.65).

Y0 Y1· · ·

· · ·

Figure 7.4

The topologist’s sine curve is a very well known example of a con-
nected space that is not path connected. This is the set Y = Y0 ∪ Y1 ⊂ R2

where

Y0 := { (0, s) : −1 ≤ s ≤ 1 } and Y1 := { (s, sin 1
s ) : 0 < s ≤ 1 }.

As shown in Figure 7.4, Y1 goes up and down infinitely many times as s→ 0
from above. Since Y0 and Y1 are each the image of a continuous function
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from an interval in R to Y , they are path connected, hence connected. If
Y = U1 ∪ U2, with U1 and U2 disjoint and open, then for i = 0, 1 we have
Yi = (U1 ∩Yi)∪ (U2 ∩Yi), so either Yi ⊂ U1 or Yi ⊂ U2. This means that the
only way that Y might be disconnected is if Y0 and Y1 are both open subsets,
but this isn’t the case: every neighborhood of each point of Y0 intersects Y1.

It might seem obvious that there can’t be a continuous path with γ(0) ∈
Y0 and γ(1) ∈ Y1, but let’s work through a rigorous proof anyway. Since
Y0 is a closed subset of Y , γ−1(Y0) is a closed subset of [0, 1], so it contains
its least upper bound b. The definition of continuity gives δ > 0 such that
‖γ(t)−γ(b)‖ < 1 whenever b−δ < t < b+δ. Since [b, b+δ) is connected, so is
π(γ([b, b+δ))) where π : R2 → R is the projection onto the first component.
Now observe that π(γ(b)) = 0, and π(γ(t)) > 0 for all t ∈ (b, b + δ), so
there are t in this interval such that the second component of γ(t) is 1 and
other t such that the second component of γ(t) is −1, which contradicts the
definition of δ.

Returning to the general framework, the path component X(a0) of
a point a0 ∈ X is the set of all points that are connected to a0 by some
path in X. That is, a1 ∈ X(a0) if and only if a1 = γ(1) for some path
γ : [0, 1] → X with γ(0) = a0. Clearly X(a0) contains every path connected
subset of X containing a0, and it is itself path connected, so it is the largest
path connected subset of X containing a0. Two path components of X are
the same if they have a point in common, so distinct path components are
disjoint, and the path components are the elements of a partition ofX. Since
X(a0) contains the image of a path from a0 to each of its points, X(a0) is
connected, so X(a0) is a subset of the connected component of X containing
a0. In general, if we have two partitions of a set and every element of the
first partition is a subset of some element of the second partition, then we
say that the first partition is a refinement of the second partition and the
second partition is a coarsening of the first. The partition of X into path
components is a refinement of the partition into connected components.

The space X is locally path connected if every point in X has a path
connected neighborhood. The path components of a locally path connected
space are open, obviously. Consequently the path components contained
in any given connected component constitute a partition of that connected
component into disjoint nonempty open sets, so there cannot be more than
one such path component: in a locally path connected space each path
component is a connected component. In particular, if there is a single
connected component (i.e., the space is connected) then there is a single
path component (i.e., the space is path connected). That is, a space is path
connected if it is both connected and locally path connected. Of course an
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open subset of Rn or Cn is locally path connected because each of its points
is contained in an open ball that is in turn contained in the set, and the
open ball contains the line segment between the center and any other point.
Therefore a connected open subset of Cn is path connected.

The proof of Theorem 7.13 is now complete.

7.7 Smooth Functions

A real valued function on an open set U ⊂ Rn is often said to be smooth if
it is C∞, though you should be warned that ‘smooth’ is a word that different
authors use in different ways, according to convenience. (There will be an
example of this later on.) Almost all the functions we deal with on a regular
basis are smooth, so this may seem like a fairly normal state of affairs. On the
other hand, most of the functions we’re familiar with, like the exponential
and trigonometric functions, are actually defined by power series, and, as
we saw above, such functions are “rigid” in the sense that if the domain
is connected, then the function is completely determined by its restriction
to any open subset of the domain, no matter how small. The point of this
section is to show that, in contrast, C∞ functions can flop around in any
way whatsoever. The restriction of the function to a small neighborhood of
one point doesn’t tell you anything at all about the restriction to a small
neighborhood of some other point.

The key to this topic is a particular example of a smooth function that
is not given by a power series in any neighborhood of a certain point in
its domain. The construction depends on certain basic properties of the
exponential function. Let

P (t) = a0 + a1t+ · · · + art
r ∈ R[t]

be a polynomial function of t. In the power series exp(t) =
∑∞

j=0
1
j!t

j the

terms tk/k! for k > r will be much larger than any ait
i when t is sufficiently

large, so exp(t)/|P (t)| → ∞ as t → ∞. The multiplicative property of the
exponential function gives exp(−t) = 1/ exp(t), so we have P (t) exp(−t) → 0
as t→ ∞. The particular implication of this used in the following is that

lim
t→0,t>0

P (1
t ) exp(−1

t ) = 0. (∗)

Let β : R → R be the function

β(t) :=

{

0, t ≤ 0,

exp(−1
t ), t > 0.
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Earlier in this chapter we showed that when the exponential function is re-
garded as a function from C to C, it is its own derivative. Just by combining
this fact with the definition of the derivative, we can see that the exponential
function is also its own derivative when it is regarded as a function from R

to R. Applying the chain rule, the product rule, the quotient rule, and the
rules for differentiating polynomials, we can compute that

β′(t) = 1
t2

exp(−1
t ) and β′′(t) =

(

−2
t3

+ 1
t4

)

exp(−1
t )

when t > 0.
There is a pattern emerging here. Using induction, we will show that for

each r = 0, 1, 2, . . . there is a polynomial Pr ∈ R[t] such that

β(r)(t) :=

{

0, t ≤ 0,

Pr(
1
t ) exp(−1

t ), t > 0.

This is true when r = 0, so, by induction, we may assume that it has already
been established with r−1 in place of r. It is, of course, clear that β(r)(t) = 0
when t < 0. For t > 0 the chain rule and the formulas for the derivatives of
products and quotients give

β(r)(t) = P ′
r−1(

1
t ) · −1

t2
· exp(−1

t ) + Pr−1(
1
t ) · exp(−1

t ) · 1
t2
,

so we can verify the claim for t > 0 by setting

Pr(s) := s2
(

− P ′
r−1(s) + Pr−1(s)

)

.

We still need to show that β(r)(0) = 0. Of course

β(r−1)(t) − β(r−1)(0)

t
= 0

whenever t < 0. Since

−|β(r−1)(t)| ≤ β(r−1)(t) ≤ |β(r−1)(t)|

we have

−|1tPr−1(
1
t )| exp(−1

t ) ≤
β(r−1)(t) − β(r−1)(0)

t
≤ |1tPr−1(

1
t )| exp(−1

t )

for all t > 0, and (∗) implies that |1tPr−1(
1
t )| exp(−1

t ) → 0 as t → 0 from

above. This verifies that 0 satisfies the definition of the derivative of β(r−1)

at 0. Thus β is C∞.
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There is no neighborhood of 0 on which the function β is the limit of
a power series

∑∞
r=0 art

r with a positive radius of convergence. To see this
observe that if all the coefficients ar are zero, then the function defined by
this power series is identically zero, but β(t) > 0 for all t > 0. On the other
hand suppose that K is the smallest integer such that aK 6= 0. Using the
definition of the radius of convergence, one can easily show that

|aKtK | >
∞
∑

k=K+1

|aktk| ≥
∣

∣

∣

∞
∑

k=K+1

akt
k
∣

∣

∣

when |t| is sufficiently small. (The idea is a variant of the one used to prove
the maximum modulus principle.) Therefore the function defined by the
power series is nonzero for small negative values of t.

The function β can be used to construct many different kinds of smooth
functions. For example, to get a C∞ “bump” function B : Rn → Rn that
is positive on the interior of the unit cube and vanishes everywhere else, set

B(x) :=
n
∏

i=1

β(xi)β(1 − xi).

We can reduce the diameter of this bump by rescaling the domain, we can
translate it, we can multiple it by any scalar, and we can add such bump
functions to each other. There are various precise senses in which such con-
structions can be used to show that any continuous function can be approx-
imated by smooth functions, which means that the possibilities for smooth
functions are not much different from the possible behaviors of continuous
functions.

The contrasting properties of analytic and smooth functions are reflected
in their roles in mathematics. Because there are almost no restrictions on
what C∞ functions can do, they are not so interesting in and of themselves,
but their flexibility makes them versatile and powerful tools in various con-
structions that are important in topology. On the other hand, the subtle
relationship between local information and the global properties of complex
analytic functions makes them a source of profound problems that have
been, and continue to be, the subject of some of the deepest research in
mathematics.

There is one other type of function that should be mentioned. If U ⊂
Rn is open, a function f : U → R is real analytic if, for each a ∈ U ,
there is a power series centered at a that converges to f absolutely in some
neighborhood of a. Although a great many important functions are real
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analytic, the theory of such functions is not very prominent, in large part
because many properties of real analytic functions can easily be derived from
corresponding properties of complex analytic functions. If Ũ ⊂ Cn is open,
f̃ : Ũ → C is complex analytic, U ⊂ Ũ ∩ Rn is open, and f̃(U) ⊂ R, then
f̃ |U is real analytic. It turns out that every real analytic function is of this
sort, as we’ll explain in detail below. That is, a real analytic function is
just a complex analytic function that happens to take on real values at the
real points in its domain, and this characterization will imply everything we
need to know about such functions.

Let f : U → R be real analytic. For each x ∈ U let Rx > 0 be a number
small enough that URx(x) ∩ Rn ⊂ U , and also small enough that there is
a function f̃x : URx(x) → C that agrees with f on URx(x) ∩ Rn and is
defined by a power series centered at x whose radius of convergence is at
least Rx. The coefficients of this power series are determined by the partial
derivatives of f , so Theorem 7.13 implies that for the chosen Rx there is a
unique such f̃x. Let

Ũ :=
⋃

x∈U

URx/2(x).

We would like to define f̃ : Ũ → C by requiring that

f̃(z) = f̃x(z)

whenever z ∈ URx/2(x). In order for this to make sense it has to be the case

that f̃x(z) = f̃x′(z) whenever z ∈ URx/2(x) ∩ URx′/2
(x′), as we will show

below. Provided we can do this, f̃ is complex analytic because it agrees with
f̃x on each URx/2(x), and it agrees with f on U because each f̃x agrees with
f on URx/2(x) ∩ U .

So suppose that z ∈ URx/2(x) ∩ URx′/2
(x′). Since we can interchange

x and x′, we may assume that Rx > Rx′ , in which case the triangle in-
equality implies that x′ ∈ URx(x). Since f̃x and f̃x′ are analytic functions
that have the same power series as f at x′ (the coefficients are determined
by the partial derivatives of f at x′) and URx(x) ∩ URx′

(x′) is open, the
principle of analytic continuation (Theorem 7.13) implies that they agree
on the connected component of URx(x) ∩ URx′

(x′) that contains x′, so we
would like to show that z is an element of this connected component. But z
is an arbitrary element of URx(x) ∩ URx′

(x′), so we need to show that this
set is connected.
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b

b
b z
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Figure 7.5

It would be quick and easy to show that URx(x) ∩ URx′
(x′) is path

connected, hence connected, because it contains the line segment between
x′ and any other element, and in fact the bottom line of our discussion will
be exactly this, but this is a particular instance of a very significant idea,
so we take the time to explain things in more general terms. A subset C of
Rm (or of Cm, thought of as R2m) is convex if it contains the line segment
between any two of its points. That is, for all y, y′ ∈ C,

{ (1 − t)y + ty′ : 0 ≤ t ≤ 1 } ⊂ C.

Visualizing this concept is easy: cubes, rectangles, disks, the interior of an
ellipse, and so on, are all convex; a kidney shaped swimming pool isn’t.

We will apply three simple facts about convex sets. First, an immediate
consequence of the definition of convexity is that any convex set is path
connected.

Second, the open balls defined by any norm are convex. To see this we
begin by observing that for any r > 0, the open ball of radius r centered at
the origin is convex: if ‖y‖, ‖y′‖ < r and 0 ≤ t ≤ 1, then

‖(1 − t)y + ty′‖ ≤ ‖(1 − t)y‖ + ‖ty′‖ = (1 − t)‖y‖ + t‖y′‖ < r.

The convexity of all open balls follows from the fact that convexity is trans-
lation invariant: C ⊂ Rm is convex if and only if a+ C = { a + y : y ∈ C }
is convex for any a ∈ Rm.
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The final fact is simply that the intersection of any two convex sets
(actually the intersection of any, possibly infinite, collection of convex sets)
is convex: if y, y′ ∈ C ∩ C ′ and C and C ′ both contain the line segment
between y and y′, then so does their intersection. Obviously these facts
combine to imply that URx(x) ∩URx′

(x′) is convex, hence path connected.

I am afraid that this brief and passing mention of convexity might give a
drastically understated impression of the overall significance of this concept,
which is fundamental to many aspects of geometry and analysis. Because
the concept is simple (at least on the surface) and fairly obvious, that it is
important probably shouldn’t be too surprising. What seems more remark-
able is that convexity is very much a 20th century concept. This seems to
be another gift of the set theory revolution: unless you are accustomed to
talking about sets, there is simply no way to talk about convex sets.

Since we have shown that URx(x)∩URx′
(x′) is connected, we have com-

pleted the demonstration that any real analytic function is the restriction of
a complex analytic function. Here are some simple consequences. If f is real
analytic, then it is C∞ because (Theorem 7.9) f̃ is C∞. If g : U → R is also
real analytic, and f and g have the same power series at a point x, or agree
in a neighborhood of x, then g is also the restriction of some g̃ : Ũ ′ → C, and
(Theorem 7.11) f̃ and g̃ agree on the path component of Ũ ∩ Ũ ′ containing
x, so f and g agree on the path component of U containing x. In particular,
if a real analytic function on R is identically zero on an open interval, then
it must be identically zero everywhere, which again shows that β is not real
analytic.

7.8 The Inverse Function Theorem

Continuous functions f : U → R2, where U ⊂ R2 is open, occur fre-
quently in any course on multivariate calculus, and there are familiar phys-
ical analogs such as what happens when you wrap a melon in cellophane.
Suppose that f is C1, and consider a particular point x ∈ U . Rather com-
plicated and messy “folds” or multiple wrappings (e.g., the complex func-
tion z 7→ z2 at the origin in C) can happen when Df(x) is singular, but
experience leads us to expect that if Df(x) is nonsingular, then f has a
simple structure near x, with a neighborhood of x mapped “nicely” onto a
neighborhood of f(x). This section’s result gives a precise rendering of this
intuition.

If U ⊂ Rn is open and f : U → Rm is C1, a point x ∈ U is a regular

point of f if the image of Df(x) is all of Rm. This can’t happen when
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n < m. When n = m it is the same as Df(x) being nonsingular: Df(x)
has a nonzero determinant, and is a linear isomorphism. We now fix an
order of differentiability 1 ≤ r ≤ ∞. A Cr diffeomorphism is a bijection
f : U → V , where U and V are open subsets of Rn for some n, such that f
and f−1 are Cr.

Theorem 7.14 (Inverse Function Theorem). If f : U → Rn is Cr, where
U ⊂ Rn is open, and x is a regular point of f , then there is an open neigh-
borhood W ⊂ U of x such that f |W is a Cr diffeomorphism between W and
f(W ).

Hopefully this seems plausible, perhaps almost obvious, if you look again
at Figure 6.3. But the proof will be a minor adventure, and we should say a
bit about where the difficulty lies. Once we have an open neighborhood W
of x that is mapped bijectively onto a neighborhood of f(x), it’s not that
hard to show that (f |W )−1 is Cr:

Lemma 7.15. Suppose that U ⊂ Rn is open, f : U → Rn is Cr and maps
U bijectively onto f(U), f(U) is open, and every point of U is a regular
point of f . Then f−1 is Cr.

Proof. Fix y ∈ f(U). Theorem 6.15 tells us that f−1 is differentiable at
y, and that Df−1(y) = Df(f−1(y))−1. In view of Cramer’s rule (Theorem
5.19) the entries of the matrix of Df−1(y) are rational functions2 of the

entries of the matrix of Df(f−1(y)) (namely the partials
∂fj

∂xj
(f−1(y))) and

are consequently continuous functions of y, so f−1 is C1. When r ≥ 2, the
chain rule and the basic facts concerning differentiation of sums, products,
and quotients allow you to compute the second order partials of f−1 as (ex-
tremely complicated) rational functions of the first order partials of f−1 and
the partials, up to order 2, of f , and again these functions are continuous.
This reasoning can be repeated inductively up to order r.

We will also give a complex version of the implicit function theorem
whose proof requires the complex version of this result.

Lemma 7.16. Suppose that U ⊂ Cn is open, f : U → Cn is holomorphic
and maps U bijectively onto f(U), f(U) is open, and every point of U is a
regular point of f . Then f−1 is holomorphic.

The proof that f−1 is C1 is exactly the same, word for word; this is possible
because Theorem 6.15 and Cramer’s rule were proved for sufficiently general

2A rational function is a quotient of polynomials.
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fields. (Of course Theorem 7.12 says that f−1 is C∞ and analytic, but these
properties play no role in the logic of this section’s argument.)

It is also not terribly difficult to show that, in the setting of the inverse
function theorem, the restriction of the function to some neighborhood of
the point in question is injective. From a technical perspective the key idea
is given by the following multidimensional generalization of the mean value
theorem. Let U ⊂ Rn be an open set containing the image of the path

γ : s 7→ (1 − s)x0 + sx1

between two of its points x0 and x1, and let g : U → Rm be a C1 function.
Suppose that as you travel from x0 to x1 on the path γ, your shadow travels
from g(x0) to g(x1) along the path g ◦ γ. Your path is direct while your
shadow’s path may meander, so there must be some point during this journey
when the ratio of your shadow’s speed to your speed is at least as large as
the ratio ‖g(x1) − g(x0)‖/‖x1 − x0‖ of distances traveled. In addition, by
the operator norm inequality, at each time s the speed of g ◦ γ cannot be
greater than ‖Dg(γ(s))‖ times the speed of γ, so:

Proposition 7.17. In the setting described above,

‖g(x1) − g(x0)‖ ≤ ‖x1 − x0‖ · sup
0≤s≤1

‖Dg((1 − s)x0 + sx1)‖.

Proof. Define φ : [0, 1] → R by letting

φ(s) :=
〈

g((1 − s)x0 + sx1) − g(x0), g(x1) − g(x0)
〉

.

The chain rule implies that φ is C1, so the mean value theorem gives a t
strictly between 0 and 1 such that

φ′(t) = φ(1) − φ(0) = ‖g(x1) − g(x0)‖2.

The function w 7→ 〈w, g(x1)−g(x0)〉 is linear, so it is its own derivative, and
in view of this the chain rule yields

φ′(t) =
〈

Dg((1 − t)x0 + tx1)(x1 − x0), g(x1) − g(x0)
〉

.

Combining these, then applying the Cauchy-Schwartz inequality, yields

‖g(x1) − g(x0)‖2 ≤ ‖Dg((1 − t)x0 + tx1)(x1 − x0)‖ · ‖g(x1) − g(x0)‖,

after which we can divide by ‖g(x1) − g(x0)‖ and apply the operator norm
inequality.



292 CHAPTER 7. COMPLEX DIFFERENTIATION

Suppose U ⊂ Rn is open, f : U → Rn is C1, and x is a regular point of
f . We wish to use this result to show that f |V is injective when V ⊂ U is
a small convex neighborhood of x (e.g., the open ball of radius ε for some
ε > 0). Let g : U → Rn be the function g(y) := f(y) −Df(x)y. Then

f(x1) − f(x0) = Df(x)(x1 − x0) + g(x1) − g(x0)

for any x0, x1 ∈ V , and the triangle inequality gives

‖f(x1) − f(x0)‖ ≥ ‖Df(x)(x1 − x0)‖ − ‖g(x1) − g(x0)‖.

To bound the first term on the right hand side we observe that

‖Df(x)(x1 − x0)‖ = ‖x1 − x0‖ ·
∥

∥

∥Df(x)
x1 − x0

‖x1 − x0‖
∥

∥

∥

≥ ‖x1 − x0‖ · min
v∈Sn−1

‖Df(x)v‖,

where Sn−1 := { v ∈ Rn : ‖v‖ = 1 } is the unit sphere centered at the
origin of Rn. Of course Sn−1 is closed and bounded, hence compact, and the
function v 7→ ‖Df(x)v‖ is continuous, so (Theorem 3.48) it has a minimizer,
and it is positive at any minimizer because Df(x) is nonsingular. The result
above implies that there is an s between 0 and 1 such that

‖g(x1) − g(x0)‖ ≤ ‖Dg((1 − s)x0 + sx1)‖ · ‖x1 − x0‖,

and Dg is continuous, so when V is sufficiently small we have

‖Dg((1−s)x0 +sx1)‖ = ‖Df((1−s)x0 +sx1)−Df(x)‖ < min
v∈Sn−1

‖Df(x)v‖,

in which case ‖f(x1) − f(x0)‖ > 0 and f(x1) 6= f(x0).
In proving the inverse function theorem, the really tough nut is showing

that some open neighborhood of x is mapped onto a neighborhood of f(x).
Our proof will take advantage of the assumption that f is C1, but it turns
out that this hypothesis is unnecessary, by virtue of a famous result called
invariance of domain due to L. E. J. Brouwer (1881-1966) that is good
to know about, even though we won’t be able to prove it here. This result
asserts that if U ⊂ Rn is open and f : U → Rn is continuous and injective,
then f(U) is open and f−1 is continuous, so that f is a homeomorphism
onto its image.

We’ll use a fixed point theorem to deal with this aspect of the proof. If
f : X → X is a function from a set X to itself, a fixed point of f is a
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point x∗ that is mapped to itself—that is, f(x∗) = x∗—and a fixed point

theorem is a result asserting that, under certain hypotheses, a fixed point
necessarily exists.

If (X, d) is a metric space, a function c : X → X is a contraction if
there is a number α strictly between 0 and 1 such that

d(c(x), c(x′)) ≤ αd(x, x′) for all x, x′ ∈ X.

The modulus of contraction of c is the greatest lower bound of the set of
α such that this inequality holds for all x, x′. If, for some particular x, x′,
this inequality fails for some α, then it also fails for slightly larger α, so it
must hold for all x, x′ when α is equal to the modulus of contraction.

Theorem 7.18 (Contraction Mapping Theorem). If (X, d) is a metric space
and c : X → X is a contraction, then c has at most one fixed point. If, in
addition, (X, d) is nonempty and complete, then a fixed point exists.

Proof. Let α be the modulus of contraction of c. We first prove uniqueness.
If x∗ and x∗∗ are both fixed points, then

d(x∗, x∗∗) = d(c(x∗), c(x∗∗)) ≤ αd(x∗, x∗∗).

Since α < 1, this inequality implies that d(x∗, x∗∗) = 0, so x∗ = x∗∗.

To prove existence we construct a sequence x0, x1, x2, . . . inductively by
letting x0 be any point of X and setting xi+1 := c(xi) for each i. Then

d(xi, xi+1) ≤ αd(xi−1, xi) ≤ α2d(xi−2, xi−1) ≤ · · · ≤ αid(x0, x1).

It follows that the sequence is Cauchy, because if j > i, then

d(xi, xj) ≤ d(xi, xi+1) + · · · + d(xj−1, xj)

≤ (αi + · · · + αj−1)d(x0, x1) =
αi − αj

1 − α
d(x0, x1).

Since X is complete, the sequence has a limit x∗. For each i we have

d(c(x∗), x∗) ≤ d(c(x∗), xi) + d(xi, x
∗) ≤ αd(x∗, xi−1) + d(xi, x

∗).

Both terms goes to zero as i→ ∞, so d(c(x∗), x∗) = 0 and c(x∗) = x∗.

While we are discussing fixed points we should mention the following
very famous result.



294 CHAPTER 7. COMPLEX DIFFERENTIATION

Theorem 7.19 (Brouwer Fixed Point Theorem). If D = {x ∈ Rn : ‖x‖ ≤
1 } and f : D → D is continuous, then f has a fixed point.

Originally proved in 1910 by Brouwer, this is typically regarded as one of the
most important results coming out of the subfield of topology called algebraic
topology. Among other things, once Brouwer’s fixed point theorem is known
it is not so hard to prove invariance of domain. Nowadays various methods
of proof are known, but unfortunately none of them is simple enough to
present here.

We’re now ready to prove the inverse function theorem. Suppose that x
is a regular point of a Cr function f : U → Rn where U ⊂ Rn is open. Of
course our goal is to find an open neighborhood W of x such that f |W is a
Cr diffeomorphism onto its image. If we know how to do this when x and
f(x) are both the origin, then we can obtain the general case by applying
this special case to the function v 7→ f(x+ v)− f(x), so we can assume that
x = 0 = f(x).

If L : Rn → Rn is linear and nonsingular, W ⊂ U is an open neighbor-
hood of the origin, and (L◦f)|W is a Cr diffeomorphism onto its image, then
f |W = L−1 ◦ (L ◦ f)|W itself is a Cr diffeomorphism onto its image because
it is a composition of Cr diffeomorphisms. This means that we are free to
prove the result with f replaced by L ◦ f for any such L, and L = Df(0)−1

is the choice that works well. The chain rule gives

D(Df(0)−1 ◦ f)(0) = Df(0)−1 ◦Df(0) = IdR
n
,

so the upshot of this line of reasoning is that it suffices to prove the result
when Df(0) = Id

Rn .

Since f is Cr, the entries of the matrix of Df(x) are continuous functions
of x, and the determinant is a continuous (in fact polynomial) function of its
entries. Therefore the set of regular points is an open subset of U containing
x, and the theorem will follow if we can show that it holds when U is replaced
with this set.

In view of all this, to establish the inverse function theorem in full gen-
erality it suffices to prove the following special case.

Proposition 7.20. If U ⊂ Rn is an open set containing the origin and
f : U → Rn is a Cr function such that f(0) = 0 and Df(0) = Id

Rn, and
every point of U is a regular point of f , then there is an open W ⊂ U
containing the origin such that f(W ) is open and f |W : W → f(W ) is a Cr

diffeomorphism.
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Proof. For y ∈ Rn let Ay : U → Rn be the function

Ay(x) := y + x− f(x).

Note that x is a fixed point of Ay if and only if f(x) = y. Since

DAy(x) = Id
Rn −Df(x),

and in particular DAy(0) = 0, it seems reasonable to hope that if y is close
to the origin, then the restriction of Ay to some neighborhood of the origin
is a contraction mapping this neighborhood into itself.

The continuity of Df allows us to choose r > 0 with Ur(0) ⊂ U and
‖DAy(x)‖ < 1

2 for all x ∈ Ur(0) and all y ∈ Rn. Consider a particular
y ∈ Ur/2(0) and x, x′ ∈ Ur(0). Since Ur(0) is convex, it contains the line
segment between x and x′, so Proposition 7.17 gives a number t strictly
between 0 and 1 such that

‖Ay(x) −Ay(x′)‖ ≤ ‖DAy((1 − t)x+ tx′)‖ · ‖x− x′‖ ≤ 1
2‖x− x′‖.

Thus Ay|Ur(0) is a contraction. It maps Ur(0) to itself because for each x
in this set we can apply the last inequality, obtaining

‖Ay(x)‖ ≤ ‖Ay(x) −Ay(0)‖ + ‖Ay(0)‖ ≤ 1
2‖x‖ + ‖y‖ < 1

2r + 1
2r = r.

The contraction mapping theorem implies that Ay|Ur(0) has a unique fixed
point.

Thus for each y ∈ Ur/2(0) there is a unique x ∈ Ur(0) such that f(x) =
y. Let W := Ur(0)∩f−1(Ur/2(0)). Then f |W is a bijection between W and
Ur/2(0). Of course W contains the origin because f(0) = 0, and it is open
because f is continuous. Since W contains only regular points of f , Lemma
7.15 implies that f |W is a Cr diffeomorphism.

The inverse function theorem is valid for holomorphic functions, and for
real analytic functions. Instead of proving these variants from scratch we
use bootstrap arguments. Extending our terminology to the complex case,
if U ⊂ Cn is open and f : U → Cm is a function, we will say that x ∈ U is
a regular point of f if f is differentiable (in the complex sense) at x and
the image of Df(x) is all of Cm. A holomorphic diffeomorphism is a
bijection f : U → V , where U and V are open subsets of some Cn, such
that f and f−1 are holomorphic.

Theorem 7.21. If U ⊂ Cn is open, f : U → Cn is holomorphic, and z ∈ U
is a regular point of f , then there is an open neighborhood W ⊂ U of z such
that f |W is a holomorphic diffeomorphism onto its image.
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Proof. As we emphasized throughout this chapter, if we think of f as a
function mapping an open subset of R2m into R2m, then it is C1 because
each of its partial derivatives (in the real sense) is the real or complex part of
one of the partials in the complex sense. For each w ∈ U we can reinterpret
Df(w) as a linear function from R2n to itself, and since it is surjective when
viewed as a complex function, it must also be surjective when viewed as a
real function. In particular Df(z) is nonsingular in the real sense. We can
now apply the real version of the inverse function theorem, obtaining an
open W ⊂ U containing z such that f(W ) is open, f |W is injective, and
for each w ∈ W , Df(w) is nonsingular in the real sense and therefore also
in the complex sense. Lemma 7.16 says precisely that in this circumstance
f |W and (f |W )−1 are inverse holomorphic diffeomorphisms.

Proposition 7.22. If U ⊂ Rn is open, f : U → Cn is real analytic, and
x ∈ U is a regular point of f , then there is an open neighborhood W ⊂ U of
x such that f |W is a real analytic diffeomorphism onto its image.

Proof. In the last section we showed that for each i = 1, . . . , n there is an
open Ũi ⊂ C and a holomorphic function f̃i : Ũi → C such that U ⊂ Ũi∩Rn

and fi = f̃i|U . Let Ũ := Ũ1 ∩ . . . ∩ Ũn, and let

f̃ := f̃1|Ũ × · · · × f̃n|Ũ : Ũ → Cn.

Applying the last result to f̃ gives an open neighborhood W̃ ⊂ Ũ of x such
that f̃ |W̃ is a holomorphic diffeomorphism onto its image. LetW := W̃∩Rn.
Then f |W is real analytic, so it is C∞, and the first version of the inverse
function theorem allows us to replace W with a smaller open neighborhood
of x such that f |W is a C∞ diffeomorphism onto its image. Since (f̃ |W̃ )−1

is complex analytic, (f |W )−1 is real analytic.



Chapter 8

Curved Space

I have therefore first set myself the task of constructing the
concept of a multiply extended quantity from general notions of
quantity. It will be shown that a multiply extended quantity is
susceptible of various metric relations, so that Space constitutes
only a special case of a triply extended quantity. From this how-
ever it is a necessary consequence that the theorems of geome-
try cannot be deduced from general notions of quantity, but that
those properties which distinguish Space from other conceivable
triply extended quantities can only be deduced from experience.
Thus arises the problem of seeking out the simplest data from
which the metric relations of Space can be determined, a prob-
lem which by its very nature is not completely determined, for
there may be several systems of simple data which suffice to de-
termine the metric relations of Space; for the present purposes,
the most important system is that laid down as a foundation of
geometry by Euclid. These data are—like all data—not logically
necessary, but only of empirical certainty, they are hypotheses;
one can therefore investigate their likelihood, which is certainly
very great within the bounds of observation, and afterwards de-
cide upon the legitimacy of extending them beyond the bounds of
observation, both in the direction of the immeasurably large, and
in the direction of the immeasurably small.

–Bernhard Riemann

Riemann is my favorite mathematician. Although he proved quite a
few major theorems, his most important contributions were foundational
concepts that have been the focus of a great deal of research, both in math-
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ematics and physics, ever since. This chapter introduces the notion of a
manifold, what he calls a “multiply extended quantity” in this passage from
his 1854 Habilitationsschrift. (The translation above is by Michael Spivak.)
Manifolds are objects like the circle, spheres in various dimensions, the torus,
and so forth, that resemble Euclidean space on a small scale. Understand-
ing the possible global structures of a manifold is a fundamental issue in
topology that is well understood in the two dimensional case, in large part
due to concepts introduced by Riemann. Extending the most basic aspect
of this analysis to higher dimensions is the topic of a famous conjecture that
was proved very recently. As he points out above, it is possible for a man-
ifold to be curved, in which case Euclidean geometry will be increasingly
inaccurate as one moves to larger scales. Generalizing Gauss’ work on the
two dimensional case, he developed the concepts that quantify curvature in
terms of measurements that can be made within the manifold itself. Sixty
years later this machinery was used by Einstein to express the general the-
ory of relativity. The structure of space and time on “immeasurably small”
scales is a central issue of contemporary research in theoretical physics.

Before delving into all that, however, I’d like to mention one other very
famous aspect of Riemann’s work. The story begins with a beautiful proof
that there are infinitely many primes due to Euler. If there were only finitely
many primes the product

∏

p a prime

1

1 − p−1
=

∏

p a prime

(

1 +
1

p
+

1

p2
+ · · ·

)

would be finite. Each integer n factors as a product pe11 · · · pek
k of powers of

primes, and 1
n = 1

p
e1
1

· · · 1
p

ek
k

appears exactly once in the distributive expan-

sion of the right hand side, so we could conclude that

1 +
1

2
+

1

3
+ · · · <∞,

but this is false1. As Euler observed, this argument actually proves some-
thing much stronger and more interesting, namely that the sum

∑

p a prime

1
p = 1

2 + 1
3 + 1

5 + 1
7 + 1

11 + · · ·

1To prove that the harmonic series 1 + 1
2

+ 1
3

+ · · · diverges observe that

X

n

1

n
=

∞
X

i=0

“

X

2i−1<n≤2i

1

n

”

>
∞

X

i=0

“

X

2i−1<n≤2i

1

2i

”

=
∞

X

i=0

1

2
=∞.
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diverges. To see this observe that if 0 < a ≤ 1
2 , then 1 ≤ 1 + a − 2a2 =

(1 − a)(1 + 2a), so that

(1 − a)−1 ≤ 1 + 2a <

∞
∑

j=0

(2a)j/j! = exp(2a).

If 0 < a1, a2, a3, . . . ≤ 1
2 and

∏∞
n=1(1 − an)

−1 = ∞, then
∑∞

n=1 an = ∞
because for any integer N we have

N
∏

n=1

(1 − an)
−1 ≤

N
∏

n=1

(1 + 2an) <

N
∏

n=1

exp(2an) = exp
(

2

N
∑

n=1

an
)

.

Euler went on to make some clever guesses about the rate of divergence
of the sequence 1

2 + 1
3 + 1

5 + 1
7 + 1

11 + · · · by “taking the logarithm” of both
sides of the “equation”

1 +
1

2
+

1

3
+ · · · =

∏

p

1

1 − p−1
.

Of course this isn’t rigorous, but he also pointed out that for any s > 1 the
equation

1 +
1

2s
+

1

3s
+ · · · =

∏

p

1

1 − p−s
=
∏

p

(

1 +
1

ps
+

1

p2s
+ · · ·

)

is valid, so one can try to develop these ideas precisely by studying the
asymptotic behavior of the function

ζ(s) :=
∏

p

1

1 − p−s

as s→ 1 from above.
This is called the Riemann zeta-function because, even though Euler

originated it, Riemann had the idea of treating ζ as a function of a com-
plex variable. Riemann was able to show that the function defined by the
formula above is the restriction to { s ∈ R : s > 1 } of an analytic function
defined on all of C \ {1}. (Of course the principle of analytic continuation
(Theorem 7.13) implies that there is at most one such analytic function.)
It turns out that issues concerning the distribution of prime numbers are
intimately related to the location of the zeros of ζ. Riemann showed that
aside from zeros at −2,−4,−6, . . ., all the zeros lie in the critical strip
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{ s = x + iy : 0 ≤ x ≤ 1 }, and he conjectured that they actually all lie on
the line x = 1

2 . This conjecture is now called the Riemann hypothesis.
It was included by Hilbert in his list of problems, and it is one of the Clay
Mathematics Institute’s seven Millenium Prize problems. There is some-
thing of a consensus that it is currently the most important open problem
in mathematics.

8.1 Manifolds

We start with the idea that a “multiply extended quantity” should look
like a Euclidean space in a neighborhood of each of its points. Recall that a
homeomorphism is a bijection between two topological spaces that is contin-
uous and whose inverse is continuous. At first glance “has a neighborhood
homeomorphic to an open subset of a Euclidean space” seems like a reason-
able rendering of “looks like a Euclidean space locally,” but there will be a
bit more to it.

Definition 8.1. Let n be a nonnegative integer. An n-dimensional mani-

fold is a Hausdorff topological space M such that for each p ∈M there is a
open set U ⊂M containing p and a homeomorphism ϕ : U → V between U
and an open set V ⊂ Rn.

The function ϕ is called a coordinate chart, and its inverse is called
a parameterization. An atlas for M is a collection of coordinate charts
{ϕi : Ui → Vi }i∈I (here I is an arbitrary index set) whose domains cover
M , i.e.,

⋃

i∈I Ui = M .

U

VM
ϕ

Figure 8.1
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Hopefully you are developing the habit of looking at definitions critically,
in which case there is a question that should be bugging you. Why do we
want M to be Hausdorff? Consider the following topological space, which
is known as the line with two origins. Let

X = R ∪ {0∗}

where 0∗ is some object that is not an element of R. Impose a topology on X
by specifying that the open sets ofX are the open (in the usual sense) subsets
of R together with all the sets {0∗} ∪ U where U ⊂ R is open (in the usual
sense) and (−ε, 0) ∪ (0, ε) ⊂ U for some ε > 0. (Please check that ∅ and X
are open, and that finite intersections and arbitrary unions of open sets are
open.) Note that X is not Hausdorff because 0 and 0∗ do not have disjoint
neighborhoods. The map t 7→ t is a homeomorphism between X \ {0∗} and
R, as is the map from X \ {0} to R that takes each t 6= 0 to itself and takes
0∗ to 0. (Please check that the latter map and its inverse both take open
sets to open sets.) Since every point in X is in the domain of one of these
homeomorphisms, the definition above would have been satisfied by this
rather obnoxious space, and others of its ilk, if the Hausdorff requirement
had been omitted. Although we do not wish to study such spaces, during
proofs we sometimes encounter situations in which we do not (yet) know that
the space in question is Hausdorff, so the following terminology is useful: a
topological space X is an n-dimensional quasimanifold if every point of X
has a neighborhood that is homeomorphic to an open subset of Rn.

What this example points out is that we want every point in M to have
a neighborhood that “looks like” an open set in Euclidean space not only
because it is homeomorphic to such a set, but also because its closure doesn’t
contain any points that shouldn’t be there. Specifically, if ϕ : U → V is as in
the definition, and C ⊂ V is a compact neighborhood of ϕ(p), then ϕ−1(C)
is compact because (Theorem 3.47) ϕ−1 is continuous. In addition, C is
closed in V because (Theorem 3.40) V is Hausdorff, so ϕ−1(C) is closed in
U because ϕ is continuous. We want ϕ−1(C) to be “clean” in the sense that
its closure in M doesn’t contain any points in M \ U . That is, we want
ϕ−1(C) to be closed, not just in U , but also in M . Requiring M to be
Hausdorff accomplishes this because (Theorem 3.40) a compact subset of a
Hausdorff space is closed.

There are other senses in which one can ask whether Definition 8.1 is
really what we want. For example, some rather advanced results imply that
the topology of M can be derived from a metric, but if this wasn’t automatic
we would probably want to include “metrizability” as a requirement of our
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definition. Sometimes a definition is “obviously” correct in the sense that
there really isn’t any choice about how to express the concept in question,
but there are other definitions that are, in the end, seemingly quite simple,
but which are actually the result of years of research. As you might have
already guessed, Riemann never actually managed to give a fully satisfactory
definition of a “multiply extended quantity,” and Definition 8.1 is in fact one
of the crown jewels of 20th century topology.

The rest of this section enumerates some methods of constructing new
manifolds from given manifolds, and some basic examples. Although this
might help firm up your understanding of what the definition means, that’s
not really the main point. The examples here are the simplest, the most
symmetric, and the most obvious manifolds one could think of. They come
up “naturally” for various reasons, and they are what anyone looking for an
example of something will think of first. “Everyone” knows them, so you
should too.

First of all, any set X can be endowed with the discrete topology,
which is the topology in which all subsets of X are open. Any set with
the discrete topology is a 0-dimensional manifold, and any 0-dimensional
manifold has the discrete topology. The main idea is simply that for any
p ∈ X, {p} is an open set containing p that is homeomorphic to R0.

Let M be a manifold with atlas {ϕi : Ui → Vi}i∈I . Any open subset W
of M is itself a manifold with atlas {ϕi|Ui∩W }i∈I . In particular, any open
subset of Rn is a manifold. If f : M → Rk is continuous, then its graph

Gr(f) = { (p, f(p)) : p ∈M }

is a manifold. To construct an atlas, for each i ∈ I let Ũi := Gr(f |Ui) and
let ϕ̃i : Ũi → Vi be the function

ϕ̃i(p, f(p)) := ϕi(p).

Graphs of functions from open subsets of R2 to R are easy to visualize,
and they can be analyzed using the partial derivatives of the function. His-
torically, the first major study of manifolds as geometric objects, Gauss’
Disquisitiones Generales Circa Superficies Curvas, was devoted to them.

Let M ′ be a second manifold with atlas {ϕ′
j : U ′

j → V ′
j }j∈J . Then

M ×M ′ (endowed with the product topology) is a manifold. In detail, a
cartesian product of two Hausdorff spaces is Hausdorff, a cartesian product
(in the obvious sense) of two homeomorphisms is a homeomorphism, and
{Ui × U ′

j : i ∈ I, j ∈ J } is a cover of M ×M ′ so

{ϕi × ϕ′
j : Ui × U ′

j → Vi × V ′
j }(i,j)∈I×J
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(with ϕi × ϕ′
j defined in the “obvious” way) is an atlas for M ×M ′.

For any field k the n-sphere is

Sn(k) := { (p0, . . . , pn) ∈ kn+1 : p2
0 + · · · + p2

n = 1 }.

Let

UN := { p ∈ Sn(k) : p0 6= 1 } and US := { p ∈ Sn(k) : p0 6= −1 }.

When k = R we think of these as the Northern and Southern Hemispheres.
Let ϕN : UN → kn and ϕS : US → kn be the functions

ϕN (p) :=
( p1

1−p0
, . . . , pn

1−p0

)

and ϕS(p) :=
( p1

1+p0
, . . . , pn

1+p0

)

.

These functions are called stereographic projections.

b

b

b

b b

b

(1, 0)

(−1, 0)

p′

ϕS(p′)

p

ϕN (p)

p0

p1

Figure 8.2

To understand ϕN geometrically, observe that

p = p0(1, 0, . . . , 0) + (1 − p0)(0, ϕN (p)),

so that ϕN (p) consists of the last n coordinates of the point where the
ray emanating from (1, 0, . . . , 0) and passing through p intersects the plane
{ y ∈ kn+1 : y0 = 0 }. The description of ϕS is similar, with the rays
emanating from (−1, 0, . . . , 0).

For x ∈ kn let σ(x) := x2
1 + · · ·+x2

n, and let V := {x ∈ kn : σ(x) 6= −1 }.
If ϕN (p) = x, then summing the squares of the components on both sides of
the equation above gives 1 = p2

0 + (1 − p0)
2σ(x). Subtracting p2

0 from both
sides and dividing by 1−p0 results in 1+p0 = (1−p0)σ(x), and this reduces
to 1 = −1 if σ(x) = −1, so it must be the case that x ∈ V . When this is
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the case we can solve this equation for p0 and substitute into the equation
above, arriving at

ϕ−1
N (x) = (σ(x)−1,2x1,...,2xn)

σ(x)+1 .

Symmetrical analysis shows that ϕS is a bijection between US and V , and
that

ϕ−1
S (x) = (1−σ(x),2x1,...,2xn)

1+σ(x) .

If k has a topology with respect to which addition, multiplication, negation,
and inversion are continuous, then ϕN and ϕS are homeomorphisms. Of
course Sn(R) and Sn(C) are Hausdorff spaces, so we have shown that they
are manifolds.

Substituting the formula for ϕ−1
N into the formula for ϕS , and substitut-

ing the formula for ϕ−1
S into the formula for ϕN , leads to

ϕS(ϕ−1
N (x1, . . . , xn)) = 1

σ(x)(x1, . . . , xn) = ϕN (ϕ−1
S (x1, . . . , xn)). (∗)

In Section 8.4 we’ll explain the relevance of this formula.

The complex n-sphere Sn(C) actually doesn’t look very much like what
you probably think a sphere should look like. Among other things, it is not
compact when n > 0 because there are points z ∈ Sn(C) with |z0| arbitrarily
large. Possibly for this reason, Sn(C) doesn’t come up much, and in fact
most authors write Sn rather than the more cumbersome Sn(R). We’ll do
the same unless confusion seems likely.

Note that we are already in a position to construct a large collection of
examples by taking cartesian products. The most famous of these is the
torus S1 × S1 which we’ve already seen illustrated in Figure 8.1.

The next set of examples is probably less familiar because it doesn’t fig-
ure in the secondary school curriculum, at least where I went to high school,
but at a higher level it is very important. For any field k, n-dimensional
projective space Pn(k) is the set of one dimensional linear subspaces of
kn+1. Each line through the origin in Rn+1 intersects the unit sphere at two
antipodal points, and we can think of constructing Pn(R) by identifying
antipodal points of Sn. Thus P 1(R) is a circle that has the larger circle
S1 wrapped around itself twice. I must confess that I have never seen an
illustration of P 2(R) that gave me a good idea of the space. I try to think
of starting with the Northern hemisphere and sewing opposite equatorial
points to each other, but my visual imagination just gets tangled up2.

2In 1901 Hilbert assigned his student Werner Boy (1879-1914) the problem of showing
that there is no immersion of P 2(R) in R3. If M and N are C1 manifolds and M is
n-dimensional, a C1 function (as defined in Section 8.4) f : M → N is an immersion



8.1. MANIFOLDS 305

The formal description of Pn(k) goes as follows. For x ∈ kn+1 \ {0}, the
line spanned by x is

[x] := {αx : α ∈ k }.
For each i = 0, . . . , n let

Ui := { [x] ∈ Pn(k) : xi 6= 0 },

let Vi := kn, and let ϕi : Ui → Vi be the function

ϕi([x]) = (x0
xi
, . . . , xi−1

xi
, xi+1

xi
, . . . , xn

xi
).

These definitions make sense because the truth value of the condition xi 6= 0
and the formula defining ϕi are unaffected if we replace x with αx for any
nonzero α.

Because Sn is a subset of Rn+1, it inherits a subspace topology, which is
Hausdorff, so all we had to do to show that {ϕN , ϕS} is an atlas for Sn was
to observe that the domains of these two functions cover the sphere, and
each is a homeomorphism. For projective space we are doing something a
bit different insofar as the maps ϕ0, . . . , ϕn are used to define the topology
of Pn(k) when k = R or k = C. We need to think carefully about how this
is done and what conditions need to be satisfied in order for the resulting
space to be a manifold.

Most obviously, we need it to be the case that

U0 ∪ · · · ∪ Un = Pn(k).

For each [x] there is at least one i such that xi 6= 0, so this is the case.
Each ϕi must be a bijection. In fact each

(x0, . . . , xi−1, xi+1, . . . , xn) ∈ Vi

is the image of

[x0, . . . , xi−1, 1, xi+1, . . . , xn]

under ϕi, so ϕi is surjective. To see that ϕi is injective observe that if
ϕi([x]) = ϕi([x

′]), then xi 6= 0 6= x′i and

(x0
xi
, . . . , xi−1

xi
, xi+1

xi
, . . . , xn

xi
) = (

x′0
x′i
, . . . ,

x′i−1

x′i
,
x′i+1

x′i
, . . . , x

′
n
x′i

),

if, for each p ∈ M , the derivative (as defined in Section 8.6) Df(p) has an n-dimensional
image. Boy came up with an example, known as Boy’s surface, showing that Hilbert’s
conjecture was wrong. There are many images of Boy’s surface on the internet.
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so x′j = (x′i/xi)xj for all j = 0, . . . , n, which means that [x] = [x′].
For the next part of the discussion let’s generalize the framework. Sup-

pose we are given a set M , a collection of subsets {Ui}i∈I with
⋃

i∈I Ui = M ,
where I is an arbitrary index set, and a bijection ϕi : Ui → Vi for each i ∈ I
between Ui and an open Vi ⊂ Rn. We want to know what conditions have
to hold in order for it to be possible to impose a topology on M that makes
it a manifold with atlas {ϕi}i∈I . And if it is possible, what is the topology?

There are some rather obvious conditions that must hold wheneverM is a
manifold, or even a quasimanifold, with atlas {ϕi}i∈I . For any i and j, Ui∩Uj
must be open, so (because ϕi is a homeomorphism) ϕi(Ui ∩Uj) must be an
open subset of Vi. In addition, if Wi ⊂ ϕi(Ui ∩ Uj) is open, then ϕ−1

i (Wi)
is open (again, because ϕi is a homeomorphism) and3 (ϕi ◦ ϕ−1

j )−1(Wi) =

ϕj(ϕ
−1
i (Wi)) is open. That is, each ϕi ◦ ϕ−1

j is continuous, and in fact a

homeomorphism because its inverse is ϕj ◦ ϕ−1
i . It turns out that these

conditions are not just “necessary,” in the sense that they hold whenever M
is a quasimanifold with atlas {ϕi}i∈I , but also “sufficient” in the sense that
M is a quasimanifold with atlas {ϕi}i∈I whenever they hold.

Proposition 8.2. If M is a set, {Ui}i∈I a collection of subsets of M whose
union is all of M , and, for each i, ϕi : Ui → Vi is a bijection between Ui
and an open Vi ⊂ Rn, then the following are equivalent:

(a) for each i, j ∈ I, ϕi(Ui ∩ Uj) is open and

ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj)

is a homeomorphism;

(b) the collection τ of all sets of the form
⋃

i∈I ϕ
−1
i (Wi), where each Wi ⊂

Vi is open, is a topology, and M endowed with this topology is an
n-dimensional quasimanifold.

Proof. We have already seen that (b) implies (a), so all we have to do is
show that (a) implies (b). Our first task to show that τ actually is the
collection of open sets of a topology. Obviously τ includes ∅ and M itself.
If A is an index set and, for each α ∈ A and i ∈ I, Wi,α is an open subset of
Vi, then

⋃

α∈A

(

⋃

i∈I

ϕ−1
i (Wi,α)

)

=
⋃

i∈I

ϕ−1
i

(

⋃

α∈A

Wi,α

)

3Here, in order to reduce clutter, we are “abusing notation” by writing ϕ−1
j in place of

ϕ−1
j |ϕj (Ui∩Uj). There will be similar abuses throughout the remainder of the book when

confusion seems unlikely.
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is an element of τ because each
⋃

α∈AWi,α is open. Therefore τ contains
arbitrary unions of its elements. If, for each i, Wi and W ′

i are open subsets
of Vi, then

(

⋃

i∈I

ϕ−1
i (Wi)

)

∩
(

⋃

j∈I

ϕ−1
j (W ′

j)
)

=
⋃

i∈I

⋃

j∈I

(

ϕ−1
i (Wi) ∩ ϕ−1

j (W ′
j)
)

=
⋃

i∈I

(

⋃

j∈I

ϕ−1
i

(

Wi ∩ ϕi(ϕ−1
j (W ′

j))
)

)

is an element of τ because each ϕi(ϕ
−1
j (W ′

j)) is open and τ contains unions of
its elements. Therefore τ contains the intersection of any two of its elements.

It remains to show that each ϕi is a homeomorphism. For each i,

ϕ−1
i (Wi) = ϕ−1

i (Wi) ∪
(

⋃

j 6=i

ϕ−1
j (∅)

)

∈ τ

whenever Wi ⊂ Vi is open, so ϕi is continuous. If, for each j, Wj ⊂ Vj is
open, then

ϕi

(

⋃

j∈I

ϕ−1
j (Wj)

)

=
⋃

j∈I

ϕi(ϕ
−1
j (Wj))

is open because each ϕj ◦ ϕ−1
i is continuous, so ϕ−1

i is continuous.

It is worth pointing out that when (a) holds, τ is the only topology such
that each ϕi is a homeomorphism. The continuity of the various ϕi implies
that each element of τ must be open in M . Conversely, any open set U ⊂M
must be in τ because each U ∩ Ui and ϕi(U ∩ Ui) are open, and

U =
⋃

i∈I

ϕ−1
i (ϕi(U ∩ Ui)).

When is M a Hausdorff space? The issue is clarified by the following
characterization of Hausdorff spaces in terms of the product topology.

Proposition 8.3. If X is a topological space, then X is Hausdorff if and
only if the diagonal

∆ := { (x, x) : x ∈ X }
is a closed subset of X ×X (endowed with the product topology).

Proof. In the product topology (X ×X) \ ∆ is open if and only if for any
(x, x′) ∈ (X ×X) \ ∆ there are open neighborhoods U and U ′ of x and x′

with (U × U ′) ∩ ∆ = ∅, which is the same as saying that U ∩ U ′ = ∅.
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Suppose {Ui}i∈I is an open cover of X. Then {Ui × Uj}i,j∈I is an open
cover of X ×X, and since closedness is a local property (Proposition 3.24)
X is Hausdorff if and only if each (Ui×Uj)∩∆ is relatively closed in Ui×Uj.
Under the conditions given by Proposition 8.4 above, each ϕi×ϕj : Ui×Uj →
Vi × Vj is a homeomorphism, so:

Proposition 8.4. If M is an n-dimensional quasimanifold, {Ui}i∈I is an
open cover, and for each i, ϕi : Ui → Vi is a homeomorphism, where Vi ⊂ Rn

is open, then the following are equivalent:

(a) for each i, j ∈ I,

Cij := { (ϕi(p), ϕj(p)) : p ∈ Ui ∩ Uj }

is closed in Vi × Vj;

(b) M is a Hausdorff space, hence an n-dimensional manifold.

To get a concrete image of how (a) can fail to hold, recall our two coordinate
charts for the line with two origins.

We need to check that the conditions in the last two results hold in the
specific case of Pn(R) and Pn(C). Consider i and j between 0 and n. Then

ϕi(Ui ∩ Uj) = { (x0, . . . , xi−1, xi+1, . . . , xn) : xj 6= 0 }

is open, and ϕi ◦ ϕ−1
j is continuous because

ϕi(ϕ
−1
j (y0, . . . , yj−1, yj+1, . . . , yn)) = ϕi([y0, . . . , yj−1, 1, yj+1, . . . , yn])

= (y0yi
, . . . , yi−1

yi
, yi+1

yi
, . . . ,

yj−1

yi
, 1
yi
,
yj+1

yi
, . . . , yn

yi
). (∗∗)

To show that Cij is closed, suppose that [x1], [x2], . . . is a sequence in
Ui ∩ Uj with

(

ϕi([x
k]), ϕj([x

k])
)

→ (yi, yj) ∈ Vi × Vj.

We need to find [x] ∈ Ui ∩ Uj with (ϕi([x]), ϕj([x])) = (yi, yj). Suppose

yi = (a0, . . . , ai−1, ai+1, . . . , an) and yj = (b0, . . . , bj−1, bj+1, . . . , bn).

Since ϕi and ϕj are homeomorphisms, [x] must be the limit of the sequence
{[xk]}. Each [xk] is in Ui ∩ Uj , so there are numbers akh and bkh such that

[ak0 , . . . , a
k
i−1, 1, a

k
i+1, . . . , a

k
n] = [xk] = [bk0 , . . . , b

k
j−1, 1, b

k
j+1, . . . , b

k
n],
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and we have

[ak0 , . . . , a
k
i−1, 1, a

k
i+1, . . . , a

k
n] → ϕ−1

i (yi) = [a0, . . . , ai−1, 1, ai+1, . . . , an]

and

[bk0, . . . , b
k
j−1, 1, b

k
j+1, . . . , b

k
n] → ϕ−1

j (yj) = [b0, . . . , bj−1, 1, bj+1, . . . , bn].

The key point is that aj 6= 0. To see this observe that

akj = akj /a
k
i = bkj /b

k
i = 1/bki ,

so if aj = 0, then bki → ∞, and of course this is impossible. Therefore
akj 6= 0 when k is sufficiently large, in which case bkh = bkh/b

k
j = akh/a

k
j for all

h = 0, . . . , n, and

bh = lim
k→∞

bkh = lim
k→∞

akh/a
k
j = ah/aj

so
[a0, . . . , ai−1, 1, ai+1, . . . , an] = [b0, . . . , bj−1, 1, bj+1, . . . , bn].

That is, ϕ−1
i (yi) = ϕ−1

j (yj), and consequently (yi, yj) ∈ Cij.
In case you’re wondering, the ideas used to construct projective space

aren’t restricted to one dimensional subspaces. For 0 < m < n the set of m-
dimensional linear subspaces of kn is called the Grassmannian of m-planes
in kn. There are various ways of defining an atlas on the Grassmannian, but
it seems that each of them involves a lot of work. Since the conclusion in
question—that the Grassmannian is a manifold—is quite intuitive (more
precisely, it would be shocking if it was false) we won’t explore the matter
further.

8.2 Differentiable Manifolds

There are various sorts of manifolds. The definition in the last section
describes what is sometimes called a topological manifold, in contrast
with more highly structured types. The variants defined in this section can
be usefully understood as fitting into a larger conceptual framework that we
now describe.

During the 19th century the understanding of the fundamental nature of
geometry shifted in important ways. Prior to that era, the geometry of the
universe had been thought to be largely a matter of logical necessity, to the
point where many people felt that Euclid’s Parallel Postulate should be a
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logical consequence of the other axioms. The discovery of spaces satisfying
the other axioms, but not the Parallel Postulate (we’ll see one in Section
9.2) refuted that view, and opened the door to the investigation of geometry
in a wide variety of spaces, using a variety of axiomatic frameworks.

There then arose the question of how to organize this knowledge. In 1872
Felix Klein (1849-1925) proposed a system for classifying geometric theories
that came to be known as the Erlangen Program. A fundamental concept in
this approach is a collection (often a group) of allowed coordinate transfor-
mations. Given such a collection, the meaningful geometrical concepts are
those that are preserved by the coordinate transformations. A large collec-
tion of transformations entails a small set of very general concepts, while a
small collection allows a rich geometry.

To illustrate this concretely consider Rn. The inverse of a homeomor-
phism is a homeomorphism, and a composition of two homeomorphisms is
a homeomorphism, so, for any space, the homeomorphisms from the space
to itself are a group with composition as the group operation. (This is
a particular instance of Theorem 1.7.) The group of all homeomorphisms
ϕ : Rn → Rn is the largest group of symmetries of Rn that one would usu-
ally care to consider. The meaningful geometric concepts in this framework
are those that are preserved by homeomorphisms, for example connected-
ness.

An affine transformation of Rn is a map

x 7→ ℓ(x) + x0

in which ℓ : Rn → Rn is a nonsingular linear transformation and x0 is some
point in Rn. The inverse

y 7→ ℓ−1(y) − ℓ−1(x0)

is also an affine transformation, and it is easy to see that compositions of
affine transformations are affine transformations, so the affine transforma-
tions are a subgroup of the group of homeomorphisms from Rn to itself.
An affine transformation maps a d-dimensional affine subspace to another
d-dimensional affine subspace, so concepts like “line,” “plane,” and “paral-
lel” are meaningful in the associated geometry, but distances and angles are
not preserved by affine transformations.

A Euclidean motion is an affine transformation x 7→ ℓ(x)+x0 in which
ℓ is an orthogonal transformation. It is easy to show that inverses and com-
positions of orthogonal transformations are orthogonal transformations, and
in turn it is easy to pass from this result to the conclusion that inverses and
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compositions of Euclidean motions are Euclidean motions, so the Euclidean
motions constitute a subgroup of the group of affine transformations. The
quantities preserved by Euclidean motions, and concepts derived from them,
are what we usually think of as the subject matter of geometry.

At least since Einstein, an important method in physics is to investi-
gate the group of symmetries that preserve the structure of physical laws.
(Earlier physicists were, of course, aware that Newtonian physics exhibited
symmetries, but systematic exploitation of this fact only became possible
with the development of group theory.) In our discussion of the transforma-
tions expressing these symmetries, and the relativistic transformations that
replaced them, we will consider one dimensional space. (This simplification
does not do violence to any of the key ideas.) One dimensional Newtonian
physics is invariant under all transformations (x, t) 7→ (x′, t′) of space and
time of the form

x′ = x0 + x+ tv and t′ = t0 + t.

Here x0 and t0 are parameters reflecting translations of the origins of space
and time respectively, and v gives the relative velocities of the two coordi-
nate systems. An inertial trajectory is the graph of an affine function
mapping time into space. Any physically valid coordinate system should
respect the principle of inertia—in the absence of an external force, a par-
ticle maintains a constant velocity—so it should map inertial trajectories
to inertial trajectories, and this is reflected in the affine character of the
transformation above. The other physical ideas expressed by this group of
transformations are that distance and time are distinct concepts, and each of
them has an absolute character that is independent of the observer’s frame
of reference. That is, for any two points (x, t) and (x̃, t̃) the distance and
the time elapsed between them are the same in the two coordinate systems
because

x̃− x = x̃′ − x′ and t̃− t = t̃′ − t′.

(A physicist would, quite properly, regard this explanation as incomplete
because it does not specify procedures for measuring distances and time
intervals.)

Until the late 19th century it hadn’t occurred to physicists that other
interesting groups of transformations might be “nearby” in the sense of
giving a similar description of the physics of low velocities. A Lorentz

transformation is a linear change of coordinates of the form

(x′, t′) =
( x+ vt
√

1 − v2/c2
,
t+ vx/c2
√

1 − v2/c2

)
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where c is a constant that is the speed of light in physical applications. (A
completely general description would include translation parameters x0 and
t0, as above. How to include them is obvious, and these parameters would
tend to complicate the notation and computations without adding inter-
esting or challenging concepts to the discussion, so typically one restricts
attention to those transformation in which these parameters are zero.) The
inverse of this transformation is

(x, t) =
( x′ − vt′
√

1 − v2/c2
,
t′ − vx′/c2
√

1 − v2/c2

)

,

which is also a Lorentz transformation. Proving that the composition of two
Lorentz transformations is, in turn, a Lorentz transformation, is a straight-
forward but bulky calculation that we omit. Taking this as given, we see
that the Lorentz transformations constitute a group.

Several properties of Lorentz transformations should be noted. A Lorentz
transformation is affine, so it respects the principle of inertia. If we look at
the limit as c → ∞ we recover a Newtonian transformation. When v is
much smaller than c,

√

1 − v2/c2 is very close to one, so Newtonian physics
is accurate with respect to velocities that are much smaller than the speed
of light. The experimental observation that prompted the development of
the theory of relativity was the Michelson-Morley experiment, which showed
that the speed of light is independent of the frame of reference of the ob-
server. The Lorentz transformation above respects this insofar as x′ = ct′

whenever x = ct and x′ = −ct′ whenever x = −ct, as you can check for
yourself.

There is a precise sense in which the Lorentz transformation can be de-
rived from the principle of inertia and the invariance of the speed of light.
Consequently there is really no good way to avoid the counterintuitive as-
pects of the special theory of relativity, namely that time and space combine
to form a single entity called space-time, and are no longer absolute inso-
far as perceived distances and time intervals depend on the velocity of the
observer.

In the general theory of relativity the group of linear transformations
described above is approximately valid locally. It characterizes the physics
of phenomena that are restricted to regions of space-time that are “small”
or “approximately flat” in the sense that the curvature induced by the influ-
ence of gravity is slight and can be ignored. Mathematically, the theory is
expressed in terms of differential equations, which might be thought of as a
matter of restricting attention to “infinitesimal” regions. Roughly speaking,
general relativity describes the influence of gravity as a matter of the larger
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scale structure of space-time being curved. In general relativity there is no
a priori assumption that space-time is homeomorphic to R4, so the the-
ory must be described by imposing structure on a general four dimensional
manifold.

How does one “impose structure” on a manifold? In the discussion above
we saw various examples in which certain coordinate systems were regarded
as “physically” or “geometrically” valid. There were certain types of trans-
formations that passed from one valid coordinate system to another. The
meaningful concepts were those that were preserved by the transformations,
and in a sense the structures of interest were really embedded in the collec-
tions of transformations. Roughly, an atlas of coordinate charts {ϕi}i∈I is
OK if each ϕi ◦ ϕ−1

j is one of these transformations.
We are now going to impose a structure on a manifold that makes con-

cepts like “differentiable function” meaningful. Our work will follow the
pattern described above: there will be an atlas of “allowed” or “valid” co-
ordinate charts, and the concept of differentiability we have in mind will be
expressed by the requirement that the changes of coordinates induced by
going from one coordinate chart to another are differentiable. As we will
see, if a function, say from the manifold to R, is differentiable at a point
p in the perspective afforded by one of these coordinate charts, then it is
differentiable at p from the point of view of every other allowed coordinate
chart that has p in its domain.

A degree of differentiability is an element of the set

{ 1, 2, 3, . . . } ∪ {∞}.

The expression “1 ≤ r ≤ ∞” is a notational shorthand indicating that r is
a degree of differentiability, and similar expressions such as 2 ≤ r ≤ ∞ have
the obvious meanings. As we mentioned earlier, we sometimes treat 0 as a
degree of differentiability by writing expressions such as 0 ≤ r < ∞, where
C0 means “continuous.”

Let M be an n-dimensional manifold. Fix a degree of differentiability r.
A Cr atlas for M is an atlas {ϕi : Ui → Vi}i∈I such that for all i, j ∈ I, the
map

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj)

is Cr. There is, at this point, a temptation to naively define a Cr manifold
to be a manifold endowed with a Cr atlas of coordinate charts. The problem
with this would be that two such objects could be “different” because they
had different atlases, even though the two atlases induced the same class
of Cr objects. Let us say that two Cr atlases for M are Cr equivalent
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if their union is in turn a Cr atlas. This notion of equivalence is reflexive
and symmetric, obviously. Is it transitive? This question is resolved by the
following technical result which underpins the whole subject.

Lemma 8.5. If f : U → V and g : V → W are Cr, where U ⊂ Rm,
V ⊂ Rn, and W ⊂ Rp are open, then

g ◦ f : U →W

is also Cr.

Proof. We may assume that r is finite, because the result for r = ∞ follows
once it is established for all finite r. We have to show that for each s with
1 ≤ s ≤ r, each partial derivative function

∂s(g ◦ f)

∂xi1 · · · ∂xis
: U → R

is defined and continuous on U . This will follow if we can show that its
value at a point x ∈ U can be written as a polynomial function of the values
at x of the partials of f up to order s and the values at f(x) of the partials
of g up to order s. This is clearly true when s = 1 by virtue of the chain
rule, and if it is true with s − 1 in place of s, then it is true for the partial
in question by virtue of the chain rule and the rules for differentiating sums
and products.

Suppose we have three Cr atlases for M , with the first Cr equivalent
to the second and the second Cr equivalent to the third. Let ϕi : Ui → Vi
and ϕk : Uk → Vk be elements of the first and third atlas respectively. The
union of the first and third atlas will be a Cr atlas if, in this situation, it is
always the case that

ϕk ◦ ϕ−1
i : ϕi(Ui ∩ Uk) → ϕk(Ui ∩ Uk)

is a Cr diffeomorphism. For any p ∈ Ui ∩ Uk there is a chart ϕj : Uj → Vj
in the second atlas with p ∈ Uj. Then

ϕk ◦ ϕ−1
i = (ϕk ◦ ϕ−1

j ) ◦ (ϕj ◦ ϕ−1
i )

on ϕi(Ui∩Uj∩Uk), and ϕk ◦ϕ−1
j and ϕj ◦ϕ−1

i are Cr because of the assumed

equivalences, so the result above implies that ϕk ◦ϕ−1
i is Cr on this set, and

consequently (because p was arbitrary) on all of ϕi(Ui ∩Uk). Of course this
line of reasoning shows that ϕi ◦ ϕ−1

k is also Cr.
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We have shown that “is Cr equivalent to” is transitive, so, in fact, it is
an equivalence relation on the set of Cr atlases of M . It would make sense to
define a Cr manifold to be a manifold together with an equivalence class of
Cr atlases, but it turns out that there is a slightly simpler definition. If two
atlases are Cr equivalent, then their union is a Cr atlas that is equivalent to
each of them. Actually, the union of any collection of Cr equivalent atlases
is another Cr atlas that is Cr equivalent to each atlas in the collection.
Going a step further in this direction, consider the union of all Cr atlases
that are Cr equivalent to a given Cr atlas. This atlas is maximal among
all atlases that are Cr equivalent to the given Cr atlas, since any atlas that
is Cr equivalent to it is Cr equivalent to the given atlas and consequently
contained in it.

Definition 8.6. A Cr differentiable structure for M is a Cr atlas that
is maximal in the sense it is not a proper subset of any other Cr atlas. A Cr

manifold is a manifold M endowed with a Cr differentiable structure. The
elements of the differentiable structure are called Cr coordinate charts for
M .

As we explained above, if a Cr atlas is contained in a Cr differentiable
structure, then that differentiable structure is the union of all the atlases
that are Cr equivalent to the given atlas. In particular, in order to specify
or construct a Cr manifold it suffices to describe a single Cr atlas.

8.3 Orientation

Let’s talk about turning a left shoe into a right shoe. Try as you might,
no matter how you rotate it you can’t do this by moving it around in the
confines of your bedroom, but it is at least conceivable that if you put a
left shoe onto a rocket and shot it into the intergalactic void, after a few
quintillion years it might return from some different direction as a right shoe.

The Möbius strip is one of the standard two dimensional illustrations
of this phenomenon. To construct a Möbius strip you glue one of the short
edges of a rectangle of paper to the other short edge after twisting it 180◦.
A bit more mathematically, think of starting with [−2, 2] × (−1, 1) and
identifying the two vertical edges {−2} × (−1, 1) and {2} × (−1, 1) with a
twist, so that (−2,−t) and (2, t) are the same point. Figure 8.3 illustrates
how we can “reverse the orientation” of a two dimensional object by sliding
it around the Möbius strip. You should compare this with Figure 5.1.
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Figure 8.3

It isn’t possible to reverse orientation by sliding an object around in the
sphere S2 or in the torus, because these manifolds admit a way of assigning
an orientation to each coordinate chart in some atlas that is consistent in
the sense that the assigned orientations of any two coordinate charts agree
on the intersection of their domains. An oriented atlas for a manifold M is
a C1 atlas {ϕi : Ui → Vi}i∈I such that for all i, j ∈ I and all p ∈ Ui∩Uj, the
determinant of D(ϕj ◦ϕ−1

i )(ϕi(p)) is positive. We say that M is orientable

if such an atlas exists, and otherwise M is unorientable.

Two dimensional projective space P 2(R) is perhaps the simplest example
of an unorientable manifold that (unlike the Möbius strip) is compact, but
it is very hard to visualize. For this reason the Klein bottle, which was
first described in 1882 by Felix Klein, is a bit better known. To construct a
Klein bottle we glue two opposite edges of a square (the edges marked A in
Figure 8.4) together, obtaining a tube, then glue the two circles bounding
the tube to each other, but instead of doing this in the way that results
in a torus we reverse the sense in which the two circles are identified with
each other. In R3 you can’t do this without having the tube intersect itself.
Equivalently, but perhaps less easy to visualize, we can glue two opposite
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edges of the square to each other with a twist (the edges labeled B in Figure
8.4) obtaining a Möbius strip that now contains the points along its edge,
then “zip up” the Möbius strip by gluing points that are across the strip
from each other.

A

A

B B

Figure 8.4

8.4 Differentiable Functions

Being able to talk about orientation is nice, but the main point of introduc-
ing Cr differentiable structures is to be able to say when a function from
one Cr manifold to another is Cr, and eventually to define a notion of dif-
ferentiation for such functions. After defining Cr functions we will show
that Cr manifolds and Cr functions constitute a category. (Defining a cate-
gory of topological manifolds is easy: we simply let the morphisms from one
manifold to another be the continuous functions.)

Let M and N be Cr manifolds, where M is m-dimensional and N is
n-dimensional. A Cr function from M to N is a function f : M → N such
that

ϕ′ ◦ f ◦ ϕ−1 : ϕ(U ∩ f−1(U ′)) → V ′

is Cr whenever ϕ : U → V is a Cr coordinate chart for M and ϕ′ : U ′ → V ′

is a Cr coordinate chart for N . In a proof that a function is Cr one has to
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use the Cr coordinate charts that are given, so the following technical result
is frequently invoked.

M

f−1(U ′)

U

f

ϕ

N
U ′

ϕ′

ϕ(U ∩ f−1(U ′))V V ′

Figure 8.5

Lemma 8.7. A function f : M → N is Cr if, for each p ∈ M , there exist
Cr coordinate charts ϕ̃ : Ũ → Ṽ and ϕ̃′ : Ũ ′ → Ṽ ′ with p ∈ Ũ and f(p) ∈ Ũ ′

such that ϕ̃′ ◦ f ◦ ϕ̃−1 is Cr.

Proof. We need to show that, in the situation described in the definition
above, ϕ′ ◦f ◦ϕ−1 is Cr, and of course this amounts to showing that it is Cr

in a neighborhood of each p ∈ U ∩f−1(U ′). Let ϕ̃ : Ũ → Ṽ and ϕ̃′ : Ũ ′ → Ṽ ′

be Cr coordinate charts with p ∈ Ũ and f(p) ∈ Ũ ′ such that ϕ̃′ ◦ f ◦ ϕ̃−1 is
Cr. Since compositions of Cr functions between open subsets of Euclidean
spaces are Cr (Lemma 8.5)

(ϕ′ ◦ ϕ̃′−1) ◦ (ϕ̃′ ◦ f ◦ ϕ̃−1) ◦ (ϕ̃ ◦ ϕ−1) = ϕ′ ◦ f ◦ ϕ−1

is Cr on the domain of definition of the left hand side.

Incidentally, although no one would ever doubt that a Cr function is
continuous, there’s a bit more to the proof than one might expect: in the
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situation described in the definition ϕ′−1 ◦ (ϕ′ ◦ f ◦ϕ−1) ◦ϕ is a composition
of the continuous (by Lemma 6.12) function ϕ′ ◦ f ◦ ϕ−1 and two homeo-
morphisms, so f is continuous in a neighborhood of each point of M , and
of course (Proposition 3.21) continuity is a local property.

We now verify the categorical properties.

Lemma 8.8. If M , N , and P are Cr manifolds and f : M → N and
g : N → P are Cr functions, then g ◦ f : M → P is a Cr function.

Proof. Suppose that ϕ : U → V and ϕ′′ : U ′′ → V ′′ are Cr coordinate charts
for M and P respectively, and consider a point p ∈ U ∩ (g◦f)−1(U ′′). There
is a Cr coordinate chart ϕ′ : U ′ → V ′ for N whose domain U ′ contains f(p).
Lemma 8.5 implies that

ϕ′′ ◦ (g ◦ f) ◦ ϕ−1 = (ϕ′′ ◦ g ◦ ϕ′−1
) ◦ (ϕ′ ◦ f ◦ ϕ−1)

is Cr on
U ∩ f−1(U ′) ∩ (g ◦ f)−1(U ′′).

Since p was arbitrary, g ◦ f is Cr everywhere on U ∩ (g ◦ f)−1(U ′′).

If you review the definition of a Cr atlas you will see that the assertion
“IdM is a Cr function” reduces to the condition that our atlas for M is,
in fact, a Cr atlas. The verification that Cr manifolds and Cr functions
constitute a category is completed by the observation that composition of
Cr functions is associative, and

IdN ◦ f = f = f ◦ IdM

whenever f : M → N is Cr, simply because these are true for functions.
Mathematicians say that the category of Cr manifolds and Cr functions

between them is “modelled on” Cr functions between open subsets of Eu-
clidean spaces. This terminology can be made precise, but we won’t do so,
since we expect that even without a precise definition, we will be able to
use it effectively in the following discussion. Specifically, we would like to
have a category of manifolds that is modelled on complex analytic functions
between open subsets of Cn, for various n, and we would like to have a
category of manifolds that is modelled on real analytic functions between
open subsets of Euclidean spaces. (Theorem 7.12 states that a C1 function
from an open subset of Cn to C is analytic, so there is no distinct category
of manifolds modelled on Cr functions between open subsets of Cn.)

We won’t go through the definitions explicitly, since in each case the
discussion is, in every detail, “modelled on” what we did above. If you
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review this it will be apparent that the only difficulties concern the respective
analogues of Lemma 8.5, which are the following two results. Recall that a
function from an open subset of Cm to Cn is said to be holomorphic if it
is C1, and that this is the case if (Theorem 7.9) and only if (Theorem 7.12)
the function is analytic and consequently C∞.

Lemma 8.9. If f : U → V and g : V → W are holomorphic, where
U ⊂ Cm, V ⊂ Cn, and W ⊂ Cp are open, then g ◦ f : U → W is also
holomorphic.

Proof. The chain rule implies that g ◦ f is differentiable at each point of U ,
and the argument used in the real case (that is, in the proof of Lemma 8.5)
works equally well here to show that each first order partial derivative of
g ◦ f is continuous. Therefore g ◦ f is C1 in the complex sense, so (Theorem
7.12) it is holomorphic.

Lemma 8.10. If f : U → V and g : V → W are real analytic, where
U ⊂ Rm, V ⊂ Rn, and W ⊂ Rp are open, then g ◦ f : U → W is also real
analytic.

Proof. There are open sets Ũ ⊂ Cm and Ṽ ⊂ Cn with U ⊂ Ũ ∩ Rm and
V ⊂ Ṽ ∩ Rn and complex analytic functions f̃ : Ũ → Cn and g̃ : Ṽ → Cp

such that f = f̃ |U and g = g̃|V . Since we can replace Ũ with f̃−1(Ṽ ), we
may assume that f̃(Ũ) ⊂ Ṽ . The result above implies that g̃ ◦ f̃ is complex
analytic, so g◦f is real analytic because it is the restriction of g̃◦ f̃ to U .

Now look again at equations (∗) and (∗∗) in Section 8.1. In view of
the results above, these equations define analytic functions because they are
compositions of basic arithmetic operations, and the basic arithmetic oper-
ations are analytic: addition, negation, and multiplication are polynomial
functions, and for inversion we observe that for any z0 ∈ C∗ the power series

1

z
=

1/z0
1 + (z − z0)/z0

=
1

z0

(

1 − (z − z0)

z0
+

(z − z0)
2

z2
0

− · · ·
)

centered at z0 converges absolutely in the open ball of radius |z0| around z0.
Therefore Sn and Pn(R) are real analytic manifolds, and Sn(C) and Pn(C)
are complex analytic manifolds.

Classification of isomorphism types is probably the most important theme
in the study of manifolds. The morphisms in the category of topological
manifolds are just the continuous functions, so two topological manifolds
are isomorphic if they are homeomorphic. If M and N are Cr manifolds,
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and f : M → N is a Cr function, then f is a Cr diffeomorphism if it is
a bijection and f−1 : N → M is also a Cr function. This is the notion of
isomorphism for the category of Cr manifolds and Cr functions. Complex
analytic diffeomorphisms (also known as holomorphic diffeomorphisms) and
real analytic diffeomorphisms are defined analogously. For each of our cat-
egories a solution of the classification problem would be a list4 of manifolds
such that any manifold was diffeomorphic to exactly one element of the list.

Any manifold is the union of its connected components, each of which
is a connected manifold, and given any collection of manifolds {Mα}α∈A of
a certain dimension, we can create a new manifold by taking the so-called
disjoint union: M := { (α, p) : α ∈ A, p ∈Mα } endowed with the topology
in which U ⊂ M is open if and only if each { p ∈ Mα : (α, p) ∈ U } is open
in Mα. This is all quite trivial, so when we talk about classifying manifolds,
what we really mean is classifying connected manifolds. Connected mani-
folds that are not compact can have “infinitely complexity” that is (with a
few exceptions) beyond any hope of a humanly comprehensible enumeration,
so attention is primarily focused on the classification of compact manifolds.
It is also natural to consider the different dimensions separately. In each of
the Cr categories, and in the real analytic category, there is precisely one
(connected) compact one dimensional manifold, namely the circle.

As we will explain in Section 9.6, the classification of compact two dimen-
sional topological manifolds is well understood. This classification “agrees”
with the classification of two dimensional Cr manifolds for any 1 ≤ r ≤ ∞
in the following sense: any compact two dimensional topological manifold
is homeomorphic to a Cr manifold, and if two compact two dimensional
Cr manifolds are homeomorphic, then they are Cr diffeomorphic. A one
dimensional (in the sense of one complex dimension) holomorphic manifold
is called a Riemann surface; as we will see in Section 9.4, the problem of
classifying compact connected Riemann surfaces up to holomorphic diffeo-
morphism is much more complex than the classification of two dimensional
topological manifolds. This is a reflection of the “rigidity” of analytic func-
tions that we described in Section 7.6.

For a long time a very famous problem stood at the very beginning of
the path to a classification of compact three dimensional topological mani-
folds, but this problem has recently been solved. Compact four dimensional
topological manifolds are known to be complex in ways that preclude any

4The word “list” should be understood in a general sense that allows, for example,
a function from some space of parameters. To constitute a solution of the classification
problem the list must contain each isomorphism class exactly once, and it must be “easily
computable.” The latter requirement is inherently a bit vague.
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hope for a classification that is, in a certain sense, “computable.”

In dimension three the category of topological manifolds and the cate-
gory of C∞ manifolds are again “the same” in the sense described above:
any compact three dimensional topological manifold is homeomorphic to
a C∞ manifold, and if two compact three dimensional C∞ manifolds are
homeomorphic, then they are C∞ diffeomorphic. In 1960 Michel Kervaire
(1927-2007) showed that in higher dimensions there are topological mani-
folds that are not homeomorphic to C1 manifolds. However, in all higher
dimensions it is still the case that any C1 manifold is C1 diffeomorphic to
a C∞ manifold, and if two C∞ manifolds are C1 diffeomorphic, then they
are C∞ diffeomorphic. These results are manifestations of the flexibility of
C∞ functions, as described in Section 7.7.

The comparison of the different categories of manifolds is the topic of
some of the most surprising and famous results of the last several decades.
In 1956 John Milnor (b. 1931) showed that there exist what came to be
known as exotic 7-spheres. An exotic 7-sphere is a C1 manifold that is
homeomorphic to S7, but not C1 diffeomorphic to it. Even more remark-
able results were proved by Simon Donaldson (b. 1957) in the early 1980’s.
An exotic R4 is a C1 manifold that is homeomorphic to R4 but not C1

diffeomorphic to it. Donaldson produced an uncountable family of exotic
R4’s, no two of which are C1 diffeomorphic, and he produced a large collec-
tion of 4-dimensional topological manifolds that are not homeomorphic to
C1 manifolds. In this respect dimension four is quite anomalous: in 1963
Kervaire and Milnor showed that in each dimension n ≥ 5 the number of
diffeomorphism types of manifolds homeomorphic to Sn is finite, and they
showed how to compute this number, but it is still unknown whether there
exist exotic four spheres, or even whether the number of diffeomorphism
types is necessarily finite, or at worst countable.

The Fields Medal is, perhaps, the closest analogue to a Nobel Prize
in mathematics. It is awarded every four years in recognition of specific
accomplishments to between two and four mathematicians, who must be
under forty years of age, at the International Congress of the International
Mathematical Union. Largely in honor of the work described above, Milnor
was awarded the Fields Medal in 1962, and Donaldson received it in 1986.

8.5 The Tangent Space

Pursuant to our overall philosophy of differentiation, we would like to define
the derivative of a C1 function between C1 manifolds, at a point, to be a
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linear function that provides an asymptotically accurate approximation of
the function at that point. When the domain and range of the function
were open subsets of Euclidean spaces, we could use those Euclidean spaces
as the domain and range of the derivative, but with general manifolds this
is not possible. Our first task, then, is to attach a vector space to each
point of a C1 manifold, aiming at using these spaces to define derivatives.
There are various ways of doing this, all of which essentially reduce to the
following idea: we know what differentiation means for any given coordinate
systems for the domain and range, but we do not want to single out partic-
ular coordinate systems, so we build a structure that treats all coordinate
systems equally by simultaneously including them all. This means equiv-
alence classes, with a number of rather boring verifications that choices of
representatives don’t matter.

M

U

U ′

ϕ ϕ′

V V ′

b

b
b

p

ϕ(p)

ϕ′(p)
v

v′

[p, ϕ, v] = [p, ϕ′, v′]

Figure 8.6

The procedure is essentially the same in all of the relevant categories. Let
k be either R or C, and fix an order of differentiation 1 ≤ r ≤ ∞. (Since
Cr objects are automatically C1, the additional generality resulting from



324 CHAPTER 8. CURVED SPACE

allowing r to be greater than 1 is largely spurious, but it is also customary
and harmless.) The explicit description will pertain only to Cr objects
relative to the field k, but you should understand it as applying equally to
the real analytic and complex analytic cases. Sometimes the symbol Cω is
used to denote analyticity, so if you like you can think of ω being a possible
value of r. Of course when k = C, C1 objects are automatically complex
analytic.

Fix an m-dimensional Cr manifold M , and consider a point p ∈M . If M
was “nicely” embedded in kℓ for some ℓ, we could think of a tangent vector
as a vector v ∈ kℓ located at a point p that was tangent to M in the normal
geometric sense. We aren’t given such an embedding, but if ϕ : U → V is a
Cr coordinate chart with p ∈ U , a vector v ∈ km (thought of as emanating
from ϕ(p)) can be used to represent such a tangent vector. In this way we
are led to define a tangent vector to be an equivalence class [p, ϕ, v] of
triples such as (p, ϕ, v), where (p, ϕ, v) and (p′, ϕ′, v′) are equivalent if p = p′

and

D(ϕ′ ◦ ϕ−1)(ϕ(p))v = v′.

You can think of [p, ϕ, v] as the velocity of a curve c : (−ε, ε) → M with
c(0) = p and (ϕ ◦ c)′(0) = v, and in fact there is a different approach in
which a tangent vector is defined to be an equivalence class of curves.

Let’s check that “equivalence” is, in fact, an equivalence relation. To see
that (p, ϕ, v) is equivalent to itself we compute that

D(ϕ ◦ ϕ−1)(ϕ(p))v = D(IdV )(ϕ(p))v = Idkm(v) = v.

Suppose (p, ϕ, v) is equivalent to (p′, ϕ′, v′). Let x := ϕ(p) and x′ := ϕ′(p′).
Then (p′, ϕ′, v′) is equivalent to (p, ϕ, v) because the derivative of the inverse
of an invertible map is the inverse of its derivative, so that

D(ϕ ◦ ϕ′−1
)(x′)v′ = D((ϕ′ ◦ ϕ−1)−1)(x′)v′

=
(

D(ϕ′ ◦ ϕ−1)(x)
)−1

v′ = v

We have shown that equivalence is reflexive and symmetric. To check tran-
sitivity suppose that (p′, ϕ′, v′) is also equivalent to (p′′, ϕ′′, v′′). The chain
rule gives

D(ϕ′′ ◦ ϕ−1)(x)v = D
(

(ϕ′′ ◦ ϕ′−1
) ◦ (ϕ′ ◦ ϕ−1)

)

(x)v

=
(

D(ϕ′′ ◦ ϕ′−1
)(x′) ◦D(ϕ′ ◦ ϕ−1)(x)

)

v

= D(ϕ′′ ◦ ϕ′−1
)(x′)v′ = v′′,
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so (p, ϕ, v) is equivalent to (p′′, ϕ′′, v′′).
The tangent space of M , denoted by TM , is the set of all the tangent

vectors like [p, ϕ, v]. There is a map

π : TM →M given by π[p, ϕ, v] = p

called the projection. For each p ∈M the tangent space of M at p is

TpM := π−1(p).

Then
TM =

⋃

p∈M

TpM.

We wish to treat each TpM as a vector space with vector operations
defined by the formulas

[p, ϕ, v] + [p, ϕ,w] := [p, ϕ, v + w] and α[p, ϕ, v] := [p, ϕ, αv].

Since we are working with equivalence classes, we need to check that this
makes sense. If ϕ′ : U ′ → V ′ is another Cr coordinate chart with p ∈ U ′,
then D(ϕ′ ◦ ϕ−1)(ϕ(p)) and D(ϕ ◦ ϕ′−1)(ϕ′(p)) are inverse linear isomor-
phisms, so:

(a) any particular coordinate chart ϕ whose domain contains p can be used
to define the vector operations on TpM because any [p, ϕ′, v′] ∈ TpM
is [p, ϕ, v] for some v;

(b) sinceD(ϕ′◦ϕ−1)(ϕ(p)) andD(ϕ◦ϕ′−1)(ϕ′(p)) are linear isomorphisms,
the definitions of the vector operations don’t depend on whether they
are expressed in terms of ϕ or ϕ′.

It’s easy to check that TpM satisfies the axioms for a vector space over k
because they’re satisfied by km.

For many purposes we only need the individual tangent spaces, but it is
also interesting to look at TM as a manifold. For each Cr coordinate chart
ϕ : U → V there is a derived function

Tϕ : π−1(U) → V × km given by Tϕ([p, ϕ, v]) := (ϕ(p), v).

Proposition 8.11. If {ϕi}i∈I is a Cr atlas for M , then TM (with the
topology induced by {Tϕi}i∈I , as per Proposition 8.2) is a 2n-dimensional
manifold, and {Tϕi}i∈I is a Cr−1 atlas for TM .
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Proof. The domains π−1(Ui) of the Tϕi cover TM because {Ui} is a cover of
M . We claim that for any i, j ∈ I, Tϕj ◦T−1

ϕi
is Cr−1. Fixing p ∈ Ui∩Uj, let

[p, ϕi, vi] = [p, ϕj , vj ] be an element of π−1(Ui)∩π−1(Uj), and let xi := ϕi(p).
Our definitions give

Tϕj

(

T−1
ϕi

(xi, vi)
)

=
(

ϕj(ϕ
−1
i (xi)),D(ϕj ◦ ϕ−1

i )(xi)vi
)

.

Each component of the vector D(ϕj ◦ ϕ−1
i )(xi)vi is a polynomial function

of the partial derivatives of ϕj ◦ ϕ−1
i and the components of vi, so D(ϕj ◦

ϕ−1
i )(xi)vi is a Cr−1 function of (xi, vi), and of course ϕj ◦ ϕ−1

i is Cr.

Therefore (Proposition 8.2) TM is a 2n-dimensional quasimanifold be-
cause each Tϕj ◦T−1

ϕi
is a homeomorphism (of course its inverse is Tϕi ◦T−1

ϕj
).

Among other things, in the induced topology of TM each π−1(Ui) is an open
set, and each Tϕi is a homeomorphism. Observe that each π|π−1(Ui) is con-
tinuous because it is the composition of Tϕi , the projection Vi×kn → Vi, and
ϕ−1. Consequently (because continuity is a local property) π is continuous.

In order to show that TM is Hausdorff we need to show that distinct
points ξ and ξ′ have disjoint neighborhoods. Since π is continuous and M
is Hausdorff, if π(ξ) 6= π(ξ′) we can take π−1(U) and π−1(U ′) where U and
U ′ are disjoint neighborhoods of π(ξ) and π(ξ′), so we may assume that
π(ξ) = π(ξ′). But if Ui contains this point, then Tϕi is a homeomorphism
between π−1(Ui), which contains both ξ and ξ′, and Vi × kn, which is a
Hausdorff space.

We can now conclude that TM is a manifold. It is easy to check that our
argument has verified that {Tϕi}i∈I satisfies each element of the definition
of a Cr−1 atlas.

Lemma 8.12. Under the hypotheses of the last result, π : TM → M is a
Cr−1 function.

Proof. Since the diagram

π−1(Ui)
π−−−−→ Ui

Tϕi





y





y

ϕi

Vi × kn −−−−→ Vi

commutes, ϕi ◦ π ◦ T−1
ϕi

is Cr−1 because it coincides with the natural pro-
jection Vi × kn → Vi. In view of Lemma 8.7, it follows that π is Cr−1.
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8.6 A Coordinate-Free Derivative

We continue to work with a field k, which may be either C or R, and a fixed
order of differentiability r between 1 and ∞. (It will continue to be the case
that pretty much everything we do here also makes sense for real analytic
manifolds and maps.) Let M and N be m- and n-dimensional Cr manifolds,
let f : M → N be a Cr function, and fix a particular point p ∈ M and a
tangent vector ξ ∈ TpM . When k = R our guiding intuition is that if ξ is
the velocity at time 0 of a curve c : (−ε, ε) → M with c(0) = p, then the
derivative Df(p) of f at p should take ξ to the vector

Df(p)ξ ∈ Tf(p)N

that is the velocity of the curve f ◦ c at time 0. (When k = C we might
imagine a function c whose domain is a small neighborhood of 0 ∈ C.)

M

U f

ϕ

N
W

ψ

V X

b b

b

b

p

ξ

ϕ(p)

v

f(p)

Df(p)ξ

ψ(f(p))

w

Figure 8.7

To ground the definition in concrete calculations we need to introduce
coordinate charts. Let ϕ : U → V be a Cr coordinate chart for M with
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p ∈ U , and let ψ : W → X be a Cr coordinate chart for N with f(p) ∈ W .
We define

Df(p) : TpM → Tf(p)N

by setting

Df(p)[p, ϕ, v] := [f(p), ψ,w] where w = D(ψ ◦ f ◦ ϕ−1)(ϕ(p))v.

In view of the definition of the vector operations on TpM and Tf(p)N and
the linearity of D(ψ ◦ f ◦ ϕ−1)(ϕ(p)), once we’ve shown that Df(p) is well
defined it will be obvious that it is linear.

The rest of the section develops the most basic properties of this defi-
nition: 1) independence of choice of representatives of equivalence classes;
2) the chain rule. We then combine the derivatives at the various points of
M into a single map Tf : TM → TN that is shown to be Cr−1. Finally,
we’ll see how T can be viewed as a functor. There will be some bulky and
forbidding looking formulas, but for those with prior experience with these
sorts of structures this material is unsurprising and mechanical. From any
point of view the symbolic mass of the calculations dwarfs the conceptual
content, except, perhaps, in one sense: the uneventful quality of the exposi-
tion is a reflection of the fact that this is, in some sense, the “right” system
of definitions.

To show that the definition of Df(p) doesn’t depend on the choices of
coordinate charts suppose that ϕ′ : U ′ → V ′ and ψ′ : W ′ → X ′ are Cr

coordinate charts for M and N with p ∈ U ′ and f(p) ∈ W ′ respectively.
Let x := ϕ(p), x′ := ϕ′(p), and y := ψ(f(p)). Suppose also that [p, ϕ, v] =
[p, ϕ′, v′], and let

w′ := D(ψ′ ◦ f ◦ ϕ′−1
)(x′)v′.

With ϕ′ and ψ′ in place of ϕ and ψ, the definition above gives

Df(p)[p, ϕ′, v′] := [f(p), ψ′, w′],

so our goal is to show that [f(p), ψ,w] = [f(p), ψ′, w′]. Since (p, ϕ, v) and
(p, ϕ′, v′) are equivalent, v = D(ϕ ◦ ϕ′−1)(x′)v′, so that

D(ψ′ ◦ ψ−1)(y)w = D(ψ′ ◦ ψ−1)(y)
(

D(ψ ◦ f ◦ ϕ−1)(x)v
)

=
(

D(ψ′ ◦ ψ−1)(y) ◦D(ψ ◦ f ◦ ϕ−1)(x) ◦D(ϕ ◦ ϕ′−1
)(x′)

)

v′

= D(ψ′ ◦ f ◦ ϕ′−1
)(x′)v′ = w′.
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(The penultimate equality here is, of course, the chain rule for functions
between open subsets of Euclidean spaces.)

We turn to the chain rule. Let P be a p-dimensional Cr manifold, let
g : N → P be another Cr function, and let χ : Y → Z be a Cr coordinate
chart for P with g(f(p)) ∈ Y . The definition of D(g ◦ f) gives

D(g ◦ f)(p)[p, ϕ, v] = [g(f(p)), χ, z] where z = D(χ ◦ g ◦ f ◦ ϕ−1)(x)v.

There is now another application of the chain rule for functions between
open subsets of Euclidean spaces:

z = D(χ ◦ g ◦ ψ−1 ◦ ψ ◦ f ◦ ϕ−1)(x)v

= D(χ ◦ g ◦ ψ−1)(y)
(

D(ψ ◦ f ◦ ϕ−1)(x)v
)

= D(χ ◦ g ◦ ψ−1)(y)w,

so [g(f(p)), χ, z] = Dg(f(p))[f(p), ψ,w] and

D(g ◦ f)(p)[p, ϕ, v] = Dg(f(p))[f(p), ψ,w] = Dg(f(p))
(

Df(p)[p, ϕ, v]
)

.

We have shown that

D(g ◦ f)(p) = Dg(f(p)) ◦Df(p).

The derivatives of f at the various points of M can be combined into a
single function Tf : TM → TN defined by

Tf([p, ϕ, v]) := Df(p)[p, ϕ, v].

The chain rule passes up to this level of aggregation: if g : N → P is a
second Cr function, then T (g ◦ f) = Tg ◦ Tf because for any p ∈ M and
[p, ϕ, v] ∈ TpM we have

Tg(Tf([p, ϕ, v])) = Tg(Df(p)[p, ϕ, v]) = Dg(f(p))
(

Df(p)[p, ϕ, v])
)

= D(g ◦ f)(p)[p, ϕ, v] = T (g ◦ f)([p, ϕ, v]).

We claim that Tf is Cr−1. Since (Proposition 8.11) {Tϕi}i∈I is a Cr−1

atlas for TM whenever {ϕi}i∈I is a Cr atlas for M , what this amounts to is
that Tψ ◦Tf ◦T−1

ϕ is a Cr−1 function whenever ϕ : U → V and ψ : W → X
are Cr coordinate charts for M and N with f(U) ⊂ W . Consider p ∈ U
and [p, ϕ, v] ∈ TpM , and let x := ϕ(p) and y := ψ(f(p)). Then

Df(p)[p, ϕ, v] := [f(p), ψ,w] where w = D(ψ ◦ f ◦ ϕ−1)(x)v.
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Since Tϕ([p, ϕ, v]) = (x, v) and Tψ([f(p), ψ,w] = (y,w) we have

(

Tψ ◦ Tf ◦ T−1
ϕ )(x, v) =

(

y,D(ψ ◦ f ◦ ϕ−1)(x)v
)

.

Of course ψ ◦ f ◦ ϕ−1 is Cr because f is Cr, so y = ψ(f(ϕ−1(x))) is a Cr

function of x. The entries of the matrix of D(ψ ◦ f ◦ ϕ−1) are the partial
derivatives of the component functions of ψ ◦ f ◦ϕ−1, so D(ψ ◦ f ◦ϕ−1)(x)v
is a Cr−1 function of (x, v).

We’ve associated a Cr−1 manifold TM with each Cr manifold M , and
we’ve associated a Cr−1 function Tf : TM → TN with each Cr function
f : M → N between Cr manifolds. We claim that T is a functor. We
have already seen that T commutes with composition: T (g ◦ f) = Tg ◦ Tf
whenever f : M → N and g : N → P are Cr functions. The only remaining
verification is that T IdM = IdTM , and to establish this we need to show
that DIdM (p) = IdTpM for any p ∈ M . Let ϕ : U → V and ϕ′ : U ′ → V ′

be Cr coordinate charts with p ∈ U ∩ U ′, and consider a tangent vector
[p, ϕ, v] ∈ TpM . The definition of DIdM (p) gives

DIdM (p)[p, ϕ, v] := [p, ϕ′, v′] where v′ = D(ϕ′ ◦ IdM ◦ ϕ−1)(ϕ(p))v.

Of course ϕ′ ◦ IdM ◦ϕ−1 = ϕ′ ◦ϕ−1, so (p, ϕ, v) and (p, ϕ′, v′) are equivalent.
That is, [p, ϕ′, v′] = [p, ϕ, v], so DIdM (p)[p, ϕ, v] = [p, ϕ, v].

Above we talked about T as “a” functor, but of course in the case k = R

we really have a functor for each order of differentiability r, and there are
also functors for the complex holomorphic category and the real analytic
category. You should take note of the usefulness of the category concept
here: by making the fundamental structural elements explicit, it organizes
our thinking in ways that allow us to perceive how proofs and construc-
tions in related contexts are really the same, to the point where we can
write a single argument that is simultaneously applicable to all the different
categories we are studying. There are important instances of this in other
parts of mathematics, and in some cases it has been possible to express the
common features of an argument or construction in terms of properties of a
very general type of category, thereby achieving an extreme, and extremely
powerful, level of abstraction.

There is one additional point worth mentioning. It looks like the C∞

category is a bit more convenient than the Cr category for r < ∞, since if
M is Cr, then TM is only Cr−1, but if M is C∞, then so is TM . This turns
out to be a rather significant simplification with wide applicability. Many of
the functions arising in physics and other sciences are C∞. In “softer” sci-
ences like economics it can happen that the underlying conceptual structure
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doesn’t single out specific equations, so that technical assumptions can be
imposed if they are convenient and they don’t impose undue constraints on
the qualitative properties of the model. This is often the case because, essen-
tially as a result of the construction described in Section 7.7, it is possible to
approximate Cr objects, or even continuous objects, with C∞ objects. (In
contrast, the rigidity of analytic objects is unrealistic in most scientific ap-
plications.) Differential topology—the subfield of mathematics studying Cr

manifolds and Cr maps between them from the point of view of topological
issues—takes great advantage of this phenomenon.

There is something tremendously satisfying about our work here. We
have created a notion of differentiation that is, in every respect, free of a
priori commitment to particular coordinate systems or any restriction on the
large scale structure of the domain and range manifolds. Its key properties
are expressed in its functorial nature. Our initial description of differentia-
tion as a functor, in Section 6.6, was a bit strained and artificial, but that
is no longer the case because the objects and morphisms in the domain and
range categories of the various functors T are, in fact, the things we are
really interested in. Achieving all this involved a certain amount of work, in
that many definitions and verifications were required. If you are new to this
sort of thing it might have been rather difficult reading, not least because
the notation is quite bulky. As you become more experienced, you’ll find
that such formalities become less difficult and a bit tedious: when reading
mathematics, it usually doesn’t work to skip parts of the text, and it is
important to make all of the logic of the argument explicit, but verifications
like the ones in this section are quite predictable, with no conceptual revela-
tions. Having done them all in a fully general framework, at least we won’t
have to do them again.

At the same time, if one were to ask how to compute the version of the
derivative developed here, the only answer we have at this point is that you
have to pass to coordinate systems for the domain and range, then apply
the various rules developed in the Chapter 6. In this sense we haven’t yet
accomplished anything of concrete significance. However, this doesn’t mean
that our work to this point is useless. Like a blank piece of paper, in itself
the framework we have developed says nothing, but it can be used to express
many interesting theories.
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8.7 The Regular Value Theorem

The simplest form of the general principle studied in this section is possibly
familiar to you from elementary calculus, where it occurs in connection
with a technique for computing the derivative of a function that is defined
implicitly. Fix an order of differentiability 1 ≤ r ≤ ∞. Let f : U → R

be a Cr function, where U ⊂ R2 is open, and let (x0, y0) be a point of U
at which ∂f

∂y (x0, y0) 6= 0. The implicit function theorem asserts that if
δ > 0 is sufficiently small, then there is a unique Cr function

g : (x0 − δ, x0 + δ) → R

such that g(x0) = y0 and f(x, g(x)) = f(x0, y0) for all x in the domain of g.
Moreover, the the graph of g completely characterizes f−1(f(x0, y0)) near
(x0, y0): there is a neighborhood W ⊂ U of (x0, y0) such that

f−1(f(x0, y0)) ∩W = Gr(g) := { (x, g(x)) : x ∈ (x0 − δ, x0 + δ) }.

f

b

b

b b

b

b

b

(
x0 x

)

f(x0, y0)

R

y0

g(x)
W

f−1(0)

U

Figure 8.8

Given this setup, what you learn to do in elementary calculus is use the
chain rule to compute that

0 =
∂f

∂x
(x, g(x)) +

∂f

∂y
(x, g(x)) · g′(x),
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then rearrange to get

g′(x) = −∂f
∂x

(x, g(x))
/∂f

∂y
(x, g(x)).

This can sometimes give a closed form expression for g′(x0) even when it is
impossible to find a closed form expression for g.

Since we will prove a more general version, we won’t dwell on the proof
of this case of the implicit function theorem, but it is worth pointing out
that the formula for g′(x) conveys the intuition underlying the procedure for
finding g. The change in f resulting from going from (x0, y0) to (x0+∆x, y0)
is

f(x0 + ∆x, y0) − f(x0, y0),

which is well approximated by ∂f
∂x(x0, y0)∆x, and one can use ∂f

∂y (x0, y0) to
compute a change

∆y := −
(∂f

∂x
(x0, y0)

/∂f

∂y
(x0, y0)

)

∆x

such that f(x0 +∆x, y0 +∆y) is approximately f(x0, y0). It typically won’t
be exactly f(x0, y0), but we can compute a further adjustment

−
(

f(x0 + ∆x, y0 + ∆y) − f(x0, y0)
)

/∂f

∂y
(x0, y0)

to the y-coordinate that will (in a suitably small neighborhood of (x0, y0),
because ∂f

∂y is continuous) result in a better approximation. If we begin
with x sufficiently close to x0 the sequence of values of the y-coordinate
computed by iterating this procedure converges to a point y such that
f(x, y) = f(x0, y0). The actual proof below will be an appeal to the inverse
function theorem, so this process of successive approximations is hidden, but
the proof of the inverse function theorem has a similar idea (the contraction
mapping theorem) at its heart.

The discussion throughout the rest of the section applies equally to the
three cases covered by the three versions of the inverse function theorem.
In order to avoid saying everything three times we adopt the following
framework: k is either R or C, and the term ‘smooth’ means ‘Cr’ (where
1 ≤ r ≤ ∞) or ‘real analytic’ if k = R, or ‘holomorphic’ if k = C.

Suppose we are given an open U ⊂ km, a smooth function f : U →
kn, and a point w0 ∈ U such that the image of Df(w0) is all of kn.
(When this is not the case the structure of f−1(f(w0)) near w0 can be
extremely complicated, even when f is a polynomial function.) Let L be an
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n-dimensional linear subspace of km that is complementary to kerDf(w0),
so that L ∩ kerDf(w0) = {0} and L+ kerDf(w0) = km. Let z0 := f(w0).

If f was affine, say f(w) = a + ℓ(w) where ℓ : km → kn is linear, then
f−1(z0) = w0 + ker ℓ would be an (m − n)-dimensional affine subspace of
kn. When f is not affine, but merely differentiable, it should still be the
case that if you were very small you would have a hard time distinguishing
f from its affine approximation, so we should expect f−1(z0) to “look like”
w0 +kerDf(w0) near w0. We can measure the resemblance between f−1(z0)
and w0+kerDf(w0) near w0 by looking at the intersections (y+L)∩f−1(z0)
for y in a neighborhood V ⊂ w0 + kerDf(w0) of w0. If the resemblance is
close, then for each y ∈ V there should be a single g(y) ∈ L near 0 such
that f(y + g(y)) = z0, and the function g : V → L should be difficult to
distinguish from the zero function (if you are sufficiently small) in the sense
that g(w0) = 0 and Dg(w0) = 0.

In the customary presentation of the implicit function theorem, there is a
given linear subspace L that is assumed to be complementary to kerDf(w0),
but the implicit function is not necessarily defined on a neighborhood of w0

in w0+kerDf(w0), but instead on an open subset of an (m−n)-dimensional
subspace that is complementary to L. In this context it makes sense to let
this subspace and L be coordinate subspaces of km, so we denote points in
km by (x, y) where x = (x1, . . . , xm−n) and y = (y1, . . . , yn). If U ⊂ km is
open and f : U → kn is differentiable at (x, y), let Dxf(x, y) and Dyf(x, y)
denote the “partial” derivatives given by varying x and y respectively. That
is, Dxf(x, y) is the derivative of the function f(·, y) at x, and Dyf(x, y) is
the derivative of the function f(x, ·) at y.

Theorem 8.13 (Implicit Function Theorem). Suppose that U ⊂ km is open,
f : U → kn is smooth, and (x0, y0) is a point in U such that Dyf(x0, y0) is
nonsingular. Let z0 := f(x0, y0). Then there is a neighborhood V ⊂ km−n of
x0, a neighborhood W ⊂ U of (x0, y0), and a smooth function g : V → kn,
such that

f−1(z0) ∩W = Gr(g) := { (x, g(x)) : x ∈ V }.
Proof. We will apply the inverse function theorem to the function F : U →
km given by F (x, y) := (x, f(x, y)). It is easy to see that DF (x0, y0) is
nonsingular: the image of DyF (x0, y0) is the coordinate subspace of the last
n coordinates, and the composition of DxF (x0, y0) with the projection onto
the coordinate subspace of the first m − n coordinates is the projection
(v,w) 7→ v. The inverse function theorem (whichever version pertains)
gives an open neighborhood W ⊂ U of (x0, y0) such that F |W is a smooth
diffeomorphism onto its image. Let V := {x ∈ km−n : (x, z0) ∈ F (W ) }.
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Since x 7→ (x, z0) is continuous and F (W ) is open, this set is open, and
it contains x0 because (x0, y0) ∈ W . Let π : km → kn is the projection
π(x, y) := y, and let g : V → kn be the function

g(x) := π
(

(F |W )−1(x, z0)
)

.

Since it is a composition of smooth functions, g is smooth (Lemma 8.5, 8.9,
or 8.10). In view of the definitions of F , V , and g,

{ (x, y) ∈W : f(x, y) = z0 } = { (x, y) ∈W : F (x, y) = (x, z0) }

= (F |W )−1(V × {z0}) = { (x, g(x)) : x ∈ V }.

There is a closed form expression for the derivative of g:

Proposition 8.14. In the situation described by the hypotheses and conclu-
sion of the preceeding result,

Dg(x0) = −Dyf(x0, y0)
−1 ◦Dxf(x0, y0).

Proof. We apply the chain rule to the identity 0 = f(x, g(x)), obtaining

0 = Dxf(x0, y0) +Dyf(x0, y0) ◦Dg(x0).

SinceDyf(x0, y0) is nonsingular by assumption, we can take the composition
of both sides with its inverse.

The inverse function theorem and the implicit function theorem are really
two expressions of a single underlying principle. In the proof above we
saw how to use the inverse function theorem to prove the implicit function
theorem, and if the implicit function theorem is already established it is
equally easy to use it to prove the inverse function theorem, as we now
explain.

Let f : U → km be a smooth function where U ⊂ km is open, let x0

be a regular point of f , and let y0 := f(x0). Let F : U × km → km be the
function

F (x, y) := f(x) − y.

By assumption DxF (x0, y0) = Df(x0) is nonsingular, so if we’ve already
established the implicit function theorem we can apply it (with the roles of
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the variables x and y reversed) to get an open neighborhood V ⊂ km of y0

and a smooth function g : V → U such that

F−1(0) ∩ Z = { (g(y), y) : y ∈ V }

for some open neighborhood Z ⊂ U × km of (x0, y0). Then g(V ) is open
because it is the set of x mapped to the open set Z by the continuous
function x 7→ (x, f(x)), and f |g(V ) and g are inverse functions because for
(x, y) ∈ U × km the following conditions are equivalent:

(a) y ∈ V and x = g(y);

(b) (x, y) ∈ Z and F (x, y) = 0;

(c) x ∈ g(V ) and y = f(x).

The version of the implicit function theorem given above (with k = R

and ‘smooth’ meaning Cr) is frequently a “capstone” result in a multivari-
able calculus course, but in my opinion the proper formulation of the result,
and an appreciation of its significance, are impossible without the manifold
concept. In preparation for the explanation, let’s expand our vocabulary a
bit. Fix an m-dimensional smooth manifold M .

U

V

M

P

ϕ

Figure 8.9

Definition 8.15. A set P ⊂ M is a p-dimensional5 smooth submanifold

of M if, for each p ∈ P , there is a smooth coordinate chart ϕ : U → V
with p ∈ U and ϕ(U ∩ P ) = V ∩ kp. The difference m − p is called the
codimension of P .

5Here we are using p to denote either the dimension of P or a typical element of M , but
the appropriate interpretation of the symbol will always be obvious. In more advanced
books this sort of “overloading” of notation is more frequent, and often not mentioned
explicitly.
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(In this definition, and at appropriate points below, we identify kp with
{x ∈ km : xp+1 = · · · = xm = 0 }.)

The intuitive picture is pretty simple: a smooth submanifold of M is
just a subset that happens to be a smooth manifold itself, in a way that’s
compatible with the differentiable structure of M . The following details
flesh this out. If ϕ is as in the definition, then its restriction to U ∩ P is
a coordinate chart for P , because the restriction of a homeomorphism to a
subset of its domain is a homeomorphism. If ϕ′ : U ′ → V ′ ⊂ km is another
such coordinate chart, then ϕ′ ◦ (ϕ|U∩U ′∩P )−1 is smooth because it is the
composition of

(x1, . . . , xp) 7→ (x1, . . . , xp, 0, . . . , 0) ∈ km

with ϕ′ ◦ (ϕ|U∩U ′)−1. Therefore the restrictions ϕ|U∩P of coordinate charts
of the sort given by the definition constitute a smooth atlas for P .

It happens very frequently in science that we are interested in a subset
of a Euclidean space, or a manifold, given by the vanishing of some differ-
entiable function. For example, if a physical system conserves energy and
momentum, then its motion is confined to the set of configurations that
have the initial values of these quantities. The conceptual significance of
the implicit function theorem is that it gives conditions under which such a
subset is necessarily a submanifold.

A bit more terminology helps with the explanation of this. Fix a second
smooth manifold N , which we assume to be n-dimensional, and a smooth
function f : M → N .

Definition 8.16. A point p ∈M is a regular point of f if

Df(p) : TpM → Tf(p)N

is surjective, and otherwise it is a singular point of f . A point q ∈ N is
a singular value of f if f−1(q) contains a singular point, and otherwise it
is a regular value of f .

Note that if m < n, then every point of M is automatically a singular
point of f . Also, this system of terminology has the following paradoxical
aspect: if f−1(q) = ∅, then q is automatically a regular value of f , even
though it isn’t a “value” of f .

Theorem 8.17 (Regular Value Theorem). If q is a regular value of f , then
f−1(q) is a codimension n smooth submanifold of M .
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Proof. Fix an arbitrary p ∈ f−1(q). Let ϕ : U → km and ψ : V → kn be
smooth coordinate charts for open neighborhoods U ⊂ M and V ⊂ N of p
and q respectively. Since we can replace U with a smaller open neighborhood
of p, we may assume that f(U) ⊂ V . We can also easily arrange for it to be
the case that ϕ(p) = 0 and ψ(q) = 0.

By assumption p is a regular point, so Df(p) is surjective. Of course
Dϕ−1(0) and Dψ(q) are linear isomorphisms, so (in view of the chain rule)
D(ψ ◦ f ◦ϕ−1)(0) is surjective. Let e1, . . . , em be the standard unit basis of
km. A maximal linearly independent subset of

{

D(ψ ◦ f ◦ ϕ−1)(0)e1, . . . ,D(ψ ◦ f ◦ ϕ−1)(0)em
}

has n elements because this set spans kn, so, by reindexing, we can arrange
for the last n elements of this set to be linearly independent. This means
that Dy(ψ ◦ f ◦ϕ−1)(0) is nonsingular where, as before, we denote points in
km by (x, y) with x ∈ km−n and y ∈ kn.

The implicit function theorem now gives a neighborhood W ⊂ ϕ(U) of
0, a neighborhood Z ⊂ km−n of 0, and a smooth g : Z → kn such that

(ψ ◦ f ◦ ϕ−1)−1(0) ∩W = Gr(g) = { (x, g(x)) : x ∈ Z }.

All of the conditions given above continue to hold if we replace W with
W ∩ π−1(Z), so we may assume that π(W ) = Z. Also, we can replace U
with ϕ−1(W ), so we may assume that ϕ(U) = W .

Let ϕ = (ϕx, ϕy). The idea now is to modify ϕy in order to create a new
coordinate chart in which the preimage of q is contained in the coordinate
subspace km−n ⊂ km. Define ϕ̃ = (ϕ̃x, ϕ̃y) : U → km by setting ϕ̃x := ϕx
and ϕ̃y := ϕy − g ◦ ϕx. Then ϕ̃ is a smooth coordinate chart because ϕ̃ is
smooth and ϕ̃−1(x, y) = ϕ−1(x, y+ g(x)), so ϕ̃−1 is also smooth. It displays
f−1(q) as a smooth submanifold near p because for p′ ∈ U we have

f(p′) = q ⇐⇒ ϕy(p
′) = g(ϕx(p

′)) ⇐⇒ ϕ̃y(p
′) = 0.

There is a sense in which a “typical” element of N is a regular value of
f . Imagine the graph of a C∞ function from an open subset U ⊂ R2 to R.
The critical points of this function are the hilltops, hollows, places where a
hillside happens to level out, and so forth, and the critical values are the
values of the function at these points. Probably in your imagination there
are only finitely many critical points and consequently only finitely many
critical values. By having the function be constant in some connected region,
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one can have a continuum of critical points, but they all map to a single
critical value. It is easy enough to create a function that has countably many
critical values because it oscillates countably many times, but it is difficult
to see how to create an uncountable set of critical values.

A crude intuition suggests why it might be difficult to have a large set
of critical values: when two critical points map to different critical values,
the region between those critical points has to be largely filled with regular
points because the value of the function has to change as you go along
any path from one of the critical points to the other. During the 1930’s
this intuition was made precise: in the setting of the regular value theorem
when “smooth” means Cr (that is, M and N are m and n-dimensional Cr

manifolds over the field R and f : M → N is Cr) a fundamental result
called Sard’s theorem states that if r > m − n and r ≥ 1, then “almost
all” elements of N are regular values of f . We don’t have the tools required
to give a precise description of what “almost all” means, so you will have
to be content with the assertion that it is quite a strong property. Among
other things, it implies that the set of regular values is a dense subset of
N . (Recall that a subset of a topological space is dense if its closure is
the entire space.) This greatly enhances the power and applicability of the
regular value theorem.

Although in my way of thinking about things, the regular value theorem
is the “conceptually correct” formulation of the implicit function theorem,
it should be admitted that others might feel that the implicit function theo-
rem expresses computationally useful facts that are lost in the passage to a
manifold-theoretic framework. This is less relevant to the comparison of the
standard presentation of the inverse function theorem (using open subsets
of km) with the “conceptually correct” version.

Theorem 8.18 (Inverse Function Theorem). If M and N are smooth m-
dimensional manifolds, f : M → N is a smooth function, and p is a regular
point of f , then p has an open neighborhood W such that f |W is a smooth
diffeomorphism onto its image.

Proof. Let ϕ : U → km and ψ : V → km be smooth coordinate charts for
open sets U ⊂M and V ⊂ N containing p and f(p) respectively. If need be
we can replace U with U∩f−1(V ), so we may assume that f(U) ⊂ V . Since ϕ
and ψ are diffeomorphisms, ϕ(p) is a regular point of ψ◦f ◦ϕ−1. The version
of the inverse function theorem from Section 7.8 gives a neighborhood W̃
of ϕ(p) such that ψ ◦ f ◦ϕ−1|W̃ is a smooth diffeomorphism onto its image,

which is an open subset of ψ(V ). Let W := ϕ−1(W̃ ). Then, due to Lemma
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8.5, Lemma 8.9, or Lemma 8.10, according to the meaning of “smooth,”

f |W = ψ−1 ◦ (ψ ◦ f ◦ ϕ−1) ◦ ϕ|W

and
f−1|f(W ) = ϕ−1 ◦ (ϕ ◦ f−1 ◦ ψ−1) ◦ ψ|f(W )

are smooth inverse diffeomorphisms.



Chapter 9

Going Higher

We’ve now completed the book’s main agenda of giving a conceptual de-
scription of and perspective on the material covered in the early college
mathematics curriculum, through linear algebra and advanced calculus. In
the remainder we’ll discuss a few topics involving manifolds that were chosen
because they apply what we have done, because they point to the concerns
of advanced and contemporary mathematics, because they are simply quite
beautiful and interesting, and because they were either originated by Rie-
mann or have some relationship to his thought. If what came before was
cake, the rest is icing.

This chapter is a bit different, and in some ways harder, than what has
come before. Up to this point we’ve mainly been concerned with establish-
ing a system of definitions, and although (with a couple exceptions) each
chapter has featured one or two topics that are a bit more advanced and
complex, most of the results we’ve proved have served to show that what we
were doing was coherent, and had certain basic properties. The six essays
that constitute this chapter each introduce concepts that are basic in the
context of subsequent developments, but they are more strongly motivated
by concrete mathematical questions and consequently feature more analysis,
and denser argumentation.

9.1 Differential Geometry

All of the geometry of Euclidean space—distance, angle, shape—flows out of
the standard inner product. The starting point of differential geometry is to
endow a manifold with local geometry of this sort, then study the manifold’s
geometric properties, either at a somewhat larger scale where the manifold’s

341
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curvature is apparent, or at a global scale. Gauss worked out the main ideas
for two dimensional submanifolds of R3, and Riemann generalized the key
concepts to the case of general dimension.

To keep things a bit simpler, in this section we’ll work in the C∞ cate-
gory. It will be fairly easy to see that the definitions and analysis generalize
to the Cr category for finite r, but it turns out that the additional gener-
ality doesn’t allow qualitatively different phenomena: a precise explanation
would be too complicated for inclusion here, but the general idea is that
systematic elaboration of the consequences of the construction described in
Section 7.7 leads eventually to the conclusion that any Cr phenomenon has
a C∞ approximation.

Everything we do makes sense in the real analytic category, but the
qualitative or conceptual consequences of real analyticity seem not to have
been studied extensively, and won’t be discussed here. (At the same time
the majority of concrete examples are real analytic.) For the category of
holomorphic manifolds there are analogous constructions, but the subject
has quite different qualitative properties, and is motivated by applications
that are quite distant from those that give rise to the central concerns of
real differential geometry.

So, let M be an n-dimensional C∞ manifold over R. Roughly, we would
like to specify an inner product for each tangent space TpM , and we want
these inner products to “vary smoothly” as we move through the manifold.
The precise description involves a new manifold. For each p ∈M let

T 2
pM := TpM × TpM.

The union of these spaces is

T 2M :=
⋃

p∈M

T 2
pM,

and π2 : T 2M →M is the projection

π2([p, ϕ, v1], [p, ϕ, v2]) := p.

If ϕ : U → V is a C∞ coordinate chart for M , let

T 2
ϕ : π−1

2 (U) → V × Rn × Rn

be the function

T 2
ϕ([p, ϕ, v1], [p, ϕ, v2]) := (ϕ(p), v1, v2).
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The discussion in Section 8.5 (with obvious adjustments) shows that {T 2
ϕi
}i∈I

is a C∞ atlas for T 2M whenever {ϕi}i∈I is a C∞ atlas for M .

The explicit but clunky notation [p, ϕ, v] for tangent vectors is useful in
connection with elementary foundational issues, but is unappealing in most
other contexts. In the following definition elements of TM will be denoted
by η, ζ, ξ, etc.

Definition 9.1. A Riemannian metric for M is a C∞ function

〈

·, ·
〉

: T 2M → R

such that for each p ∈ M the restriction
〈

·, ·
〉

p
of
〈

·, ·
〉

to T 2
pM is an inner

product. That is, for all η, ζ, ξ ∈ TpM and all α ∈ R:

(a)
〈

η, ζ
〉

p
=
〈

ζ, η
〉

p
;

(b)
〈

η + ζ, ξ
〉

p
=
〈

η, ξ
〉

p
+
〈

ζ, ξ
〉

p
;

(c)
〈

αη, ζ
〉

p
= α

〈

η, ζ
〉

p
;

(d)
〈

η, η
〉

p
≥ 0 with equality if and only if η = 0.

A Riemannian manifold is a C∞ manifold endowed with a Riemannian
metric. The inner product

〈

·, ·
〉

p
induces a norm ‖ · ‖p on TpM defined by

the formula

‖ζ‖p :=
√

〈

ζ, ζ
〉

p
.

The large scale agenda is to use the Riemannian metric to define and
study geometric concepts, and perhaps the most fundamental of these is
distance. Before discussing distance in M , there are some generalities that
pertain to any pathwise connected metric space (X, d). Recall that for
x0, x1 ∈ X, a path or curve from x0 to x1 is a continuous function γ :
[a, b] → X with γ(0) = x0 and γ(1) = x1. The length of γ is the supremum
of the set of sums of the form

k
∑

i=1

d(γ(ti−1), γ(ti))

where a ≤ t0 < . . . < tk ≤ b. The length of γ is always at least d(x0, x1), and
this supremum may easily be infinite. Let d∗(x0, x1) be the infimum, over
all paths γ from x0 to x1, of the length of γ. If d∗(x, y) <∞ for all x, y ∈ X
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(this can easily fail to be the case1) then d∗ is a metric for X. (Make sure
you understand why!) Clearly d∗(x0, x1) ≥ d(x0, x1), so every d-open set
is d∗-open, but there can be d∗-open sets that aren’t d-open. For someone
who can only move around by following paths in X, d∗ is the “real” metric,
and its induced topology is the “real” topology of X.

In connection with M we wish to use the Riemannian metric to define
a notion of curve length for C1 curves, after which we can define the “real”
metric of M using the procedure described above. Consider a C1 function
γ : [a, b] →M . For t ∈ R we may take [t, IdR, 1] as the “standard” unit basis
vector of the one dimensional vector space TtR. When t is in the domain of
the curve γ we think of

γ′(t) := Dγ(t)[t, IdR, 1] ∈ Tγ(t)M

as the velocity of γ at time t, and the speed of γ at time t is ‖γ′(t)‖γ(t).
If, for example, ‖γ′(t)‖γ(t) = s for all t, then the length of γ is s(b − a).
Roughly, we will define the length of γ to be the limit, in a certain sense, of
the sums

k
∑

i=1

‖γ′(ti)‖γ(ti)(ti − ti−1)

where a ≤ t0 < . . . < tk ≤ b.
In preparation for the precise definition of curve length for curves like γ

we now discuss integration of continuous real valued functions on compact
intervals. This is done with some regret, for the following reason. Any math-
ematical document needs to set and obey bounds on its scope in order to
avoid growing to a length that defeats its purpose. Even though integration
is coequal to differentiation as a component of the calculus, and is typically
studied in conjunction with the topics discussed in this book, avoiding it
has done much to prevent things from becoming even more bloated, and for
this reason introducing it at this point feels wrong. In practice things aren’t
so bad: we will be able to keep the discussion brief by considering only the
simplest case.

1For a concrete example let X be the image of the curve γ : [0, 1] → R2 where
γ(t) := (t, t sin 1/t). The distance between two points in R2 is at least as large as the
absolute value of the difference between their respective second components, so for each
k = 1, 2, . . . we have

‚

‚γ( 2
(4k+1)π

)− γ( 2
(4k+3)π

)
‚

‚ ≥ 2
(4k+1)π

+ 2
(4k+3)π

> 1
(k+1)π

.

Since the harmonic series diverges, the length of any path from (0, 0) to any other point
in X is infinite.
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There is another reason to be unhappy with our discussion of integra-
tion. Like differentiation, integration as it was understood by Newton and
Leibniz could not be defined with complete rigor prior to the late 19th cen-
tury. The theory as it was formulated then, which is what is taught in
introductory calculus courses, actually suffers from severe limitations on the
class of functions it considers. There were attempts, including one by Rie-
mann, to develop more general definitions, but a fully satisfactory theory
emerged only in the 1920’s. It is one of the greatest success stories of the
set theory revolution, and a magnificent piece of abstraction, giving a solid
foundation for probability and statistics, among many other things. Since
the discussion of integration below avoids this material, it fails to live up to
our attitude of enthusiastically embracing abstraction.

Suppose that a ≤ b, and let f : [a, b] → R be a continuous function. We
adopt the following notation: if S is a set, DS is the set of finite subsets of
S. A typical element of D[a,b] is ι = {t0, . . . , tk}; in this circumstance we
always assume that t0 < · · · < tk. For such an ι let

Iι(f) :=

k
∑

j=1

f(tk)(tk − tk−1).

If γ : [a, b] → M is a C1 curve and f(t) := ‖γ′(t)‖γ(t) is the speed of γ at
time t, then f(tk)(tk − tk−1) is an approximation of the distance traversed
by γ between tk−1 and tk, so Iι(f) is an approximation of the total distance
travelled between times a and b. When f is everywhere nonnegative, we can
think of f(tk)(tk − tk−1) as the area of the rectangle [tk−1, tk]× [0, f(tk)], so
that Iι(f) is an approximation of the area under the graph of f .

b

b

b

b

b

b

b

b

b

b

b

b

a = t0 t1 t2 t3 t4 t5 = b

Figure 9.2

This approximation of area or distance travelled becomes more accurate
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as the set ι becomes larger, and we would like to define the integral of f to be
the “limit” of Iι(f) as the set {t0, . . . , tk} “converges” to the interval [a, b].
One way to do this is to take a particular sequence of sets. For example,
the kth set could be

{a, k−1
k a+ 1

kb, . . . ,
1
ka+ k−1

k b, b},

and we could define the integral of f to be

lim
k→∞

k
∑

i=1

f
(

k−i
k a+ i

k b
)

b−a
k .

This works, and possibly most authors would develop the subject in this
way, but we will take a more abstract approach that leads to a more flexible
setup. Developing an initial understanding of this definition will take a bit
more effort, but its pliability will make it easier to prove things.

Let R be a binary relation on a set D. We say that R is antisymmetric

if there are no two elements x, y ∈ D such that both xRy and yRx. That is,
whenever xRy it is not also the case that yRx. As you probably recall, the
relation R is transitive if xRz whenever xRy and yRz. A binary relation
R on D is a partial order if it is antisymmetric and transitive. When R
is a partial order and xRy, we say that x precedes y and that y succeeds

x. The relation R is irreflexive if there is no x ∈ D such that xRx. Of
course antisymmetry implies irreflexivity, so in a partial ordering no element
precedes or succeeds itself.

The real numbers (and the rational numbers, and the integers) are par-
tially order by “is less than.” In fact for any n, there is a partial order R
on Rn in which xRy if and only if xi < yi for all i = 1, . . . , n. The subsets
of any set are partially ordered by “is a proper subset of,” and the open
sets of a topological space (and also the closed sets) are partially ordered by
the restriction of this relation. I am afraid these examples do not begin to
do justice to the significance and generality of partial orders. Partial orders
arise naturally in all branches of mathematics, and it would not surprise me
if you could list quite a few more examples without working up a sweat.

The pair (D,<) is a directed set if D is a nonempty set, < is a partial
ordering of D, and for any two elements ι1 and ι2 of D there is third element
ι such that ι1 < ι and ι2 < ι. Taking ι1 = ι2, we find that every element of
a directed set has a successor, that successor has a successor, and so forth,
so a directed set is necessarily infinite. If S is an infinite set and < is the
“is a proper subset of” relation on DS , then for any ι1, ι2 ∈ DS we can (if
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necessary) append some new element of S to ι1∪ι2 to create an ι with ι1 < ι
and ι2 < ι, so DS is a directed set. Of course another example of a directed
set is given by the real numbers (or the rational numbers, or the integers)
with the partial ordering “is less than.”

Let X be a topological space. A net in X is a function ι 7→ xι from D
to X where (D,<) is a directed set. Such a net is said to converge to a
point x ∈ X if, for every open set U containing x, there is some ιU ∈ D such
that xι ∈ U whenever ι is a successor of ιU . When this is the case we write

x = lim
−→

xι.

Since the integers, with the usual ordering, are a directed set, this conver-
gence concept has convergence of sequences as a special case, and it actually
plays a key role in the foundations of topology. Among other things, it can
happen that a point x in a topological space X is a limit of a net in X \{x}
even though there are no sequences in X \ {x} that converge to x.

We can now define the integral of f to be 0 if a = b, and otherwise it is

∫ b

a
f(t) dt := lim

−→
Iι(f)

where the limit is over ι ∈ D[a,b]. Of course the first agenda item is to show
that this limit always exists, so that the integral is well defined. This will
take a bit of work, in part because we take advantage of the nice opportunity
it presents to explain an interesting and useful fact (Proposition 9.3 below)
about functions between metric spaces.

Definition 9.2. A function g : X → Y between metric spaces (X, dX ) and
(Y, dY ) is uniformly continuous if, for every ε > 0, there is some δ > 0
such that

dY (g(x), g(x′)) < ε whenever dX(x, x′) < δ.

Comparing this with the definition of continuity, we see that there is a
propositional function

P (ε, x, δ, x′) := ‘dX(x, x′) < δ ⇒ dY (g(x), g(x′)) < ε’

such that g is continuous if (∀ε)(∀x)(∃δ)(∀x′)P (ε, x, δ, x′) and uniformly con-
tinuous if (∀ε)(∃δ)(∀x)(∀x′)P (ε, x, δ, x′). In words, the definition of uniform
continuity insists that you commit to a particular δ before you know x, while
continuity allows you to select a different δ for each x. Therefore uniform
continuity is, in general, a more demanding concept than continuity, but
there is an important case in which the two concepts are equivalent.
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Proposition 9.3. Suppose (X, dX ) and (Y, dY ) are metric spaces and g :
X → Y is continuous. If X is compact, then g is uniformly continuous.

Proof. Aiming at a contradiction, suppose that g is not uniformly continu-
ous. As we explained at the beginning of Chapter 3, the negation of

(∀ε)(∃δ)(∀x)(∀x′)P (ε, x, δ, x′) is (∃ε)(∀δ)(∃x)(∃x′)¬P (ε, x, δ, x′),

so there is an ε > 0 such that for each δn := 1/n there are xn, x
′
n ∈ X with

dX(xn, x
′
n) < δn and dY (g(xn), g(x

′
n)) ≥ ε. Since X is compact (Theorem

3.44) the sequence {xn} has a subsequence {xni}i=1,2,... that converges to
some point, say x. Clearly {x′ni

}i=1,2,... also converges to x, and the conti-
nuity of g implies that

lim
i→∞

g(xni) = g(x) = lim
i→∞

g(x′ni
).

In turn this implies that dY (g(xni), g(x
′
ni

)) < ε for sufficiently large i, con-
tradicting our supposition.

So, our given f : [a, b] → R is uniformly continuous. The specific conse-
quence of interest is:

Lemma 9.4. Suppose that ι, ι′ ∈ D[a,b] with ι < ι′, ι = {t0, . . . , tk}, t0 = a,
tk = b, and tj − tj−1 < δ for all j = 1, . . . , k. If |f(t) − f(t′)| < ε whenever
|t− t′| < δ, then

|Iι′(f) − Iι(f)| ≤ ε(b− a).

Proof. Suppose that ι′ = {u0, . . . , uℓ}. Then for each j = 0, . . . , k there is

some hj such that uhj
= tj, and tj − tj−1 =

∑hj

h=hj−1+1 uh − uh−1. We have

Iι(f) =
k
∑

j=1

f(tj)(tj − tj−1) =
k
∑

j=1

hj
∑

h=hj−1+1

f(tj)(uh − uh−1)

and

Iι′(f) =

ℓ
∑

h=1

f(uh)(uh − uh−1) =

k
∑

j=1

hj
∑

h=hj−1+1

f(uh)(uh − uh−1).

If hj−1 +1 ≤ h ≤ hj , then tj −uh < tj − tj−1 < δ and |f(uh)−f(tj)| < ε, so

∣

∣Iι′(f) − Iι(f)
∣

∣ ≤
k
∑

j=1

hj
∑

h=hj−1+1

|f(uh) − f(tj)|(uh − uh−1)
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< ε
k
∑

j=1

hj
∑

h=hj−1+1

(uh − uh−1) = ε(b− a).

Aiming at showing that
∫ b
a f(t) dt = lim

−→
Iι(f) is well defined, suppose

that for each n = 1, 2, . . . we have chosen δ1/n > 0 small enough that
|f(t) − f(t′)| < 1/n whenever |t − t′| < δ1/n, and we have also chosen
ιn = {t0, . . . , tk} ∈ D[a,b] with t0 = a, tk = b, and tj − tj−1 < δ1/n for all
j = 1, . . . , k. Then {Iιn(f)} is a Cauchy sequence: for any m,m′ > n we
can choose ι ∈ D[a,b] such that ιm, ιm′ < ι, in which case the last result gives

|Iιm(f) − Iιm′ (f)| ≤ |Iιm(f) − Iι(f)| + |Iι(f) − Iιm′ (f)|

≤ ( 1
m + 1

m′ )(b− a) < 2
n(b− a).

Since R is complete, the sequence {Iιn(f)} has a limit. Moreover, since
|Iι(f)−Iιn(f)| ≤ (b−a)/n whenever ιn < ι, this limit satisfies the condition
defining lim

−→
Iι(f).

Now that we know that integration is a well defined operation, there are,
of course, a great many things we could say about it. Since we can’t hope
to be comprehensive, it seems best, on the whole, to say as little as possible,
but we need three basic properties that appear in almost every argument
involving an integral.

Lemma 9.5. If m ≤ f(t) ≤M for all t, then

m(b− a) ≤
∫ b

a
f(t) dt ≤M(b− a).

Proof. This follows from the inequality m(b− a) ≤ Iι(f) ≤M(b− a), which
is in turn an immediate consequence of the definition of Iι(f).

Lemma 9.6. If a = t0 ≤ t1 ≤ · · · ≤ tk−1 ≤ tk = b, then

∫ b

a
f(t) dt =

∫ t1

t0

f(t) dt+ · · · +
∫ tk

tk−1

f(t) dt.

Proof. Since the integral over a degenerate interval consisting of a single
point is 0, this holds automatically when a = b, and when a < b we may
assume that t0 < t1 < · · · < tk−1 < tk because we can remove trivial terms
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from the right hand side of the asserted equation. Let ι := {t0, . . . , tk}. If
ι < ι′ = {u0, . . . , uℓ} with uhj

= tj for each j = 0, . . . , k, then

hj
∑

h=hj−1+1

f(uh)(uh − uh−1) = Iι′∩[tj−1,tj ](f |[tj−1,tj ])

for each j = 1, . . . , k, and consequently

Iι′(f) = Iι′∩[t0,t1](f |[t0,t1]) + · · · + Iι′∩[tk−1,tk ](f |[tk−1,tk]).

The left hand side converges to
∫ b
a f(t) dt. For any ι1 ∈ D[t0,t1], . . . , ιk ∈

D[tk−1,tk] we can easily construct an ι′ with ι1 < ι′ ∩ [t0, t1], . . . , ιk < ι′ ∩
[tk−1, tk]. Therefore the right hand side of this equation can be made arbi-
trarily close to the right hand side of the asserted equation.

Lemma 9.7. The integral is a linear function from the space of continuous
real valued functions on [a, b] to R: if f, g : [a, b] → R are continuous and
α ∈ R, then

∫ b

a
(αf + g)(t) dt = α

∫ b

a
f(t) dt +

∫ b

a
g(t) dt.

Proof. Once again, this is automatic when a = b, so suppose that a < b. For
any ι ∈ D[a,b] the equation Iι(αf + g) = αIι(f) + Iι(g) follows directly from
the definition of Iι(·), and the claim obviously follows from this equation.

In addition, there is a famous theorem that provides useful insights into
the definition of curve length below, as well as being extremely important for
many other reasons. Essentially it asserts that integration and differentiation
are inverse operations. In our applications the derivative of the curve length
function at time t is the speed at time t, and the integral of the speed from
a to t is the distance traveled up to time t.

Theorem 9.8 (The Fundamental Theorem of Calculus). For continuous
functions f : [a, b] → R and F : [a, b] → R the following conditions are
equivalent:

(a) F (t) = F (a) +
∫ t
a f(s) ds for all t ∈ [a, b].

(b) F is C1 with F ′(t) = f(t) for all t ∈ (a, b).
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Proof. Both (a) and (b) are true automatically when a = b, so assume that
a < b.

First suppose (a) holds. Fixing t ∈ (a, b), we will show that F ′(t) = f(t),
after which it follows that F is C1 because f is continuous by assumption.
Consider ε > 0. Since f is continuous, there is δ > 0 such that |f(t′)−f(t)| <
ε for all t′ ∈ (t − δ, t + δ). Fix such a t′ with t′ ≥ t. (The case t′ ≤ t is
similar.) We have

F (t′) − F (t) =
(

F (t′) − F (a)
)

−
(

F (t) − F (a)
)

=

∫ t′

a
f(s) ds−

∫ t

a
f(s) ds =

∫ t′

t
f(s) ds,

where the final equality comes from Lemma 9.6, and Lemma 9.5 implies that

(f(t) − ε)(t′ − t) <

∫ t′

t
f(s) ds < (f(t) + ε)(t′ − t).

Therefore

∣

∣

∣F (t′) − [F (t) + f(t)(t′ − t)]
∣

∣

∣ =
∣

∣

∣

∫ t′

t
f(s) ds− f(t)(t′ − t)

∣

∣

∣ < ε|t′ − t|.

Now suppose that (b) holds. Clearly (a) will follow if we show that

∣

∣

∣

∫ t

a
f(s) ds− (F (t) − F (a))

∣

∣

∣ < ε(t− a)

for any t ∈ (a, b) and ε > 0, so fix t and ε. Since f is uniformly continuous
(Proposition 9.3) there is a δ > 0 such that |f(s) − f(s′)| < ε whenever
|s − s′| < δ. Choose t0 < · · · < tk with t0 = a, tk = t, and th − th−1 < δ
for all h = 1, . . . , k. For each such h the mean value theorem implies the
existence of t̃h ∈ (th−1, th) such that

F (th) − F (th−1) = f(t̃h)(th − th−1),

and Lemma 9.5 implies that

∣

∣

∣

∫ th

th−1

f(s) ds− f(t̃h)(th − th−1)
∣

∣

∣ < ε(th − th−1).

Applying Lemma 9.6, we compute that

∣

∣

∣

∫ t

a
f(s) ds− (F (t) − F (a))

∣

∣

∣
=
∣

∣

∣

k
∑

h=1

(

∫ th

th−1

f(s) ds− (F (th) − F (th−1))
)∣

∣

∣
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≤
k
∑

h=1

∣

∣

∣

∫ th

th−1

f(s) ds− f(t̃h)(th − th−1))
∣

∣

∣ <

k
∑

h=1

ε(th − th−1) = ε(t− a).

We haven’t defined the derivative at a or the derivative at b of a func-
tion whose domain is [a, b]. There are sensible definitions using “one sided
limits,” and once such definitions are in place it is not hard to strengthen
(b) to require also that F ′(a) = f(a) and F ′(b) = f(b). In the future we
usually won’t worry about this little detail. For instance, in the result below
we assume that a function on [c, d] is C1, and this should be understood as
meaning that the function is differentiable everywhere including the end-
points, and the derivative is continuous at every point in [c, d].

Returning to the Riemannian setting, let M be a Riemannian manifold,
and let γ : [a, b] → M be a C1 path. With the theory of the integral
under our belts, we can now define the length of γ to be the total distance
travelled:

L(γ) :=

∫ b

a
‖γ′(t)‖γ(t) dt.

As everyone knows, the total distance travelled in going from γ(a) to γ(b) de-
pends only on the image of γ, in the following sense. Suppose γ̃ : [c, d] →M
is a different curve that covers the same ground according to a different
schedule without “backtracking,” by which we mean that there is an in-
creasing C1 function τ : [c, d] → [a, b] such that τ(c) = a, τ(d) = b, and
γ̃ = γ ◦ τ . In this circumstance we say that γ̃ is a reparameterization

of γ. If you go from γ(a) to γ(b) according to the schedule specified by γ,
while your friend’s itinerary is γ̃, the two of you will cover the same total
distance.

The following result is a more general formulation of the underlying
principle.

Proposition 9.9 (Change of Variables Formula). If f : [a, b] → R is con-
tinuous, λ : [c, d] → [a, b] is C1, and λ(c) ≤ λ(d), then

∫ d

c
f(λ(σ))λ′(σ) dσ =

∫ λ(d)

λ(c)
f(s) ds.

This formula has a simple intuition: if you replace d with d + ∆d, the
right hand side increases by approximately f(λ(d))λ′(d)∆d. As you learn
more advanced theories of integration you will see other change of variables
formulas, each based on some variant of this insight. Note that, among other
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things, there is no need to require that λ′(t) ≥ 0 for all t. Also, the only

reason we require λ(c) ≤ λ(d) is that we have not defined
∫ b
a f(t) dt when

b < a. Setting
∫ b
a f(t) dt := −

∫ a
b f(t) dt in this circumstance works perfectly

well, even if it might be preferable, conceptually and aesthetically, to revise
the discussion above so that the two cases are treated symmetrically.

Proof. For a ≤ t ≤ b let F (t) :=
∫ t
a f(s) ds, and for c ≤ τ ≤ d let G(τ) :=

F (λ(τ)). The fundamental theorem of calculus and the chain rule imply
that G′(τ) = f(λ(τ))λ′(τ), so

∫ d

c
f(λ(σ))λ′(σ) dσ = G(d) −G(c) = F (λ(d)) − F (λ(c)) =

∫ λ(d)

λ(c)
f(s) ds,

where the first inequality is another application of the fundamental theorem
of calculus, and the last is derived from Lemma 9.6.

As promised above, we now show that two curves have the same length
if they cover the same ground at different speeds. Suppose that c < d and
τ : [c, d] → [a, b] is a C1 function with τ(c) = a, τ(d) = b, and τ ′(σ) ≥ 0 for
all σ ∈ [c, d], so that

γ̃ := γ ◦ τ : [c, d] →M

is a reparameterization of γ. The chain rule gives

‖γ̃′(σ)‖γ̃(σ) = ‖γ′(τ(σ))τ ′(σ)‖γ(τ(σ)) = ‖γ′(τ(σ))‖γ(τ(σ)) · |τ ′(σ)|,

so

L(γ̃) =

∫ d

c
‖γ̃′(σ)‖γ̃(σ) dσ =

∫ d

c
‖γ′(τ(σ))‖γ(τ(σ)) · |τ ′(σ)| dσ.

Since |τ ′(σ)| = τ ′(σ) we can apply the change of variables formula:

L(γ̃) =

∫ d

c
‖γ′(τ(σ))‖γ(τ(σ)) · τ ′(σ) dσ =

∫ b

a
‖γ′(s)‖γ(s) ds = L(γ).

The curves of greatest geometric interest are those that are “as straight
as possible.” The curve γ is distance minimizing if there is no other curve
γ̃ : [c, d] →M with γ̃(c) = γ(a), γ̃(d) = γ(b), and L(γ̃) < L(γ). (To visualize
this imagine holding a piece of string against two points of a football and
reducing its length until it it taut.) It is locally distance minimizing

if, for each t ∈ (a, b), there are a′ and b′ with a ≤ a′ < t < b′ ≤ b such
that γ|[a′,b′] is distance minimizing, and an analogous condition holds at the
endpoints: γ|[a,a+ε] and γ|[b−ε,b] are distance minimizing for some ε > 0. A
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locally distance minimizing curve of constant speed seems like the natural
generalization of the Newtonian notion of an inertial trajectory, and in fact
this is true not only “in principle,” but also in physical reality as described
by the general theory of relativity.

Naturally we expect a distance minimizing curve to be locally distance
minimizing. This is true, and the basic idea is simple and obvious: basic
facts about integration (specifically, Lemma 9.6) give

L(γ) = L(γ|[a,a′]) + L(γ|[a′,b′]) + L(γ|[b′,b])

when a ≤ a′ < b′ ≤ b. If γ is distance minimizing, then γ|[a′,b′] should be
distance minimizing because otherwise a shorter curve from γ(a′) to γ(b′)
could be reparameterized to the interval [a′, b′], then combined with the rest
of γ to give a shorter path from γ(a) to γ(b). However, there is actually a
nasty technical detail here, insofar as the curve resulting from this gluing
procedure need not be C1. With a bit of work one can show that there
is a nearby C1 curve with approximately the same length, but the easier
approach is to modify our definitions to allow the curves in our definition of
distance minimization to be “piecewise” C1, where a curve is piecewise C1

if it is C1 on a each of a finite collection of intervals that cover the domain.
Roughly, the image of a locally distance minimizing curve is the ana-

logue in Riemannian geometry of the notion of a line in Euclidean geometry.
However, we need to be careful in formulating this definition. In Euclidean
geometry lines extend indefinitely, but if we try to extend a locally distance
minimizing curve it can intersect itself. A great circle on the surface of the
Earth does this in a well behaved fashion, in that if you keep following it you
just go round and round, but by deforming the surface of the Earth we could
actually arrange for the curve to intersect itself at an angle. This consider-
ation suggests that our definition should have a local character, describing
sets that are images of locally distance minimizing curves in a neighborhood
of each point. Also, we do not want sets like the union of two parallel lines
to satisfy the definition, so it makes sense to insist that the set be connected.

Definition 9.10. A geodesic in M is a nonempty connected set g ⊂ M
such that for any p ∈ g there is an open set U ⊂ M containing p and
a distance minimizing curve γ : [−ε, ε] → M , for some ε > 0, such that
γ′(t) 6= 0 for all t, γ(0) = p, and

g ∩ U = image(γ) ∩ U.

A geodesic is complete if it is not a proper subset of another geodesic.
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We are now confronted with a number of interesting foundational issues.
In Euclidean geometry any two distinct points are contained in exactly one
line. Two points in the sphere that are antipodal (that is, diametrically
opposite each other) are both contained in a continuum of distinct complete
geodesics, so we know that this property of Euclidean geometry doesn’t
extend to Riemannian geometry at a global scale. Nevertheless, there is a
local generalization: each p ∈ M has an open neighborhood U ⊂ M such
that for each q ∈ U there is a unique distance minimizing curve γ : [0, 1] → U
of constant speed with γ(0) = p and γ(1) = q.

A closely related issue is that Newtonian physics is a deterministic

theory, as is the description given by general relativity of a single particle
moving in a force field. The rough idea is that if we know the “state” of the
system at a point in time, then we can predict its state at any time in the
future or infer its state at any time in the past. In the Riemannian context a
constant speed distance minimizing curve need not continue forever, so this
principle has a local character. Mathematically, what determinism boils
down to in this particular setting is that for any p ∈M , any ζ ∈ TpM , and
any sufficiently small ε > 0, there is exactly one constant speed distance
minimizing curve γ : [−ε, ε] →M with γ(0) = p and γ′(0) = ζ.

A precise development of the results described in the last two paragraphs
would lead to quite a bit of interesting and important mathematics, but it
would take many pages, and involve techniques that are somewhat more
advanced than those described in this book. In addition, even after we had
done all this, we would still be at the very beginning of a huge body of
mathematics with many more foundational issues to consider. Instead, an
in-depth exploration of the geometry of a single concrete example seems like
a more effective way to introduce some of the ideas of Riemannian geometry.

9.2 Hyperbolic Space

Two dimensional hyperbolic space is a very special two dimensional Rieman-
nian manifold. It is one of the two examples discovered in the 19th century
that show that the first four axioms of Euclid do not imply the parallel
postulate. Our goal is to explain this rigorously.

The particular description of hyperbolic space studied here is called the
Poincaré disk model after its originator Henri Poincaré (1854-1912). The
Poincaré disk has a very simple definition. Let

H = { (x, y) ∈ R2 : x2 + y2 < 1 }
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be the usual open unit disk in R2. We impose the following Riemannian
metric on T 2H: if (x, y) ∈ H and ζ, η ∈ T(x,y)H, let

〈

ζ, η
〉H

:=

〈

ζ, η
〉

(1 − x2 − y2)2
,

where the inner product on the right hand side is the standard one. Roughly
this means that the distance between two points near (x, y) is magnified by
a factor of approximately (1 − x2 − y2)−1 in comparison with the distance
between them when the unit disk has its usual metric. On its surface this
definition doesn’t tell us much, and our study of H will be a circuitous affair,
with various interesting twists and turns.

The complete geodesics of H will play the role of lines in our comparison
of the geometry of H with Euclidean geometry. Let

g0 := { (s, 0) : −1 < s < 1 }

be the intersection of the x-axis with H. In a journey between two points in
g0, going away from the x-axis increases the distance in H that one covers
in order to achieve a certain amount of left-to-right progress as measured in
the usual metric of R2, so we should expect that a distance minimizing path
between two points of g0 will not stray from g0. The first step in our analysis
is give a precise quantitative argument showing that this is the case. We
should also expect that g0 is a geodesic. Of course it’s connected, so what
we need to show is that any point has a neighborhood that is contained in
the image of a distance minimizing curve.

Fixing sa, sb with −1 < sa < sb < 1, let γ = (γx, γy) : [a, b] → H be any
C1 curve with γ(a) = (sa, 0) and γ(b) = (sb, 0). We first compare the length
of γ with the length of the curve γ̃ : (a, b) → H given by γ̃(s) := (γx(t), 0).
We have γ′(t) = (γ′x(t), γ

′
y(t)), γ̃

′(t) = (γ′x(t), 0), and

‖γ′(t)‖Hγ(t) =

√

γ′x(t)
2 + γ′y(t)

2

(1 − γx(t)2 − γy(t)2)2
≥
√

γ′x(t)
2

(1 − γx(t)2)2

=
|γ′x(t)|

1 − γx(t)2
= ‖γ̃′(t)‖Hγ̃(t).

The definition of curve length, this formula, and monotonicity of integration
(Lemma 9.5) give:

L(γ) =

∫ b

a
‖γ′(t)‖Hγ(t) dt ≥

∫ b

a
‖γ̃′(t)‖Hγ̃(t) dt = L(γ̃).
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When is it the case that L(γ) = L(γ̃)? A simple argument based on
Lemmas 9.5 and 9.6 shows that this inequality is strict if there is even a
single t such that ‖γ′(t)‖Hγ(t) > ‖γ̃′(t)‖Hγ̃(t), since then (due to continuity)
there is an interval of positive length along which it holds strictly. On the
other hand, if ‖γ′(t)‖Hγ(t) = ‖γ̃′(t)‖Hγ̃(t) for all t, then L(γ) = L(γ̃). We

always have γ′x(t)
2 + γ′y(t)

2 ≥ γ′x(t)
2 and 1 − γx(t)

2 − γy(t)
2 ≤ 1 − γx(t)

2,

so ‖γ′(t)‖Hγ(t) > ‖γ̃′(t)‖Hγ̃(t) if γ′y(t) 6= 0, or if γ′x(t) 6= 0 and γy(t) 6= 0. It is

intuitively obvious that γ′y(t) = 0 for all t if and only if γy(t) = 0 for all t.
(There is an easy argument based on the mean value theorem, which you
might try to construct, that gives a formal proof.) Therefore L(γ) = L(γ̃)
if and only if γy(t) = 0 for all t.

Next we compare the length of γ̃ = (γx, 0) with the length of η|[sa,sb]

where η = (ηx, 0) : (−1, 1) → H is the function η(s) := (s, 0). In preparation
for the change of variables formula we note that for each t we have

γ′x(t)

1 − γx(t)2
=

ηx
′(γx(t))

1 − ηx(γx(t))2
· γ′x(t)

because ηx(γx(t)) = γx(t) and ηx
′(γx(t)) = 1. Monotonicity of integration

(Lemma 9.5) and the change of variables formula (Proposition 9.9) give:

L(γ̃) =

∫ b

a
‖γ̃′(t)‖Hγ̃(t) dt =

∫ b

a

|γ′x(t)|
1 − γx(t)2

dt ≥
∫ b

a

γ′x(t)

1 − γx(t)2
dt

=

∫ b

a

ηx
′(γx(t))

1 − ηx(γx(t))2
· γ′x(t) dt =

∫ sb

sa

ηx
′(s)

1 − ηx(s)2
ds = L(η|[sa,sb]),

with strict inequality if and only if γ′x(t) = γ′x(t) < 0 for some t.
We have shown that L(γ) ≥ L(γ̃) ≥ L(η|[sa,sb]). Since γ could be any

path between (sa, 0) and (sb, 0), η|[sa,sb] is distance minimizing, so g0 is a
geodesic. We have L(γ) = L(γ̃) if and only if γy(t) = 0 for all t, and we
have L(γ̃) = L(η|[sa,sb]) if and only if γ′x(t) ≥ 0 for all t. Throughout the
analysis above we assumed that sa < sb, but of course the argument, with
obvious modifications, works equally well when sa > sb. The bottom line is
that γ is distance minimizing if and only if its image is contained in g0 and
it either always goes from left to right or always goes from right to left. The
important geometric consequences of this are:

Lemma 9.11. The geodesics contained in g0 are precisely the open con-
nected subsets. A geodesic contained in g0 contains the image of every dis-
tance minimizing path between any two of its points, and any two points of
g0 are the endpoints of a distance minimizing path.
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This is a good start, but it’s just a single complete geodesic. (That g0 is
complete is obvious, and will be proved eventually.) The main idea in what
follows is to study the symmetries of H, so that information about g0 can
understood as applying to all geodesics.

We begin with some general considerations. Suppose that f : M → N
is a C∞ diffeomorphism where M and N are Riemannian manifolds with

Riemannian metrics
〈

·, ·
〉M

and
〈

·, ·
〉N

, and let p be a point in M . Of course
Df(p) and Df−1(f(p)) are inverse linear isomorphisms because the chain
rule gives

IdTpM = DIdM (p) = D(f−1 ◦ f)(p) = Df−1(f(p)) ◦Df(p)

and

IdTf(p)N = DIdN (f(p)) = D(f ◦ f−1)(f(p)) = Df(p) ◦Df−1(f(p)).

The point p is an isometry point of f if

〈

Df(p)ζ,Df(p)η
〉N

=
〈

ζ, η
〉M

for all ζ, η ∈ TpM , (†)

and if every p ∈ M is an isometry point of f , then f is an isometry. If
such an f exists we say that M and N are isometric.

We will make use of two basic facts about isometry points.

Lemma 9.12. If p is an isometry point of f , then f(p) is an isometry point
of f−1.

Proof. Consider any ζ ′, η′ ∈ Tf(p)N . Since f is a diffeomorphism,

ζ ′ = Df(p)ζ and η′ = Df(p)η

for some ζ, η ∈ TpM . Then

ζ = Df−1(f(p))ζ ′ and η = Df−1(f(p))η′

because Df(p)−1 = Df−1(f(p)), so equation (†) can be rewritten as

〈

ζ ′, η′
〉N

=
〈

Df−1(f(p))ζ ′,Df−1(f(p))η′
〉M

.

Corollary 9.13. If f is an isometry, then so is f−1.

Let P be a third Riemannian manifold with Riemannian metric
〈

·, ·
〉P

,
and let g : N → P be a second C∞ diffeomorphism.
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Lemma 9.14. If p is an isometry point of f and f(p) is an isometry point
of g, then p is an isometry point of g ◦ f .

Proof. For any ζ, η ∈ TpM the chain rule and the hypotheses allow us to
compute that

〈

D(g ◦ f)(p)ζ,D(g ◦ f)(p)η
〉P

=
〈

Dg(f(p))(Df(p)ζ),Dg(f(p))(Df(p)η)
〉P

=
〈

Df(p)ζ,Df(p)η
〉N

=
〈

ζ, η
〉M

.

Corollary 9.15. If f and g are isometries, then so is g ◦ f .

Insofar as two isometric manifolds are really “the same,” one should ex-
pect that every aspect of geometric structure is preserved. This principle
borders on being automatic, but nonetheless we will present a formal ver-
ification that curve length is preserved. Let γ : [a, b] → M be a C1 curve.
Then for each t the chain rule gives (f ◦ γ)′(t) = Df(γ(t))γ′(t), and the
definition of an isometry implies that

〈

(f◦γ)′(t), (f◦γ)′(t)
〉N

=
〈

Df(γ(t))γ′(t),Df(γ(t))γ′(t)
〉N

=
〈

γ′(t), γ′(t)
〉M

.

For p ∈ M and q ∈ N we let ‖ · ‖Mp and ‖ · ‖Nq denote the norms derived

from
〈

·, ·
〉M

p
and

〈

·, ·
〉N

q
respectively. Then

‖(f ◦ γ)′(t)‖Nf(γ(t)) =

√

〈

(f ◦ γ)′(t), (f ◦ γ)′(t)
〉N

=

√

〈

γ′(t), γ′(t)
〉M

= ‖γ′(t)‖Mγ(t).
Therefore

L(f ◦ γ) =

∫ b

a
‖(f ◦ γ)′(t)‖Nf(γ(t)) dt =

∫ b

a
‖γ′(t)‖Mγ(t) dt = L(γ).

An important consequence of this is that γ is distance minimizing (or locally
distance minimizing) if and only if f ◦ γ is distance minimizing (or locally
ditance minimizing) so g ⊂M is a geodesic, or a complete geodesic, in M if
and only if f(g) is a geodesic, or a complete geodesic, in N .

For us the most interesting isometries will be those between a Rieman-
nian and itself. These are called symmetries. For any Riemannian mani-
fold the symmetries constitute a group with composition as the group oper-
ation because compositions and inverses of symmetries are symmetries. In
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line with the Erlangen program, we will investigate the geometry of H by
studying its group of symmetries.

Concretely, what does it mean for (x, y) to be an isometry point of
f : H → H? According to the definition, (x, y) is an isometry point of f if
and only if

〈

Df(x, y)ζ,Df(x, y)η
〉H

f(x,y)
=
〈

ζ, η
〉H

(x,y)

for all ζ, η ∈ T(x,y)H. Setting (x′, y′) := f(x, y) and substituting the defini-

tion of
〈

·, ·
〉H

, we find that this is the case if and only if

〈

Df(x, y)ζ,Df(x, y)η
〉

(x′,y′)

(1 − x′2 − y′2)2
=

〈

ζ, η
〉

(x,y)

(1 − x2 − y2)2

for all ζ, η ∈ T(x,y)H. That is,

1 − x2 − y2

1 − x′2 − y′2
Df(x, y)

is an orthogonal transformation under the usual identification of T(x,y)H
and Tf(x,y)H with R2.

In particular, if ℓ : R2 → R2 is an orthogonal transformation, then ℓ|H
is an isometry of H because if (x′, y′) = ℓ(x, y), then x′2 + y′2 = x2 + y2,
and Dℓ(x, y) = ℓ for all (x, y). Thus the restriction to H of a rotation of R2

is a symmetry, and there are also symmetries derived from reflections like
(x, y) 7→ (x,−y).

But it turns out there are other symmetries as well. One clue to finding
them is the following consequence of the analysis above: if f : H → H is a
symmetry and, for each (x, y) ∈ H, the determinant of Df(x, y) is positive,
then f is conformal. In Section 7.1 we saw that a map from an open subset
of R2 to R2 is conformal if and only if its reinterpretation as a map from
an open subset of C to C is holomorphic, so this suggests that we study the
holomorphic diffeomorphisms between the unit disk in C and itself. It turns
out that the diffeomorphisms we are interested in are a subclass of a set of
diffeomorphisms of the Riemann sphere that is, in itself, quite interesting
and important, and we will study these first.

Recall that the Riemann sphere S is one dimensional projective space
over C, i.e., the set of one dimensional linear subspaces of C2, and that if
(z,w) ∈ C2 \ {(0, 0)}, then [z,w] denotes the subspace spanned by (z,w).
Let ℓ : C2 → C2 be a nonsingular linear transformation whose matrix is
(

a b
c d

)

. There is an associated Möbius transformation τℓ : S → S given
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by
τℓ([z,w]) := [ℓ(z,w)] = [az + bw, cz + dw].

This is a well defined function, in the sense that the definition doesn’t depend
on the pair (z,w) chosen to represent [z,w], because for any α ∈ C∗ we have

τℓ([αz, αw]) = [ℓ(αz, αw)] = [αℓ(z,w)] = [ℓ(z,w)] = τℓ([z,w]).

If ℓ′ : C2 → C2 is another nonsingular linear transformation, then

τℓ′◦ℓ([z,w]) = [ℓ′(ℓ(z,w))] = τℓ′([ℓ(z,w)]) = τℓ′(τℓ([z,w]))

for any [z,w] ∈ S, so τℓ′◦ℓ = τℓ′ ◦ τℓ. Since τId
C2

= IdS , setting ℓ′ = ℓ−1

reveals that τℓ−1 = τ−1
ℓ . Thus each Möbius transformation is invertible,

with an inverse that is also a Möbius transformation. The set of Möbius
transformations contains IdS , compositions of any two of its elements, and
the inverse of each of its elements, so it is a group.

In order to verify that τℓ is holomorphic we need to look at it in relation
to coordinate charts for the domain and range. Recall that S has the atlas
consisting of the two coordinate charts

ϕ0([z,w]) := w/z and ϕ1([z,w]) := z/w

whose domains are

U0 := { [z,w] ∈ S : z 6= 0 } and U1 := { [z,w] ∈ S : w 6= 0 }.

Then τℓ(ϕ
−1
1 (z)) = τℓ([z, 1]) = [az + b, cz + d], so

ϕ1 ◦ τℓ ◦ ϕ−1
1 : z 7→ az + b

cz + d

at all points where this composition is defined, and similar formulas charac-
terize the compositions ϕ0◦τℓ◦ϕ−1

0 , ϕ0◦τℓ◦ϕ−1
1 , and ϕ1◦τℓ◦ϕ−1

0 . Because of
these formulas, Möbius transformations are sometimes called linear frac-

tional transformations. To prove that τℓ is holomorphic we need to show
that for any [z,w] there are i and j such that ϕi([z,w]) is in the domain of
ϕj◦τℓ◦ϕ−1

i . But there is at least one i such that [z,w] ∈ Ui and at least one j
such that τℓ([z,w]) ∈ Uj , so this is obvious. Since its inverse is also a Möbius
transformation, hence holomorphic, we say that τℓ is biholomorphic.

The key to the geometry of Möbius transformations is that (say in the
perspective afforded by the coordinate chart ϕ1) a Möbius transformation
maps each line to either a circle or a line, and it maps each circle to either a
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circle or a line. This is actually simpler than it sounds: a line is a circle that
happens to contain the point ∞, and from the point of view of the group of
Möbius transformations ∞ is not a special point. Let

C := { [z,w] ∈ S : w 6= 0 and |z/w| = 1 }

be the unit circle centered at the origin with respect to the coordinate system
given by ϕ1. We define a circle-or-line to be any set of the form cℓ := τℓ(C).
The “proof” that Möbius transformations map circles-or-lines to circles-or-
lines is now extremely simple: for any ℓ′ we have

τℓ′(cℓ) = τℓ′(τℓ(C)) = τℓ′◦ℓ(C) = cℓ′◦ℓ.

But we need to show that our definition of a circle-or-line is satisfactory, by
which we mean that ϕ1(cℓ ∩ U1) is a circle or line in C in the usual sense,
and every circle or line in C is ϕ1(cℓ ∩ U1) for some ℓ.

Notationally, it is somewhat simpler to work with ℓ−1 because (in view
of the fact that τℓ is a bijection)

ϕ1(cℓ−1∩U1) = ϕ1

(

{ [z,w] ∈ U1 : τℓ([z,w]) ∈ C }
)

=
{

z ∈ C :
∣

∣

∣

az + b

cz + d

∣

∣

∣ = 1
}

.

Suppose that a 6= 0 6= c. (Everything goes through in the same way if a = 0
or c = 0, but the formulas are a bit messier; we’ll leave it to you to work
out the details. Of course a = 0 = c is impossible because ℓ is nonsingular.)
Then

ϕ1(cℓ−1 ∩ U1) = { z ∈ C : |z + b/a| = |c/a| · |z + d/c| }.
Let α, β, γ, δ, and ρ be the real numbers such that −b/a = α+ iβ, −d/c =
γ + iδ, and |c/a| = ρ, and let Q(x, y) be the quadratic polynomial

Q(x, y) := (x− α)2 + (y − β)2 − ρ2
(

(x− γ)2 + (y − δ)2
)

.

Then Q(x, y) = |z + b/a|2 − |c/a|2 · |z + d/c|2, so

ϕ1(cℓ−1 ∩ U1) = {x+ iy ∈ C : Q(x, y) = 0 }.

The coefficients of x2 and y2 in Q are both 1 − ρ2, so ϕ1(cℓ−1 ∩ U1) is a
circle when ρ 6= 1. When ρ = 1 we have

Q(x, y) = 2(γ − α)x+ α2 − γ2 + 2(δ − β)y + β2 − δ2

= (γ − α)(2x − α− γ) + (δ − β)(2y − β − δ),
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so that ϕ1(cℓ−1 ∩ U1) is a line. (Note that γ = α and β = δ would imply
that b/a = d/c, which is impossible because ad− bc 6= 0.)

Is every line and circle a set of the form { z ∈ C : |az+ b|/|cz+ d| = 1 }?
It is easy to see that every circle in C has this form: if we want this set to
be the circle centered at p with radius R we can simply set a := 1, b := −p,
c := 0, and d := R. Since α + γ, α − γ, β + δ, and β − δ can be any four
real numbers, any line in C is the set where

(γ − α)(2x − α− γ) + (δ − β)(2y − β − δ)

vanishes for some α, β, γ, and δ. This line can be realized as ϕ1(cℓ−1 ∩ U1)
by setting a := 1, b := −α − iβ, c := 1, and d := −γ − iδ. (Note that
ad− bc 6= 0, so that ℓ is nonsingular, because α 6= γ or β 6= δ.)

A subclass of the Möbius transformations map the unit disk onto itself,
and it might seem like a small step to observe that the associated maps
from H to itself are symmetries if we endow H with the Riemannian metric
〈

·, ·
〉H

, as we shall see. But, according to Poincaré’s own account of how
the idea came to him, the process was much more roundabout, involving
mysterious mental processes that led to a fully formed mathematical idea
emerging in his conscious awareness at a specific moment:

For fifteen days I strove to prove that there could not be any
functions like those I have since called Fuchsian functions. I was
then very ignorant; every day I seated myself at my work table,
stayed an hour or two, tried a great number of combinations
and reached no results. One evening, contrary to my custom, I
drank black coffee and could not sleep. Ideas rose in crowds; I
felt them collide until pairs interlocked, so to speak, making a
stable combination. By the next morning I had established the
existence of a class of Fuchsian functions, those which come from
the hypergeometric series; I had only to write out the results,
which took but a few hours.

Then I wanted to represent these functions by the quotient
of two series; this idea was perfectly conscious and deliberate,
the analogy with elliptic functions guided me. I asked myself
what properties these series must have if they existed, and I suc-
ceeded without difficulty in forming the series I have called theta-
Fuchsian.

Just at this time I left Caen, where I was then living, to go on
a geological excursion under the auspices of the school of mines.
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The changes of travel made me forget my mathematical work.
Having reached Coutances, we entered an omnibus to go some
place or other. At the moment when I put my foot on the step
the idea came to me, without anything in my former thoughts
seeming to have paved the way for it, that the transformations
I had used to define the Fuchsian functions were identical with
those of non-Euclidean geometry. I did not verify this idea; I
should not have had time, as, upon taking my seat in the om-
nibus, I went on with my conversation already commenced, but
I felt a perfect certainty. On my return to Caen, for conscience
sake I verified the result at my leisure.

Let D := { z ∈ C : |z| < 1 } be the open unit disk in C. The Möbius
transformations we’re interested in are those that map D onto itself in the
frame of reference given by ϕ1 ◦ τℓ ◦ ϕ−1

1 , but it turns out that the logical
structure of the analysis makes it easier to work with a condition that is, on
its surface, slightly different. Eventually we’ll show that it implies what we
want.

Definition 9.16. A Möbius transformation is circular if it maps 0 to a
point in D and it maps the unit circle C := { z ∈ C : |z| = 1 } into itself.

For θ ∈ R let mθ : z 7→ eiθz be the map that rotates the complex
plane counterclockwise by θ radians. This is the Möbius transformation
z 7→ (eiθ · z+ 0)/(0 · z+ 1), and obviously mθ maps C to C and 0 to 0, so it
is circular. There is a converse:

Lemma 9.17. If τ : z 7→ az+b
cz+d is a circular transformation mapping 0 to

itself, then τ = mθ for some θ.

Proof. Of course b = 0 because τ(0) = 0. Since C is the set of z such that
zz = 1, for every z ∈ C we have

cz + d

az
=

1

τ(z)
= τ(z) =

az

cz + d
=

azz

czz + dz
=

a

c+ dz
,

so that

|a|2z = aaz = (cz + d)(c + dz) = cdz2 + (|c|2 + |d|2)z + cd.

Taking the difference between this equation with z = 1 and with z = −1
leads to |a|2 = |c|2 + |d|2, so cdz2 + cd = 0 for all z ∈ C. Setting z = 1 and
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z = i in the latter equation shows that cd = 0 = cd. The determinant of
(

a 0
c d

)

is nonzero, so d 6= 0, and we conclude that c = 0. Now the equation

|a|2 = |c|2 + |d|2 simplifies to |a| = |d|, so |a/d| = 1 and consequently
a/d = eiθ for some θ. We have arrived at τ(z) = az/d = mθ(z).

For any µ ∈ D the Möbius transformation

σµ : z 7→ z + µ

µz + 1

is circular because σµ(0) = µ ∈ D and σµ(z)σµ(z) = 1 whenever zz = 1:

1

σµ(z)
=
µz + 1

z + µ
=

(µz + 1)z

(z + µ)z
=

µ+ z

1 + µz
= σµ(z).

In what follows we will often use the fact that σ−1
µ = σ−µ, which is estab-

lished by direct computation:

σ−µ(σµ(z)) =

z+µ
µz+1 − µ

−µ z+µ
µz+1 + 1

=
(z + µ) − µ(µz + 1)

−µ(z + µ) + (µz + 1)
=

(1 − µµ)z

1 − µµ
= z.

In particular, σ−µ(µ) = σ−µ(σµ(0)) = 0. If τ is an arbitrary circular
transformation, then σ−τ(0) ◦ τ is a Möbius transformation because it is a
composition of two Möbius transformations, it maps C into itself because it
is a composition of two functions with this property, and it maps 0 to itself.
Therefore σ−τ(0)◦τ = mθ for some θ. Composing both sides of this equation
with στ(0) gives

τ = στ(0) ◦mθ.

Proposition 9.18. Each circular transformation maps C onto itself, D
onto itself, and S \ (C ∪ D) onto itself. The circular transformations con-
stitute a subgroup of the group of Möbius transformations.

Proof. Above we saw that any circular transformation is σµ ◦mθ for some
µ and θ. The inverse of σµ ◦ mθ is m−1

θ ◦ σ−1
µ = m−θ ◦ σ−µ. This is a

composition of Möbius transformations mapping the unit circle to itself, so
it is a Möbius transformation that maps the unit circle to itself. In addition,
it maps 0 to −e−iθµ, and | − e−iθµ| = |µ| < 1, so it is circular. That is, the
inverse of a circular transformation is circular. In particular, the inverse of
a circular transformation maps C to C, so the circular transformation must
map C onto itself.
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Aiming at a contradiction, suppose that a circular τ maps some z ∈ D
to a point outside D. Since τ(0) ∈ D, the intermediate value theorem,
applied to the function t 7→ |τ(tz)|, implies that |τ(tz)| = 1 for some t
with 0 < t ≤ 1, which means that τ maps some point in the line segment
{ tz : 0 ≤ t ≤ 1 } (which is contained in D because D is convex) to a point
of C. But τ−1 maps C to itself, so this is impossible. We have shown that
a circular transformation maps D into itself.

We can now see that a circular transformation maps S\(C∪D) into itself
because its inverse cannot map a point in C∪D to a point outside of C ∪D.
Since Möbius transformations are bijective, if a Möbius transformation maps
C into itself, D into itself, and S \ (C ∪D) into itself, then it must map each
of these sets onto itself.

In particular, the composition of two circular transformations maps the
origin to a point in D. Of course it is a Möbius transformation that maps the
circle into itself, so we now see (at long last!) that the composition of two cir-
cular transformations is a circular transformation. Since compositions and
inverses of circular tranformations are circular, the circular transformations
constitute a subgroup of the group of Möbius transformations.

Of course we are interested in circular tranformations because they can
be interpreted as transformations of H. It will be important to distinguish
between a circular transformation and the induced map from H to itself, so
we adopt the following notational convention: if τ is a circular transforma-
tion, then

τ̃ := ι−1 ◦ τ ◦ ι|H

is the associated map from H to itself. (Here ι : (x, y) 7→ x+ iy is the usual
map from R2 to C.) A map of this form will be called a circular isometry.

The first order of business is to show that:

Proposition 9.19. A circular isometry τ̃ is a symmetry of H.

We need to show that each point of H is an isometry point of τ̃ . In
principle we should be able to do this by computing the derivative of τ̃ at an
arbitrary point, but probably this would be a pretty messy calculation that
wouldn’t yield interesting insights. (To tell the truth, I haven’t tried to find
out.) Both because conceptual explanations are preferred to calculations,
and as a simple matter of laziness, a mathematician confronted with this
problem would reflexively look for ways to use basic properties of isometries
(Lemmas 9.12 and 9.14) to minimize the burden of computation.
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Proof. The only thing we will prove by explicit computation is that for any
µ ∈ D, 0 is an isometry point of σ̃µ. The formula for the derivative of a
quotient gives

σ′µ(z) =
(µz + 1) − µ(z + µ)

(µz + 1)2
=

1 − |µ|2
(µz + 1)2

,

so σ′µ(0) = 1 − |µ|2 and Dσ̃µ(0) = (1 − |µ|2)IdR2. In view of our general
characterization of isometry points of maps from H to itself, 0 is an isometry
point of σ̃µ if and only if

1 − |0|2
1 − |σµ(0)|2

Dσ̃µ(0) =
Dσ̃µ(0)

1 − |µ|2 = IdR2

is an orthogonal transformation, which is the case.
We wish to show that any (x, y) ∈ H is an isometry point of τ̃ . Let z :=

ι(x, y) = x+ iy. As a composition of circular transformations, σ−τ(z) ◦ τ ◦σz
is a circular transformation, and σ−τ(z)(τ(σz(0))) = σ−τ(z)(τ(z)) = 0, so
there is a θ such that

σ−τ(z) ◦ τ ◦ σz = mθ.

Composing both sides of this equation with στ(z) on the left and σ−z on the
right gives τ = στ(z) ◦mθ ◦ σ−z, so

τ̃ = ι−1 ◦ τ ◦ ι = (ι−1 ◦ στ(z) ◦ ι) ◦ (ι−1 ◦mθ ◦ ι) ◦ (ι−1 ◦ σ−z ◦ ι)

= σ̃τ(z) ◦ m̃θ ◦ σ̃−z.
We can now show that (x, y) is an isometry point of τ̃ by using Lemma 9.14
to combine the following facts:

(i) Since (0, 0) is an isometry point of σ̃z, Lemma 9.12 implies that (x, y)
is an isometry point of σ̃−1

z = σ̃−z.

(ii) Any rotation m̃θ is an isometry.

(iii) m̃θ(σ̃−z(x, y)) = (0, 0) is an isometry point of σ̃τ(z).

After this extended digression we finally have the tools we need for the
analysis of the geodesics of H. As is often the case in geometry, there will
be an accumulation of “small” facts, after which the larger picture will be
assembled by combining these details.
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Lemma 9.20. Suppose that p and q are distinct point of H and (t, 0) ∈ g0.
Then there is a unique circular isometry τ̃ such that τ̃(p) = (t, 0) and τ̃(q)
is an element of g0 to the right of (t, 0).

Proof. If µ := −ι(p), then σ̃µ(p) = (0, 0), and there is a θ such that
m̃θ(σ̃µ(q)) is in { (s, 0) ∈ H : s > 0 }. The circular isometry σ̃t : (s, 0) →
( t+sts+1 , 0) maps g0 to itself while preserving its ordering, and it maps (0, 0)
to (t, 0), so a satisfactory τ̃ is given by setting

τ̃ := σ̃t ◦ m̃θ ◦ σ̃µ.
If τ̃ ′ also satisfies the required conditions, then σ̃−1

t ◦ τ̃ ′ ◦ τ̃−1 ◦ σ̃t maps
(0, 0) to itself, so it is m̃ρ for some ρ, and it takes σ̃−1

t (τ̃ (q)), which is a
point in g0 to the right of the origin, to another point in g0 to the right of
the origin. Therefore m̃ρ = IdH , so σ−1

t ◦ τ̃ ′ = (τ̃−1 ◦ σ̃t)−1 = σ−1
t ◦ τ̃ .

Lemma 9.21. If a circular isometry τ̃ maps two distinct elements of g0 to
points in g0, then it maps g0 onto g0.

Proof. Suppose that p and q are points in g0 that are mapped by τ̃ to points
in g0. Let s and t be the numbers such that p = (s, 0) and τ̃(p) = (t, 0).
Swapping p and q if necessary, we may suppose that q is to the right of p.
If τ̃(q) is to the right of τ̃(p), then the uniqueness clause of the last result
implies that τ̃ = σ̃t ◦ σ̃−s, and if τ̃(q) is to the left of τ̃ , then it implies that
m̃π ◦ τ̃ = σ̃−t ◦ σ̃−s, so that τ̃ = m̃π ◦ σ̃−t ◦ σ̃−s.

The ultimate goal of the next few results is to show that any geodesic
containing two points of g0 is a subset of g0. (This is Proposition 9.25
below.) Even though we already know that g0 contains the image of any
distance minimizing curve between two of its points, this is still a painstak-
ing endeavor because the notion of distance minimization embedded in the
definition of a geodesic is local.

Lemma 9.22. If the image of a distance minimizing curve γ : [a, b] → H
contains two points in g0, then its image is contained in g0.

Proof. It suffices to show that if a ≤ t1 < t2 < t3 ≤ b and two of the three
points γ(t1), γ(t2), and γ(t3) are contained in g0, then so is the third. There
is (by Lemma 9.20) a circular isometry τ̃ such that τ̃(γ(t1)) and τ̃(γ(t3)) are
contained in g0. Since τ̃ is an isometry, τ̃ ◦γ|[t1,t3] is distance minimizing, so
Lemma 9.11 implies that τ̃(γ(t2)) ∈ g0. Therefore τ̃ maps all three points
γ(t1), γ(t2), and γ(t3) to g0. Since two of them are in g0, the last result
implies that τ̃ maps g0 onto itself, so it can’t map any point outside of g0
to g0. Therefore all three points are in g0, as desired.
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Corollary 9.23. If g is a geodesic and p ∈ g, then there is a circular
isometry that maps a neighborhood of p (in the relative topology of g) into
g0.

Proof. Let γ : [a, b] → g be a distance minimizing curve whose image is a
neighborhood of p in the relative topology of g, let q be another point in
the image of γ, and let τ̃ be a circular isometry such that τ̃(p), τ̃ (q) ∈ g0.
Then τ̃ ◦ γ is distance minimizing, so Lemma 9.22 implies that its image is
contained in g0.

Although connectedness is an intuitive geometric notion, the definition is
topological, so using connectedness to prove something necessarily involves
some fiddling around with certain carefully defined sets. It always feels a
bit surprising when everything works out neatly and cleanly in the end, as
in the next argument, but usually it does.

Lemma 9.24. If a geodesic g contains a nonempty open subset of g0, then
g ⊂ g0. Consequently g0 is a complete geodesic.

Proof. Let V1 be the set of points s ∈ g such that s has a neighborhood U
with g∩U ⊂ g0. Let V2 be the set of points s ∈ g possessing a neighborhood
U such g ∩ U ∩ g0 is either empty or contains exactly one point. Clearly V1

and V2 and open, and V1 ∩ V2 = ∅. Since V1 is nonempty by assumption, if
we can show that V1 ∪V2 = g, then (because a geodesic is connected) it will
follow that g = V1 ⊂ g0.

Since g is a geodesic, a point s ∈ g has a neighborhood U such that
g∩U is contained in the image of a distance minimizing curve with nonzero
derivative. If g ∩ U ∩ g0 contains more than two points, then (by Lemma
9.22) g ∩ U ⊂ g0 and s ∈ V1, and otherwise s ∈ V2.

Proposition 9.25. If a geodesic g contains two points of g0, then g ⊂ g0.

Proof. Suppose p and q are distinct points in g ∩ g0. Let τ̃ be a circular
isometry that maps a neighborhood of p in g to g0. Then τ̃(g) is a geodesic
containing a nonempty open subset that is contained in g0, so the last result
implies that τ̃(g) ⊂ g0. In particular, τ̃(q) ∈ g0. We now see that τ̃ maps p
and q to points in g0, so Lemma 9.21 implies that τ̃ restricts to a bijection
from g0 to itself. Since τ̃(g) ⊂ g0, it follows that g ⊂ g0.

After this patient accumulation of minor results, we are now ready to
combine them in the proof of the following result, which establishes the most
important properties of the geodesics in H.



370 CHAPTER 9. GOING HIGHER

Theorem 9.26. If τ̃ is a circular isometry, then τ̃(g0) is a complete geodesic,
and every complete geodesic is of this form. For any two distinct points p
and q in H there is exactly one complete geodesic that contains them both.
There is a distance minimizing curve between p and q, and this geodesic
contains the image of any such distance minimizing curve.

Proof. Of course any τ̃(g0) is a geodesic. It must be complete because if it
was a proper subset of a geodesic g, then g0 would be a proper subset of
τ̃−1(g), but we know that g0 is complete.

Let g be a complete geodesic. Then (by Corollary 9.23) there is a circular
isometry τ̃ that maps an open subset of g to g0, and Lemma 9.24 implies
that τ̃(g) ⊂ g0. Then τ̃−1(g0) is a complete geodesic that contains g, and
since g is complete it follows that g = τ̃−1(g0).

For the given p and q Lemma 9.20 gives a circular isometry τ̃ with
τ̃(p), τ̃ (q) ∈ g0. If g is a complete geodesic containing p and q, then Proposi-
tion 9.25 implies that τ̃(g) ⊂ g0. Thus g ⊂ τ̃−1(g0), and in fact g = τ̃−1(g0)
because g is complete.

Lemma 9.11 gives a distance minimizing curve γ : [a, b] → H with γ(a) =
τ̃(p) and γ(b) = τ̃(q), so τ̃−1 ◦ γ is a distance minimizing curve between p
and q. Lemma 9.11 also implies that τ̃ maps the image of any such curve
to g0, so the image of any such curve is contained in τ̃−1(g0).

Figure 9.3
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Since Möbius transformations map circles-or-lines to circles-or-lines, if
τ̃ is a circular isometry, then τ̃(g0) must be the intersection of H with
ℓ = ι−1(c) for some circle-or-line c. In addition, the x-axis is perpendicular
to the unit circle at the two points where it intersects the unit circle. Since τ̃
is conformal and maps the unit circle to itself, ℓmust be perpendicular to the
unit circle at the two points where it intersects the unit circle. (See Figure
9.3.) In fact if ℓ = ι−1(c) for some circle-or-line c, and ℓ is perpendicular
to the unit circle at both intersection points, then ℓ ∩H = τ̃(g0) for some
circular isometry τ̃ , so ℓ ∩H is a geodesic. We won’t bother to prove this,
but you might enjoy giving it a try.

We are now finally in a position to compare the geometry of H with
Euclidean geometry. The first five axioms of Euclid are:

(1) Any two distinct points are contained in a line.

(2) Any line segment can be extended indefinitely in a line.

(3) Given any two distinct points, there is exactly one circle centered at
the first point that contains the second point.

(4) Any two right angles are congruent.

(5) Given a line ℓ1 and a point not on the line, there is exactly one line ℓ2
containing the point that does not intersect ℓ1.

Each of these statements conjures up an unambiguous picture if you
already have a clear visual understanding of Euclidean geometry, but from
a modern point of view this axiom system (which is my rough transcription of
various modern translations) is hopelessly ill posed. Any precise explication
that would satisfy a modern mathematician would have to begin by declaring
certain terms to be primitives that are not defined, after which definitions
of the other terms would be provided using the machinery of formal logic
and set theory. This is a very reasonable project, and a point of departure
for an interesting line of research. However, Euclid didn’t have a modern
understanding of how to play “the set theory game,” and an explanation
of why the fifth axiom is not a logical consequence of the first four would
be at least a bit unfair if it really depended on technical details of that
sort. Since H closely resembles R2 in almost any intuitive sense of what
geometry is about, it’s more convincing to simply explain why H satisfies
the first four axioms, but not the fifth, if we substitute ‘complete geodesic’
for ‘line’ throughout the list and interpret all other terms intuitively.
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Theorem 9.26 tells us that H satisfies the first axiom because any two
distinct points in H are contained in a complete geodesic. Of course it actu-
ally says something a bit stronger, insofar as there is exactly one complete
geodesic that contains them.

The second axiom says that lines have infinite length. ‘Length’ is not a
primitive concept here, so we have to deal with the question of how this idea
should be expressed within the formal logical system. One way to do this,
that is sometimes given as the formulation of this axiom, goes as follows:
given two line segments AB and CD, the line ℓ that contains AB also
contains a line segment BE that is congruent to CD and which is adjacent
to AB in the sense that AB and BE intersect at the point B. We can repeat
this maneuver, producing a line segment EF in ℓ that is congruent to CD
and which is adjacent to BE, a line segment FG in ℓ that is congruent to
CD and which is adjacent to EF , and so forth, so the length of the line
containing AB is unbounded in the sense that it can contain any number of
copies of CD lined up end to end. Here “congruent” means that there is an
isometry that takes CD to BE.

ℓb b

A B

b

b

C

D

E F G

b b b

Figure 9.4

To see that H satisfies this condition, suppose that the line segment AB
is contained in g0 with B to the right of A. (Clearly we can transform the
given situation by an isometry to bring this about.) Then Lemma 9.20 says
that there is a circular isometry that takes C to B and takes D to a point
in the portion of g0 lying to the right of B.

In order to interpret the third axiom we need to say what a circle is.
Suppose that two points p and q are given. One possibility is to define the
circle with center p containing q to be the set of images of q under symmetries
that leave p fixed. Another definition, that is valid even in a general metric
space if there is a distance minimizing curve between p and q, say with
length r, is that the circle c centered at p of radius r is the set of points
that are the other endpoints of distance minimizing curves of length r that
have p as one endpoint. The problem with these definitions is they are only
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definitions, so that they make the third axiom true automatically, simply
because the circle centered at the first point and containing the second is
whatever it is defined to be. For Euclid a circle was what you drew with a
compass, and apparently the only sensible interpretation of the third axiom
is that c is what we think a circle should be, namely a space homeomorphic
or diffeomorphic to the unit circle in R2. This is the case for circles in H,
automatically for a circle centered at the origin, and also for circles centered
at any other point because there is a circular isometry taking that point to
the origin.

The fourth axiom also requires us to interpret a piece of terminology,
namely the word ‘perpendicular.’ The definition we’ve been using through-
out this book is that two vectors are perpendicular if their inner product is
zero, but the axiom system don’t give us this kind of numerical information,
nor do we know how to interpret such a definition in the hyperbolic context.
Another possible definition is that if two geodesics intersect at a point, then
they’re perpendicular if there is a symmetry that takes that point to the
origin while mapping the two geodesics to g0 and the intersection of H with
the y-axis. The definition that one often sees in connection with Euclid’s
axioms is that a right angle “divides a straight line in half. For example,
the angle between the positive x-axis and the positive y-axis is congruent to
the angle between the positive y-axis and the negative x-axis.

Actually, worrying about the details of what it means for two lines to
be perpendicular is a bit besides the point because the real import of the
fourth axiom is that the group of symmetries (or congruences, as they are
usually called in geometry) is very large. An action of a group G on a set A
is said to be transitive if for any two points a and a′ in A there is a group
element g such that ga = a′. (This usage of ‘transitive’ is unrelated to the
notion of a transitive relation.) The isometries of R2 (that is, the Euclidean
motions) act transitively on R2, and the circular isometries act transitively
on H, but the fourth axiom says something much stronger. Suppose r1 and
r2 are two perpendicular rays emanating from a point A, and s1 and s2 are
two perpendicular rays emanating from a point B. What the fourth axiom
says is that there is a symmetry taking A to B, r1 to s1, and r2 to s2. In
the case of H Lemma 9.20 says that there is a circular isometry τ̃ taking A
to (0, 0) and r1 to the right hand half of g0 and another circular isometry τ̃s
taking B to (0, 0) and s1 to the right hand half of g0. If ρ is the reflection
(x, y) 7→ (x,−y), then either τ̃−1

s ◦ τ̃ or τ̃−1
s ◦ ρ̃ ◦ τ̃ satisfies the condition

demanded by the fourth axiom.
To show that H doesn’t satisfy the fifth axiom we need only one ex-

ample, and I think the nonintersecting geodesics in Figure 9.3 are certainly
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convincing enough. (If you feel the need for an analytic example you can try
to prove that there is some ε > 0 such that m̃θ(g0) ∩ σ̃i/2(g0) = ∅ whenever
|θ| < ε.)

This completes the verification that H satisfies the first four axioms of
Euclid, but not the fifth.

9.3 Curvature

There is another important concept that the Poincaré disk model can be
used to illustrate, namely the notion of curvature, which was developed by
Gauss for surfaces embedded in R3 and extended to higher dimensional
manifolds by Riemann. If M is a two dimensional C1 submanifold of R3,
M “inherits” a Riemannian metric from R3 because each tangent space
TpM can be regarded as a subset of TpR

3 = R3 and endowed with the
usual inner product. The definition of curvature given by Gauss refers to
the embedding, but he was able to show that it really depends only on
the surface’s Riemannian metric, and he attached great significance to this
result.
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Figure 9.5

There are many ways of defining the curvature of a surface at a point;
we’ll describe only one, which is a matter of comparing the circumference
of a circle centered at a point with its radius. In 1848 Joseph Bertrand
(1822-1900) and Victor Puiseux (1820-1883) proved a formula concerning
curvature, as it had been defined by Gauss, that we may take as a definition:
if C(r) is the circumference of the circle of radius r centered at a point p,
then the curvature at p is

K(p) = lim
r→0

3 · 2πr − C(r)

πr3
.

As a definition, this formula is superior to Gauss’ definition because it
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is intrinsic, by which we mean that it refers only to things “inside” the
manifold like the Riemannian metric, and does not refer to the artifacts of
any embedding in another space. Thus we are relieved of any need to prove
independence of the embedding (though it may still be interesting to prove
that Gauss’ original definition is equivalent to this one) and in addition
this definition can be applied to two dimensional manifolds that have no
embedding in R3. As it happens, there is no isometric embedding of H in
R3, even locally—put another way, there is no C1 surface M ⊂ R3 that is
isometric to an open subset of H—and it seems sensible, though inherently
speculative, to think that this accounts for the relatively late date of the
discovery of non-Euclidean geometry.

The ratio of the circumference of a circle in R2 to its radius is always
2π, of course, so the curvature of the plane is zero. For the sphere S2 the
circle of radius r centered at (1, 0, 0) is

{

(cos r, sin r cos θ, sin r sin θ) : 0 ≤ θ < 2π
}

,

which has circumference C(r) = 2π sin r. Substituting this into the formula
above, simplifying, then substituting the power series expansion

sin r = r − 1
3!r

3 + 1
5!r

5 − · · ·

and taking limits, we find that the curvature of the sphere at (1, 0, 0) is 1.
It is visually obvious (and not hard to show formally) that for every pair of
points in S2 there is an isometry taking the first to the second—that is, the
group of isometries acts transitively on S2—so in fact the curvature of S2

at each of its points is 1.
Now consider the circle centered at (0, 0) ∈ H that contains the point

(x, 0). Under the identification of H with the unit disk, this is the circle
of radius x, and as such its circumference is 2πx. In comparison with the
corresponding distances in the disk, distances in H near points in this circle
are magnified by the factor (1 − x2)−1, so its circumference as a circle in H
is 2πx/(1 − x2). It radius as a circle in H is the length of the portion of g0
lying between (0, 0) and (x, 0), which is2

r :=

∫ x

0

1

1 − t2
dt = 1

2 [ln(1 + t) + ln(1 − t)]
∣

∣

∣

x

t=0
= 1

2 [ln(1 + x) + ln(1 − x)].

2By the fundamental theorem of calculus, to show that the integral is evaluated cor-
rectly it suffices to show that if f(t) = 1

2
[ln(1 + t) + ln(1 − t)], then f ′(t) = 1/(1 − t2).

Differentiating both sides of the identity t = exp(ln(t)) using the chain rule gives
1 = exp′(ln(t)) ln′(t), and the exponential function is its own derivative, so ln′(t) = 1/t.
Now f ′(t) can be evaluated using this, the chain rule, and the other rules for differentiation.
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Taking the exponential of both sides of this equation, then solving for x,
leads to x = (e2r− 1)/(e2r + 1). We substitute this expression for x into the
formula for the circumference of the circle passing through (x, 0), finding
(after a little more algebra) that the circumference is

C(r) = π
2 (e2r− e−2r) = π

2

(

(1+2r+ 1
2!(2r)

2 + · · · )− (1− 2r+ 1
2!(2r)

2 −· · · )
)

= π
(

2r + 1
3!(2r)

3 + 1
5!(2r)

5 + · · ·
)

.

(All of a sudden it starts to makes sense that the function

t 7→ 1
2 (et − e−t) = t+ 1

3! t
3 + 1

5!t
5 + · · ·

is called the hyperbolic sine function!) Substituting this quantity into the
definition of curvature and taking the limit, we find that the curvature of
H at (0, 0) is −4. The group of symmetries of H acts transitively, so the
curvature of H at each of its points is −4.

Riemann extended the definition of curvature to higher dimensional Rie-
mannian manifolds. This is not the place to describe this work in any detail,
but we can indicate some of the difficulties. It makes little sense to work with
an embedding of the manifold in Euclidean space, so the definition should
be intrinsic. We have seen one way to do this in the two dimensional case,
and the formula above could be generalized to higher dimensional manifolds.
However, roughly speaking, it is possible for the manifold to be curved to
different extents in different directions, or along different two dimensional
submanifolds, so a satisfactory notion of curvature will not be a single num-
ber, but instead some sort of vector.

In the two dimensional case there is an intuition that the geometry of
the manifold is completely determined by the function taking each point to
the curvature at that point. It’s not so easy to formulate this idea precisely,
but there is a result that points in this direction: if a surface has constant
curvature in a neighborhood of a point, then there is a neighborhood of the
point that is isometric to an open subset of a sphere of some radius, the
plane, or a rescaling of H, according to whether the curvature is positive,
zero, or negative. Riemann investigated when a point in an n-dimensional
Riemannian manifold has a neighborhood that is isometric to an open subset
of Rn, finding a set of quantities that vanish throughout the neighborhood if
and only if this is the case, and he took these quantities as the definition of
the general notion of curvature. Much of the subsequent foundational work
in differential geometry can be viewed as a search for abstractions that allow
Riemannian curvature to be formulated in a manner that brings its structure
and properties to the surface, so that they are visible in the notation.
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9.4 Some Riemann Surfaces

A Riemann surface is a one dimensional holomorphic manifold over C.
(Here “one dimensional” means that there is one complex dimension and
therefore two real dimensions. To add to the confusion, Riemann surfaces
are sometimes called “complex curves.”) That is, a Riemann surface is a
Hausdorff space with an atlas {ϕi : Ui → Vi ⊂ C : i ∈ I } of coordinate
charts such that for all i, j ∈ I,

ϕj ◦ ϕ−1
i |ϕi(Ui∩Uj) and ϕi ◦ ϕ−1

j |ϕj(Ui∩Uj)

are inverse holomorphic diffeomorphisms. Riemann’s Ph.D. thesis was, in
part, about functions of a complex variable, and this led him to think about
how the theory he had developed might fruitfully be extended. Many direc-
tions either suggest or inherently involve Riemann surfaces.

When the concept of a Riemann surface is first introduced it is often
motivated as providing a response to the frustrations we encounter if we try
to define things like a complex square root function or a complex logarithm
function. As we labored to show in Chapter 3, any element of C∗ has a
unique representation of the form

reiθ = r(cos θ + i sin θ)

where r > 0 and 0 ≤ θ < 2π, so one could define the logarithm of reiθ to
be ln r + iθ, but of course this function is discontinuous along the positive
real axis. This discontinuity is a somewhat arbitrary artifact of the range
we chose for θ, and it seems to not represent any genuine discontinuity in
the phenomenon that the logarithm function is trying to represent. We get
a much better behaved picture if we let

M := { (w, z) ∈ C × C∗ : z = exp(w) }

be the graph of the exponential function and define the logarithm function
to be the projection πw : (w, z) 7→ w from M to C. Somehow M “feels” like
the proper domain of the logarithm function, and it is well behaved in the
following local sense: any (w0, z0) has a neighborhood U ⊂M such that the
restrictions of πw : (w, z) 7→ w and πz : (w, z) 7→ z to U are holomorphic
diffeomorphisms, in which case we have a local logarithm function πw ◦
(πz|U )−1.

In general, whenever U ⊂ C is open and f : U → C is holomorphic, the
graph of f is a Riemann surface. An atlas satisfying the definition above
is given by the single function (z, f(z)) 7→ z from Gr(f) to U . The space
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of graphs of holomorphic functions is already a very large and rather form-
less collection of objects, suggesting that the theory of all Riemann surfaces
might be less interesting than the theories of certain types of Riemann sur-
faces.

With one exception, all the Riemann surfaces described in the remainder
of the section are compact. The rigidity of holomorphic functions described
in Section 7.6 suggests that compact Riemann surfaces might present an
especially rich interaction between local analysis and global structure. In
fact at this level we’ll only be able to give the most superficial indication of
the extent to which this is true, the importance of Riemann surfaces in con-
temporary mathematics, and the profound depth of the resulting theories.

The next Riemann surfaces we’ll look at are embedded in higher dimen-
sional projective spaces. Recall that if n is a positive integer, then Pn(C)
is the set of one dimensional linear subspaces of Cn+1, the one dimensional
subspace spanned by z ∈ Cn+1 \ {0} is denoted by [z], and Pn(C) is given
the structure of a complex manifold by the atlas of coordinate charts

{ϕi : Ui → Cn : i = 0, . . . , n }

where

Ui := { [z] : z ∈ Cn+1, zi 6= 0 }

and

ϕi([z]) := (z0zi
, . . . , zi−1

zi
, zi+1

zi
, . . . , zn

zi
).

Of course the Riemann sphere P 1(C) is itself a Riemann surface. Our
discussion of Möbius transformations in Section 9.2 is the starting point of an
important theme of this subject: for a compact Riemann surface the group of
diffeomorphisms mapping that Riemann surface to itself contains important
information about the Riemann surface, and is itself quite interesting.

The sets we’ll be studying will be compact because (Theorem 3.38) they
are closed subsets of Pn(C) and this space is compact. To see this, for each
i = 0, . . . , n let

Di := { [z] ∈ Pn(C) : |zi| ≥ |zj | for all j = 0, . . . , n }.

(The condition used to define Di is unaffected if we replace z with αz for
some α ∈ C∗ because |αzj | = |α| |zj | for all j, so this definition makes sense.)
The map

[z] 7→
(

z0
zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . , zn

zi

)
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from Di to the n-fold cartesian product of the unit disk {w ∈ C : |w| ≤ 1 }
is continuous and has the continuous inverse

(w0, . . . , wi−1, wi+1, . . . , wn) 7→ [w0, . . . , wi−1, 1, wi+1, . . . , wn],

so Di is compact because (Theorem 3.42) it is homeomorphic to a cartesian
product of compact sets. Each [z] is contained in at least oneDi, so Pn(C) =
D0 ∪ . . . ∪Dn, and of course a space is compact if it is covered by a finite
collection of compact subsets.

We’ll find a large collection of compact Riemann surfaces contained in
Pn(C) by applying the regular value theorem to polynomials in the system
of variables

Z = (Z0, . . . , Zn).

We think of a polynomial as a finite sum of monomials, where a monomial

in these variable is an expression of the form cZe00 · · ·Zen
n in which c is a

scalar and e0, . . . , en are nonnegative integers. The total degree of this
monomial is e0 + · · · + en.

A homogeneous polynomial of degree d is a polynomial

p(Z) =

k
∑

j=1

cjZ
ej,0

0 · · ·Zej,n
n ∈ C[Z0, . . . , Zn]

whose monomials all have total degree d. A homogeneous polynomial doesn’t
define a function from Pn(C) to C, but in spite of this it does make sense
to talk about whether such a p vanishes at a point in Pn(C). To see what
we mean by this consider that for any z ∈ Cn+1 and any scalar α ∈ C we
have

p(αz) =

k
∑

j=1

cj(αz0)
ej,0 · · · (αzn)ej,n =

k
∑

j=1

αej,0+···+ej,ncjz
ej,0

0 · · · zej,n
n

= αd
k
∑

j=1

cjz
ej,0

0 · · · zej,n
n = αdp(z),

so for any [z] ∈ Pn(C), p vanishes at one nonzero point in [z] if and only if
it vanishes at all the other points in this linear subspace. Let V (p) be the
set of points in Pn(C) at which p vanishes in this sense.

We analyze V (p) by studying its images under the coordinate charts
ϕ0, . . . , ϕn. For each i = 0, . . . , n there is a polynomial

p−i(Z) :=
k
∑

j=1

cjZ
ej,0

0 · · ·Zej,i−1

i−1 Z
ej,i+1

i+1 · · ·Zej,n
n
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that we can think of as the result of substituting 1 for Zi in p. If z ∈ Cn+1

and zi 6= 0, then

[z] ∈ V (p) ⇐⇒ p(z0zi
, . . . , zi−1

zi
, 1, zi+1

zi
, . . . , zn

zi
) = 0 ⇐⇒ p−i(ϕi([z])) = 0.

Therefore

V (p) =

n
⋃

i=0

(V (p) ∩ Ui) =

n
⋃

i=0

(p−i ◦ ϕi)−1(0).

It will often happen that Dp−i(w) 6= 0 at all w such that p−i(w) = 0, in
which case the regular value theorem implies that {w ∈ Cn : p−i(w) = 0 }
is a codimension one submanifold of Cn. We’ll explain below that if this is
true for every i, then V (p) is a codimension one submanifold of Pn(C).

More generally, suppose that p1, . . . , pk are homogeneous polynomials.
Let

p = (p1, . . . , pk) : Cn+1 → Ck,

and set V (p) :=
⋂k
h=1 V (ph). For each i = 0, . . . , n let p−i := (p−i1 , . . . , p−ik ).

Then

V (p) =

n
⋃

i=0

(p−i ◦ ϕi)−1(0).

Proposition 9.27. If, for each i = 0, . . . , n, 0 is a regular value of p−i,
then V (p) is a codimension k submanifold of Pn(C).

Proof. For each i, 0 is a regular value of p−i ◦ ϕi because ϕi is a diffeomor-
phism between Ui and Cn, so the regular value theorem implies that

V (p) ∩ Ui = { [z] ∈ Ui : p−i(ϕi([z])) = 0 }

is a codimension k submanifold of Ui. In general, the property of being a
submanifold is a local property, insofar as the definition asks for a neighbor-
hood of each point satisfying a certain condition. This means that if M is
a smooth (Cr, holomorphic, real analytic) manifold, P ⊂M , and {Ui}i∈I is
an open cover of M such that each P ∩ Ui is a smooth codimension k sub-
manifold of Ui, then P is a smooth codimension k submanifold of M .

In particular, if k = n − 1, then V (p) is a one dimensional submani-
fold of Pn(C). The technical lingo in this circumstance is that V (p) is a
nonsingular projective curve. (Here ‘nonsingular’ refers to the satisfac-
tion of the hypotheses of the implicit function theorem.) A set defined by
a finite system of algebraic equations is irreducible if it cannot be written
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as a union of two proper subsets, each of which is defined by a finite sys-
tem of algebraic equations. In the 1850’s Riemann conjectured that every
compact connected Riemann surface is holomorphically diffeomorphic to an
irreducible nonsingular projective curve. After about fifty years, with the
development of enough tools, it became possible to prove this. This means
that a compact Riemann surface that arises in some other way implicitly has
an algebraic structure, but it may be very subtle and reflect deep properties.

A single homogeneous polynomial p in the variables X, Y , and Z de-
fines a subset of P 2(C). We’ll now look in some detail at what happens
in the simplest possible cases, which are those in which the degree of p is
small. We are only interested in those p that define a Riemann surface by
virtue of the appeal to the regular value theorem described in general above,
which is the case if 0 is a regular value of p−i for each i = 0, 1, 2. Suppose
that L : C3 → C3 is a nonsingular linear transformation. Then the map
[x, y, z] 7→ [L(x, y, z)] is a holomorphic diffeomorphism from P 2(C) to itself,
and it induces a holomorphic diffeomorphism from V (p ◦ L) to V (p). Our
attitude is that we are interested in characterizing V (p) up to holomorphic
diffeomorphism, so for us V (p) and V (p ◦ L) are the same.

Polynomials of degree one, namely linear polynomials, present no diffi-
culties. Consider a linear equation

p(X,Y,Z) = aX + bY + cZ

with (a, b, c) 6= (0, 0, 0). In this case V (p) is holomorphically diffeomorphic
to the Riemann sphere, and it is easy to give an explicit diffeomorphism.
Supposing that c 6= 0 (of course everything is the same if a 6= 0 or b 6= 0)
the map [x, y, z] 7→ [x, y] from V (p) to P 1(C) has the inverse

[x, y] 7→ [x, y,−(ax+ by)/c].

Next, consider a nonzero homogeneous polynomial of degree two, say

p(X,Y,Z) = aX2 + bY 2 + cZ2 + 2dXY + 2eXZ + 2fY Z.

We are only interested in those p such that 0 is a regular value of p−0, p−1,
and p−2, and our first task is to show that this implies that p cannot be a
product of two linear polynomials. To see why, suppose otherwise, so that

p(X,Y,Z) = ℓ1(X,Y,Z)ℓ2(X,Y,Z).

Each of these linear functions vanishes on a two dimensional linear sub-
space of C3, and these subspaces either coincide or have a one dimen-
sional intersection. Either way, there is a nonzero (x, y, z) ∈ C3 with
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ℓ1(x, y, z) = 0 = ℓ2(x, y, z). After permuting the components if need be,
we can assume that z 6= 0, and multiplying all components by 1/z gives
such a point with z = 1. We have

p−2(x, y) = ℓ1(x, y, 1)ℓ2(x, y, 1),

and of course p−2(x, y, 1) = 0. But the product rule gives

∂p−2

∂X
(x, y, 1) =

∂ℓ1
∂X

(x, y, 1)ℓ2(x, y, 1) + ℓ1(x, y, 1)
∂ℓ2
∂X

(x, y, 1) = 0,

and

∂p−2

∂Y
(x, y, 1) =

∂ℓ1
∂Y

(x, y, 1)ℓ2(x, y, 1) + ℓ1(x, y, 1)
∂ℓ2
∂Y

(x, y, 1) = 0,

which contradicts the assumption that 0 is a regular value of p−2.
We’re now going to show that if 0 is a regular value of p−0, p−1, and p−2,

then there is a nonsingular linear transformation L : (X,Y,Z) 7→ (X̃, Ỹ , Z̃)
such that p ◦ L−1 = X̃2 + Ỹ 2 + Z̃2. We’ll first show how things work out
“typically,” then discuss the exceptional cases.

We can write p as a matrix product:

p(X,Y,Z) =
[

X Y Z
]





a d e
d b f
e f c









X
Y
Z



 .

We would like to choose numbers α, β, γ, δ, ε, and φ such that





a d e
d b f
e f c



 =





α 0 0
δ β 0
ε φ γ









α δ ε
0 β φ
0 0 γ



 .

Here are the equations that need to be solved, and how they give rise to a
procedure for solving them that works if a 6= 0 and ab 6= d2:

α2 = a, α :=
√
a,

αδ = d, δ := d/α,

αε = e, ε := e/α,

δ2 + β2 = b, β :=
√

b− δ2 =
√

(ab− d2)/a,

εδ + φβ = f, φ := (f − εδ)/β,

ε2 + φ2 + γ2 = c, γ :=
√

c− ε2 − φ2.
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(In the definitions of α, β, and γ, either square root is acceptable.)

Assuming we’ve done this, let:

X̃ := αX + δY + εZ, Ỹ := βY + φZ, Z̃ := γZ.

Then

p(X,Y,Z) =
[

X Y Z
]





α 0 0
δ β 0
ε φ γ









α δ ε
0 β φ
0 0 γ









X
Y
Z





=
[

X̃ Ỹ Z̃
]





X̃

Ỹ

Z̃



 = X̃2 + Ỹ 2 + Z̃2.

Since α 6= 0 6= β, if it’s also the case that γ 6= 0, then the determinant
αβγ of the matrix of the linear transformation L : (X,Y,Z) 7→ (X̃, Ỹ , Z̃) is
nonzero, and

(p ◦ L−1)(X̃, Ỹ , Z̃) = X̃2 + Ỹ 2 + Z̃2.

Reviewing what we did above, there are two ways that things could not
work out. The first possibility is that γ = 0, so that Z̃ = 0, but in this case
p is a product of linear functions:

p(X,Y,Z) = X̃2 + Ỹ 2 = (X̃ + iỸ )(X̃ − iỸ ).

The other thing that could go wrong is that it may not be the case that a 6= 0
and ab 6= d2. It is easy to show that as long as p is not identically zero, there
is some linear change of coordinates that makes a, b, and c nonzero. Since
we can permute X, Y , and Z, in order for there to be a problem it must be
the case that all three of the equations

ab = d2, ac = e2, bc = f2

hold. Let A, B, and C be square roots of a, b, and c respectively. Then AB
is a square root of ab, so we may attain AB = d by negating B if need be.
Similarly, we can let C be the square root of c such that AC = e. Since f is
a square root of bc, either BC = f or BC = −f . If BC = f , then





a d e
d b f
e f c



 =





A
B
C





[

A B C
]

,
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but once again this implies that p is a product of linear factors:

p(X,Y,Z) =
[

X Y Z
]

(





A
B
C





[

A B C
]

)





X
Y
Z





=

(

[

X Y Z
]





A
B
C





)(

[

A B C
]





X
Y
Z





)

= (AX +BY + CZ)2.

Therefore we may assume that BC = −f , and that f 6= 0. We have





a d e
d b f
e f c



 =





A
B
C





[

A B C
]

−





0 0 0
0 0 2f
0 2f 0





and
p(X,Y,Z) = (AX +BY + CZ)2 − 4fY Z.

Let κ be a square root of −f , and let

X̃ := AX +BY + CZ, Ỹ := κ(Y + Z), Z̃ := −iκ(Y − Z).

Then

Y = (Ỹ + iZ̃)/2κ, Z = (Ỹ − iZ̃)/2κ, and X = (X̃ −BỸ − CZ̃)/A,

so the linear transformation L : (X,Y,Z) 7→ (X̃, Ỹ , Z̃) is invertible. In
particular, Y Z = (Ỹ 2 + Z̃2)/(−4f), so

p(X,Y,Z) = p(L−1(X̃, Ỹ , Z̃)) = X̃2 + Ỹ 2 + Z̃2.

In R2 quadratic polynomials define ellipses (with circles as a special
case) parabolas, and hyperbolas. In part because C is algebraicly complete,
and in part because projective space is more symmetric, the classification
of quadratic subsets of P 2(C) is much simpler, and actually as simple as
possible: there is (up to linear change of coordinates) only one quadratic
algebraic curve in P 2(C).

It turns out that nonsingular quadratic curves in P 2(C) are also simple
topologically, and as Riemann surfaces, because V (X2 + Y 2 + Z2) is holo-
morphically diffeomorphic to the Riemann sphere. The diffeomorphism is
the function f : S → V (X2 + Y 2 +Z2) given, on U0 and U1 respectively, by

[1, w] 7→ [w, 1
2(1 − w2), i2(1 + w2)] and [z, 1] 7→ [z, 1

2(z2 − 1), i2(z2 + 1)].
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Of course these formulas are holomorphic where they are defined. To see
that they agree on U0 ∩ U1 observe that when w 6= 0 6= z they amount to

[1, w] 7→ [1, 1
2(1/w−w), i2(1/w+w)] and [1, 1/z] 7→ [1, 1

2(z−1/z), i2(z+1/z)].

The inverse of f is the function g : V (X2 + Y 2 + Z2) → S given by

[a, b, c] 7→ [b− ic, a] and [a, b, c] 7→ [a,−b− ic],

and again these expressions define holomorphic functions, but of course we
have to explain when each of these expressions is defined and why they
agree when both are. They are both defined when a 6= 0, and when a = 0
we have 0 = b2 + c2 = (b + ic)(b − ic), so either b + ic = 0 or b − ic = 0,
but not both, because (a, b, c) = (0, 0, 0) does not define a point in P 2(C).
Therefore each of the formulas is defined on a set obtained by removing a
single point (either [0, 1, i] or [0, 1,−i]) from V (X2 + Y 2 + Z2). For any
[a, b, c] ∈ V (X2 + Y 2 + Z2) we have

a2 = −b2 − c2 = −(b+ ic)(b − ic),

so if a 6= 0, then b+ ic 6= 0 6= b− ic, and

a

b− ic
=

−b− ic

a
, (∗)

whence [b− ic, a] = [a,−b− ic]. Therefore the two formulas agree whenever
a 6= 0 and, by continuity, wherever they are both defined.

At first sight the verification that f and g are inverses looks like a tedious
chore: each function has two formulas, so there are four cases to consider
for g ◦ f , and another four for g ◦ f . But we can easily compute that:

f([1, 0]) = [0, 1, i], g([0, 1, i]) = [1, 0],

f([0, 1]) = [0, 1,−i], g([0, 1,−i]) = [0, 1].

For both functions both formulas are defined at all other points, so it suffices
to give one verification for g ◦ f and one for f ◦ g:

g(f([1, w])) = g([w, 1
2(1 − w2), i2 (1 + w2)])

= [12(1 − w2) − i( i2 (1 + w2)), w] = [1, w],

and (applying (∗))

f(g([a, b, c])) = f([b− ic, a]) = [1, 1
2( b−ica − a

b−ic),
i
2( b−ica + a

b−ic)]
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= [1, 1
2( b−ica − −b−ic

a ), i2( b−ica + −b−ic
a )] = [1, ba ,

c
a ] = [a, b, c].

Having shown that every nonsingular quadratic curve in P 2(C) is holo-
morphically diffeomorphic to the Riemann sphere, we now consider elliptic

curves, which are Riemann surfaces V (p) where p is a homogeneous poly-
nomial of degree three. In contrast with degrees one and two, there are
many elliptic curves, so we won’t attempt the sort of analysis we saw above.
Instead, we’ll look at a different way to construct Riemann surfaces that
happens to give all the elliptic curves.
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Figure 9.1

Suppose that ω1 and ω2 are two nonzero elements of C that are not
on the same line through the origin, so that ω2/ω1 /∈ R. Then they are
linear independent if we think of C as a vector space over R, and their span
{ t1ω1 + t2ω2 : t1, t2 ∈ R } is all of C. The lattice associated with ω1 and
ω2 is

L(ω1, ω2) := {n1ω1 + n2ω2 : n1, n2 ∈ ZZ }.
For any such lattice L there is a Riemann surface C(L) obtained by iden-
tifying any two points in C whose difference is a lattice point, so that z is
the same point as z + ω1, z + ω2, z − 2ω1 + 5ω2, etc. In group-theoretic
terms, L is a subgroup of C (with addition as the group operation) which
is necessarily normal because C is abelian, and C(L) is the quotient group
C/L. Formally, the points of C(L) are the cosets

z + L := { z + λ : λ ∈ L }.
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We can also think of constructing C(L) by starting with the paral-
lelepiped region

{ t1ω1 + t2ω2 : 0 ≤ t1, t2 ≤ 1 }
shown in Figure 9.1 and identifying points along the two edges, so that v
is the same point as v′ and w is the same point as w′. In particular, as a
topological manifold, C(L) is homeomorphic to a torus.

The holomorphic differentiable structure is given by an atlas with the
following description. We say that an open set V ⊂ C is L-small if any
coset z+L intersects V at at most one point, so that (z+L)∩ V = {z} for
all z ∈ V . For such a V let UV := { z+L : z ∈ V }, and define ϕV : UV → V
by requiring that ϕV (z + L) = z for each z ∈ V . To show that this is a
holomorphic atlas, suppose that V ′ is another L-small open set. Then ϕV
and ϕV ′ have holomorphic overlap because if z+L = z′ +L for some z ∈ V
and z′ ∈ V ′, then ϕV ′ ◦ ϕ−1

V agrees with the map w 7→ w+ (z′ − z) on some
neighborhood of z.

Sophisticated arguments show that any elliptic curve is homeomorphic to
a torus, and that whenever a Riemann surface is homeomorphic to a torus,
it is holomorphically diffeomorphic to some elliptic curve, and to C(L) for
some lattice L. This is a rather mystifying situation. For any lattice L, C(L)
is holomorphically diffeomorphic to V (p) for some homogeneous polynomial
p of degree three, but there is no simple or obvious way to derive p from L.
Given a degree three homogeneous polynomial p such that 0 is a regular value
of p−0, p−1, and p−2, we know that V (p) is holomorphically diffeomorphic
to some C(L), but it is not simple to pass from p to a suitable L.

In fact this is just the tip of a very large iceberg: the theory of elliptic
curves is extensive, deep, and not completely understood. It was central to
the proof of Fermat’s last theorem. Briefly, if p 6= 3 is an odd prime and ℓ,
m, and n are integers such that ℓp +mp = np, then the elliptic curve

V
(

Y 2Z −X(X + ℓpZ)(X −mpZ)
)

cannot have a certain property, but Andrew Wiles (with some help from
Richard Taylor) showed that every relevant elliptic curve must have this
property. One of the most famous open problems of contemporary mathe-
matics, the conjecture of Birch and Swinnerton-Dyer, asserts that if C is an
elliptic curve defined by a cubic polynomial with integer coefficients, then
two attributes of C are the same. There are algorithms that compute these
attributes for any given curve, and the conjecture is supported by a large
body of computational evidence, but attempts to prove it have all run into
dead ends.
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Now consider a second lattice

L′ = {n1ω
′
1 + n2ω

′
2 : n1, n2 ∈ ZZ }.

When are C(L) and C(L′) holomorphically diffeomorphic? The map

t1ω1 + t2ω2 + L 7→ t1ω
′
1 + t2ω

′
2 + L′

is a real analytic diffeomorphism from C(L) to C(L′), but it’s usually not a
holomorphic diffeomorphism because it’s not conformal, in which case the
Cauchy-Riemann equations don’t hold. On the other hand, if there is a
scalar α ∈ C∗ such that L′ = αL, then the map z + L 7→ αz + L′ is a
holomorphic diffeomorphism; we say that L and L′ are homothetic if this
is the case. The proof is a bit beyond the tools we have at this point, but
it turns out that this is the only way that C(L) and C(L′) can be holo-
morphically diffeomorphic. That is, if C(L) and C(L′) are holomorphically
diffeomorphic, then L and L′ are homothetic.

Homotheticity is clearly an equivalence relation, so the holomorphic dif-
feomorphism classes of elliptic curves are in one-to-one correspondence with
the homotheticity classes of lattices. We’re now going to investigate this
space of equivalence classes. We always have L(ω1, ω2) = L(ω2, ω1), and the
imaginary part of a complex number is negative if and only if the imaginary
part of its inverse is positive, so we can adopt the convention that whenever
we represent a lattice as L(ω1, ω2), the two generators are ordered so that
ω1/ω2 is an element of the upper half plane

H := {x+ iy : x ∈ R, y > 0 } ⊂ C.

Since L(ω1, ω2) and L(ω1/ω2, 1) are homothetic, every lattice is homothetic
to L(τ, 1) for some complex number τ ∈ H. For which τ, τ ′ ∈ H is it the
case that L(τ, 1) and L(τ ′, 1) are homothetic?

Suppose that
(

a b
c d

)

is a nonsingular matrix whose entries are integers,

and let τ ′ := (aτ + b)/(cτ + d). Then L(τ ′, 1) and L(aτ + b, cτ + d) =
(cτ + d)L(τ ′, 1) are homothetic, and L(aτ + b, cτ + d) ⊂ L(τ, 1) because
L(τ, 1) contains aτ + b and cτ + d. If the determinant ad− bc of the matrix
is 1, then L(aτ + b, cτ + d) = L(τ, 1) because L(aτ + b, cτ + d) contains τ
and 1:

d(aτ + b) − b(cτ + d) = τ and − c(aτ + b) + a(cτ + d) = 1.

Let Γ be the set of 2×2 matrices with integer entries and determinant 1.
The product of two matrices with integer entries has integer entries, so the
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multiplicative property of the determinant implies that Γ contains the prod-

uct of any two of its elements. For any
(

a b
c d

)

∈ Γ the inverse
(

a b
c d

)−1
=

(

d −b
−c a

)

is an integer matrix whose determinant da− (−b)(−c) = ad− bc is

one, so it is in Γ. Therefore Γ is a group because it is a subset of the group
of nonsingular 2 × 2 matrices that contains the products and inverses of its
elements.

For g =
(

a b
c d

)

∈ Γ and τ ∈ H let

g(τ) =

(

a b
c d

)

(τ) :=
aτ + b

bτ + d
.

This is the restriction to H of a Möbius transformation. Since a, b, c, and
d are all real, the Möbius transformation takes the “extended” real line
R ∪ {∞} to itself, so it should come as no surprise that it maps H to itself.
Nonetheless it will be useful to have the following rather clever calculation
which gives a quantitative expression of this fact: the imaginary part of

aτ + b

cτ + d
=

(aτ + b)(cτ + d)

(cτ + d)(cτ + d)
=
acττ + bd+ adτ + bcτ

|cτ + d|2 (∗)

is (ad − bc)/|cτ + d|2 = |cτ + d|−2 times the imaginary part of τ , and is
consequently necessarily positive.

So far we have seen that if
(

a b
c d

)

∈ Γ, τ ∈ H, and τ ′ =
(

a b
c d

)

(τ),

then τ ′ ∈ H and L(τ, 1) and L(τ ′, 1) are homothetic. It turns out that the
converse also holds: if τ, τ ′ ∈ H and L(τ, 1) and L(τ ′, 1) are homothetic, then

τ ′ =
(

a b
c d

)

(τ) for some
(

a b
c d

)

∈ Γ. To see this, suppose that L(τ ′, 1) =

αL(τ, 1) for some α. Then there are integers a, b, c, d such that τ ′ = α(aτ+b)
and 1 = α(cτ + d), and dividing the first equation by the second gives
τ ′ = (aτ+b)/(cτ+d). This reasoning is equally valid with τ and τ ′ reversed,
so we arrive at

(

τ ′

1

)

= α

(

a b
c d

)(

τ
1

)

and

(

τ
1

)

=
1

α

(

a′ b′

c′ d′

)(

τ ′

1

)

,

where a′, b′, c′, d′ are also integers, and these combine to give
(

τ
1

)

=

(

a′ b′

c′ d′

)(

a b
c d

)(

τ
1

)

.

If we think about this from the point of view of the identification of C

with R2, so that τ = τre + iτim and 1 = 1 + i0 are identified with (τre, τim)
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and (1, 0) respectively, then these two vectors are linearly independent, so
the only way this equation can hold is if the matrix product is the identity
matrix. Therefore the two matrices are inverses of each other, and their
determinants are integers whose product is 1, so these determinants are
either both 1 or both −1. The calculation (∗) shows that the imaginary
part of τ ′ is (ad− bc)/|cτ + d|2 times the imaginary part of τ , so ad− bc = 1
because τ and τ ′ are both elements of H.

The map
(

(

a b
c d

)

, τ
)

7→
(

a b
c d

)

(τ) is actually a group action of Γ on H;

to see this we compute that

(

e f
g h

)

(

(

a b
c d

)

(τ)
)

=
eaτ+bcτ+d + f

g aτ+bcτ+d + h
=
e(aτ + b) + f(cτ + d)

e(aτ + b) + f(cτ + d)

=
(ea+ fc)τ + (eb+ fd)

(ga + hc)τ + (gb+ hd)
=

(

ea+ fc eb+ fd
ga+ hc gb+ hd

)

(τ)

=
(

(

e f
g h

)(

a b
c d

)

)

(τ).

In general, whenever a group H acts on a set A, a set of the form {ha : h ∈
H } is called the orbit of a. For example, any subgroup of a group acts on
the group itself, and the orbits of this action are the cosets. The orbits of
the action of Γ on H are the subsets of H of the form

O(τ) :=
{ aτ + b

cτ + d
:

(

a b
c d

)

∈ Γ
}

.

We have given a bijection between the collection of all holomorphic diffeo-
morphism classes of elliptic curves and the set M := {O(τ) : τ ∈ H} of
such orbits, and we now wish to study this orbit space.

For a lattice L the map (λ, z) 7→ λ + z is an action of L on C, and the
orbits of this action are the points of a new Riemann surface, namely the
elliptic curve derived from L. The reasons for this seem quite general: if a
group acts on a Riemann surface in a nice way (where “niceness” has not yet
been defined precisely) then the space of orbits should be a new Riemann
surface. These thoughts suggest trying to endow M with the structure of a
Riemann surface.

Suppose that the group H acts on the set A, and let N be the set of
group elements n such that na = a for all a ∈ A. For such an n and all a
we have n−1a = n−1(na) = (n−1n)a = ea = a, so N contains the inverse
of each of its elements. It obviously contains the product of any two of its
elements, so it is a subgroup of H, and in fact it is a normal subgroup. To
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see this recall that for any group G and g ∈ G, Cg is the inner isomorphism
h 7→ ghg−1, and observe that Ch(n) ∈ N for any n ∈ N and h ∈ H because
for all a ∈ A we have

Ch(n)a = (h−1nh)a = h−1n(ha) = h−1(ha) = (h−1h)a = a.

It is natural to think that the action of H is really an action of the quotient
group H/N .

If (aτ+b)/(cτ+d) = τ for all τ ∈ H, then the polynomial cτ2+(d−a)τ−b
vanishes identically, so that b = 0 = c and a = d. Therefore J := {I,−I} is
the set of elements of Γ that leave every point of H fixed. We will say that
an open set V ⊂ H is Γ-small if g ∈ J (so that g(τ) = τ) whenever g ∈ Γ
and V contains both τ and g(τ). For such a V let

UV := {O(τ) : τ ∈ V } ⊂M,

and define ϕV : UV → V by specifying that ϕV (O(τ)) = τ whenever τ ∈ V .
This definition is unambiguous: if O(τ) = O(τ ′), then τ ′ = g(τ) for some g,
necessarily g ∈ J , and consequently τ ′ = τ .

We would like to show that these maps have holomorphic overlaps, so
suppose that V and V ′ are Γ-small, and consider a point τ̃ in the domain of
ϕV ′ ◦ ϕ−1

V . Since O(τ̃) ∈ UV ′ there is some g ∈ Γ such that g(τ̃ ) ∈ V ′. The
definitions of ϕV and ϕV ′ state that ϕV (O(τ)) = τ whenever τ ∈ V and
ϕV ′(O(g(τ))) = g(τ) whenever g(τ) ∈ V ′, as will be the case (by continuity)
for all τ in some neighborhood of τ̃ , in which case

ϕV ′(ϕ−1
V (τ)) = ϕV ′(O(τ)) = ϕV ′(O(g(τ))) = g(τ).

That is, ϕV ′ ◦ ϕ−1
V agrees with the holomorphic map τ 7→ g(τ) in a neigh-

borhood of τ̃ .
Since the maps ϕV do have holomorphic overlaps, they would constitute

a holomorphic atlas for M if every point in H had a Γ-small neighborhood.
But this isn’t true! From this point on things will become a bit more com-
plicated, which is not really to say that the material is truly “harder” or
more “advanced,” in a mathematical sense, than what we have done up to
this point. But there is more detail, and some cumbersome computations,
which will require a somewhat higher degree of concentration on your part.

The stabilizer subgroup of a point τ ∈ H is

Γτ := { g ∈ Γ : g(τ) = τ }.

If g, g′ ∈ Γτ , then g′g(τ) = g′(g(τ)) = g′(τ) = τ and g−1(τ) = g−1(g(τ)) = τ ,
so Γτ contains products and inverses of its elements and therefore is, in fact,
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a subgroup of Γ. The next result gives a related generalization of the notion
of a Γ-small open set.

Lemma 9.28. Each τ ∈ H has a neighborhood V such that for all τ ′ ∈ V
and g ∈ Γ, if g(τ ′) ∈ V , then g ∈ Γτ .

Proof. Otherwise there must exist sequences {τn} in H and {gn} in Γ \ Γτ

such that τn → τ and gn(τn) → τ . Let gn :=
(

an bn
cn dn

)

. Since τn →
τ and gn(τn) = (aτn + bn)/(cnτn + dn) → τ , equation (∗) implies that
|cnτn + dn|−2 → 1. Let τn = xn + iyn and τ = x+ iy. Then

|cnτn + dn|2 = (cnxn + dn)
2 + c2ny

2
n → 1.

Since yn → y > 0, for large n there are only finitely many possibilities
for cn, and since xn → x, for any given value of cn there are only finitely
many possibilities for dn when n is large. Passing to a subsequence, we may
assume that there is a single pair (c, d) such that (cn, dn) = (c, d) for all n.
We now have anτn + bn = τn(cτn + d) → τ(cτ + d). Since an is an integer
and the imaginary part of anτn converges to the imaginary part of τ(cτ +d),
there must be an integer a such that an = a for all large n. Similarly, since
aτn + bn → τ(cτ + d) there must be an integer b such that bn = b for all

large n. Let g :=
(

a b
c d

)

. Then gn = g for all large n, but τn → τ and

g(τn) → τ , so by continuity, τ = g(τ), which contradicts our assumption
that gn /∈ Γτ .

Note that J is always a subgroup of Γτ . A point τ ∈ H is said to be
elliptic if J is a proper subgroup of Γτ , so there is at least one g ∈ Γ\J such
that g(τ) = τ . The last result implies that if a point isn’t elliptic, then it
has a Γ-small neighborhood. On the other hand, the definition of a Γ-small
neighborhood immediately implies that an elliptic point cannot have such
a neighborhood because any neighborhood contains the point itself. The
remaining task in constructing the holomorphic differentiable structure on
M is to figure out what the elliptic points are and what to do about them.

Suppose τ is elliptic, say because g(τ) = τ for some g ∈ Γ \ J . If h ∈ Γ,
then h(τ) is elliptic because hgh−1(h(τ)) = hgh−1h(τ) = hg(τ) = h(τ).
(Since J is a normal subgroup of Γ, hgh−1 /∈ J .) That is, if τ is elliptic,
then so is every element of O(τ). Every orbit has elements with certain
properties that we describe next, and we will find the elliptic points by
looking for elliptic points with these properties.

Fix a τ = x+ iy ∈ H. For any integers c, d we have

|cτ + d|2 = (cx+ d)2 + c2y2.
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There are only finitely many pairs of integers (c, d) with |cτ+d|2 < 1 because
there are finitely many integers c with c2y2 < 1, and for each such c there are

finitely many integers d such that (cx + d)2 < 1 − c2y2. If g =
(

a b
c d

)

∈ Γ,

(∗) implies that the imaginary part of g(τ) is |cτ +d|−2 times the imaginary
part of τ . It follows that if α is the imaginary part of some element of O(τ),
then the set of imaginary parts of elements of O(τ) contains only finitely
many elements greater than α. In particular, there is some element of O(τ)
whose imaginary part is as large as the imaginary part of any other element
of this orbit.

Let S :=
(

0 −1
1 0

)

and T :=
(

1 1
0 1

)

. These are elements of Γ, of course,

and we have S(τ) = −1/τ = −τ/|τ |2, so if the imaginary part of τ is as
large as the imaginary part of S(τ), then |τ | ≥ 1. Direct computation shows

that
(

1 1
0 1

)(

1 n
0 1

)

=
(

1 n+ 1
0 1

)

for any integer n, so T−1 :=
(

1 −1
0 1

)

, and

(by induction away from n = 0 in both directions) T n =
(

1 n
0 1

)

. Since

T n(τ) = τ + n has the same imaginary part as τ , some element of O(τ)
whose imaginary part is maximal has a real part in the interval (−1

2 ,
1
2 ].

Now suppose that τ is elliptic, say because g =
(

a b
c d

)

∈ Γτ \J , and that

τ has the other properties laid out above: y is as large as the imaginary part
of any element of O(τ), |τ | ≥ 1, and x ∈ (−1

2 ,
1
2 ]. Note that these conditions

imply that y ≥
√

1 − x2 ≥
√

3/2.
The only possible values of c are −1, 0, and 1 because

1 = |cτ + d|2 = (cx+ d)2 + c2y2 ≥ c2y2 ≥ 3c2/4,

If c = 0, then the first equality above implies that d2 = 1, in which case
a = d, because 1 = ad− bc = ad, and b = 0, because τ = (aτ + b)/(cτ +d) =

τ + b/d. That is,
(

a b
c d

)

= ±
(

1 0
0 1

)

, which contradicts the assumption that

g /∈ J , so c = 0 is impossible. In addition, we may assume that c = 1
because g ∈ Γτ \J if and only if −g ∈ Γτ \J , and we can replace g with −g.
The calculation above now gives (x+ d)2 = 1 − y2 ≤ 1/4, so |x+ d| ≤ 1/2.
In view of the interval containing x, either (i) d = 0 or (ii) x = 1/2 and
d = −1. We consider these two cases in turn.

Suppose d = 0. Then b = bc = −(ad− bc) = −1, so

τ = (aτ + b)/(cτ + d) = (aτ − 1)/τ = a− 1/τ.

In particular, the imaginary part of a = τ + 1/τ is zero, so |τ |2 = 1 because
the imaginary part of 1/τ = τ/|τ |2 is −|τ |−2 times the imaginary part of τ .
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Therefore 1/τ = τ = x− iy and a = τ + 1/τ = 2x, so a is either 0 or 1. If

a = 0, so that
(

a b
c d

)

=
(

0 −1
1 0

)

, then τ + 1/τ = 0, i.e., τ2 = −1, and τ = i

is the square root of −1 in H. If a = 1, so that
(

a b
c d

)

=
(

1 −1
1 0

)

, then

τ + 1/τ = 1, i.e., τ2 − τ + 1 = 0, and the root of this equation in H is

ρ :=
1 + i

√
3

2
.

Finally, suppose that c = 1, d = −1, and x = 1/2. Then

τ(cτ + d) = (1
2 + iy)(−1

2 + iy) = −1
4 − y2,

and of course τ = (aτ + b)/(cτ + d), so

−1
4 − y2 = τ(cτ + d) = aτ + b = (1

2a+ b) + iay.

Equating imaginary parts yields a = 0, so b = bc = −(ad − bc) = −1.

Therefore
(

a b
c d

)

=
(

0 −1
1 −1

)

and −1
4 − y2 = −1, so y =

√
3/2 and τ = ρ.

We had to consider numerous cases and details, but the bottom line is

pretty simple. Let gi := ±
(

0 −1
1 0

)

and gρ := ±
(

1 −1
1 0

)

. Either:

(a) τ = i and
(

a b
c d

)

= ±gi, or

(b) τ = ρ and either
(

a b
c d

)

= ±gρ or
(

a b
c d

)

= ±
(

0 −1
1 −1

)

.

Note that ρ2 = (1 + 2i
√

3− 3)/4 = (−1 + i
√

3)/2 = ρ− 1, and in particular
ρ = 1− 1/ρ. In view of this it is easy to see that i and ρ are, in fact, elliptic
because gi(i) = −1/i = i and gρ(ρ) = (ρ− 1)/ρ = ρ. We conclude that the
set of elliptic points is O(i) ∪O(ρ).

To get a better view of what’s going on here we observe that the stabilizer
subgroups of i and ρ are

Γi =
{(

0 −1
1 0

)

,
(

−1 0
0 −1

)

,
(

0 1
−1 0

)

,
(

1 0
0 1

)}

and

Γρ =
{(

1 −1
1 0

)

,
(

0 −1
1 −1

)

,
(

−1 0
0 −1

)

,
(

−1 1
−1 0

)

,
(

0 1
−1 1

)

,
(

1 0
0 1

)}

.

That is, Γi = {gi, g2
i , g

3
i , g

4
i } and Γρ = {gρ, g2

ρ , g
3
ρ, g

4
ρ , g

5
ρ, g

6
ρ}. (Computing all

the powers of gi and gρ by hand is a big chore, and you don’t need to do it
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if you don’t want to.) We have g2
i = −I = g3

ρ and g4
i = I = g6

ρ, and we can
see that Γi/J is the unique (up to isomorphism) group with two elements
while Γρ/J is the unique group with three elements.

Well, all this is very nice, but what should we do about it? How are
we supposed to construct coordinate charts for M on neighborhoods of O(i)
and O(ρ)?

Extending our terminology a bit, we will say that a neighborhood τ ∈ H
is Γτ -small if, for each τ ′ ∈ V , the set of g ∈ Γ such that g(τ ′) ∈ V is
precisely Γτ . Lemma 9.28 gives an open neighborhood V ′ of τ such that
for each τ ′ ∈ V ′, the set of g ∈ Γ such that g(τ ′) ∈ V ′ is contained in Γτ .
Let V :=

⋂

g∈Γτ
g(V ′). Of course V contains τ , and we have shown that the

stabilizer subgroup of every element of H is finite, so V is open. For any
g′ ∈ Γτ we have g′(V ) =

⋂

g∈Γτ
g′g(V ′) =

⋂

g∈Γτ
g(V ′) = V , so V is Γτ -small.

We now fix a Γi-small neighborhood Vi of i and a Γρ-small neighborhood Vρ
of ρ. Let Ui := {O(τ) : τ ∈ Vi } and Uρ := {O(τ) : τ ∈ Vρ }.

If τ is a point near i, but different from i, then gi(τ) = −1/τ is different
from τ (because, after all, the roots of the equation τ = −1/τ are i and −i)
but O(−1/τ) = O(τ). Then the restriction of the map τ 7→ O(τ) to the
“punctured” neighborhood Vi \ {i} is two-to-one. This should remind you
of the map z 7→ z2.

In order to make this more than just a metaphor we use the function

θi : C \ {−i} → C \ {1} given by θi(τ) :=
τ − i

τ + i

to impose a new coordinate system on H. This Möbius transformation is
called the Cayley transform. It maps a point τ ∈ C to a point in the
unit disk D = { z ∈ C : |z| < 1 } if and only if |τ − i| < |τ + i|, and
the set of points in C that are closer to i than to −i is H, so θi restricts
to a bijection between H and D. Its inverse has the formula z 7→ −i(z +
1)(z − 1). That this is, in fact, the inverse can be verified directly by a
couple rather cumbersome computations, but it is easier to observe that

the product
(

1 −i
1 i

)(

−i −i
1 −1

)

=
(

2i 0
0 2i

)

of the matrices that define these

Möbius transformations is a multiple of
(

1 0
0 1

)

.

Of course it is important that θi(i) = 0. Since θi maps the extended real
line to the circle C = { z ∈ C : |z| = 1 }, and gi maps the extended real
line to itself, the Möbius transformation θi ◦ gi ◦ θ−1

i maps C into itself, and
θi(gi(θ

−1
i (0))) = θi(gi(i)) = θi(i) = 0. Recall that in Section 9.2 we saw that

a circular transformation mapping 0 to 0 is a rotation of C corresponding
to multiplication by some element of the unit circle C. In fact setting τ =
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θ−1
i (z) in equation (∗∗) below shows that θi(gi(θ

−1
i (z))) = −z.

We now define ϕi : Ui → C by setting

ϕi(O(τ)) := θi(τ)
2.

In order for this to be a valid definition it must be the case that θi(τ)
2 =

θi(τ
′)2 whenever τ, τ ′ ∈ Vi with O(τ) = O(τ ′). If O(τ) = O(τ ′), then

τ ′ = g(τ) for some g ∈ Γi, with the only potentially problematic case being

g = gi. But θi
(

gi(τ)
)2

= θi(τ)
2 because

θi
(

gi(τ)
)

= θi(−1/τ) =
− 1
τ − i

− 1
τ + i

=
i(−1 − iτ)

i(−1 + iτ)
= −τ − i

τ + i
= −θi(τ). (∗∗)

The map ϕi is compatible with our other charts in the following sense: if
V is a Γ-small open set and τ ∈ V ∩ Vi, then on some neighborhood of
ϕV (O(τ)) = τ the change of coordinates ϕi ◦ ϕ−1

V is holomorphic because it
agrees with τ ′ 7→ θi(τ

′)2, and on some neighborhood of ϕi(O(τ)) = θi(τ)
2

the change of coordinates ϕV ◦ ϕ−1
i is holomorphic because it agrees with

z 7→ θ−1
i (

√
z) for a suitable branch of the square root “function.” (Recall

our discussion of the logarithm function.)

Our treatment of the elliptic point ρ is similar, but before going into the
details we should say a few things about the number ρ, which is actually
pretty important. We have already seen that ρ2 = ρ − 1 = (−1 + i

√
3)/2.

Going a step further, we have

ρ3 = ρ · ρ2 = 1
2 (1 + i

√
3) · 1

2(−1 + i
√

3) = 1
4(−1 + (i

√
3)2) = −1.

Therefore ρ6 = 1, 1/ρ = ρ5 = ρ3ρ2 = −ρ2, and similarly ρ4 = −ρ. The
multiplicative property of the norm implies that the norm of a root of unity
is 1, and if z is a complex number with |z| = 1, then z−1 = z/|z|2 = z.
Therefore 1/ρ = ρ. All of these equations hold with ρ in place of ρ.

Let θρ : C \ {ρ} → C \ {1} be the function

θρ(τ) :=
τ − ρ

τ − ρ
.

This Möbius transformation restricts to a bijection between H (which is
the set of points in C that are closer to ρ than to ρ) and D. Its inverse
is z 7→ (ρz − ρ)/(z − 1), as can be seen by computing that the product
(

1 −ρ
1 −ρ

)(

ρ −ρ
1 −1

)

=
(

ρ− ρ 0
0 ρ− ρ

)

of the associated matrices is a multiple of



9.4. SOME RIEMANN SURFACES 397

the identity matrix. Clearly θρ ◦gρ ◦θ−1
ρ takes D to itself, i.e., it is a circular

transformation, and

θρ(gρ(θ
−1
ρ (0))) = θρ(gρ(ρ)) = θρ(ρ) = 0.

Below it will become apparent that θρ ◦ gρ ◦ θ−1
ρ is multiplication by −ρ2.

Define ϕρ : Uρ → C by setting

ϕρ(O(τ)) := θρ(τ)
3.

This function is well defined because for τ, τ ′ ∈ Vρ we have O(τ) = O(τ ′) if
and only if τ ′ = τ , τ ′ = gρ(τ), or τ ′ = g2

ρ(τ), and

θρ(gρ(τ)) =
τ−1
τ − ρ
τ−1
τ − ρ

=
(1 − ρ)τ − 1

(1 − ρ)τ − 1
=

−ρ2τ − 1

−ρ2τ − 1

=
ρ2

ρ2 · τ + 1/ρ2

τ + 1/ρ2 = ρ−2 τ − ρ

τ − ρ
= ρ−2θρ(τ),

so that θρ
(

g2
ρ(τ)

)3
= θρ

(

gρ(τ)
)3

= θρ(τ)
3. It is compatible with our other

coordinate charts: (a) if V is a Γ-small open set and τ ∈ V ∩ Vρ, then on
some neighborhood of ϕV (O(τ)) = τ the change of coordinates ϕρ ◦ ϕ−1

V is
holomorphic because it agrees with τ ′ 7→ θρ(τ

′)3, and on some neighborhood
of ϕρ(O(τ)) = θρ(τ)

3 the change of coordinates ϕV ◦ ϕ−1
ρ is holomorphic

because it agrees with z 7→ θ−1
ρ ( 3

√
z) for a suitable branch of the cube root

function; (b) by choosing small enough Vi and Vρ we can insure that their
intersection is empty, or we can argue that each point in their intersection is
nonelliptic and consequently contained in some Γ-small V , so ϕi◦ϕ−1

ρ agrees

with (ϕi ◦ ϕ−1
V ) ◦ (ϕV ◦ ϕ−1

ρ ) near this point, and similarly for ϕρ ◦ ϕ−1
i .

This completes the demonstration that

{ϕV : V is Γ-small } ∪ {ϕi, ϕρ}
is a holomorphic atlas for M = {O(τ) : τ ∈ H}. Let’s review and sum-
marize. Each lattice determines an elliptic curve, and every elliptic curve
is holomorphically diffeomorphic to one determined by some lattice. Two
lattices are homothetic if and only if the associated elliptic curves are holo-
morphically diffeomorphic, so the homotheticity classes of lattices are in
one-to-one correspondence with the holomorphic diffeomorphism classes of
elliptic curves. The homotheticity classes of lattices are in natural bijection
with the space of orbits of the action of Γ on H, and this space of orbits can
be endowed with the structure of a Riemann surface. In sum the construc-
tion above shows that the space of holomorphic diffeomorphism classes of
elliptic curves is itself a Riemann surface!
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9.5 The Fundamental Group

It’s easy to see that the torus and the sphere are not homeomorphic, but
how do you prove it?

One way to prove that two topological spaces X and Y are not homeo-
morphic is to find a point x ∈ X such that the local nature of the space near
x has properties that are different from the local nature of Y near any of its
points. For example, every neighborhood of 0 in R becomes disconnected
if we remove 0 itself from the neighborhood, but every point in R2 has a
neighborhood that does not become disconnected if we remove the point
itself. Therefore R and R2 cannot be homeomorphic. But any point in the
torus and any point in the sphere have homeomorphic neighborhoods, so
this certainly won’t work.

M1

M2

M1#M2

Figure 9.6

Riemann identified a topological property of compact Riemann surfaces
called the genus that distinguishes some surfaces from others. This concept
is hard to define but quite easy to describe. The genus of the sphere is zero,
and the genus of the torus is one. Given two connected 2-manifolds M1 and
M2, we form a new 2-manifold, called the connected sum and denoted by
M1#M2, by removing a small open disk from each and gluing the circles
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bounding these disks together. (It is clear, at least visually, that the home-
omorphism type of the resulting object doesn’t depend on where we remove
the disks. A more subtle issue is that there are essentially two different ways
to do the gluing, which we might call “clockwise” and “counterclockwise.”
Again, it turns out not to matter, but this is a consequence of the topolog-
ical classification of compact surfaces described in the next section.) It is
visually clear that the connected sum operation is associative and commu-
tative. A surface of genus g is what you get by taking the connected sum of
g copies of the torus.

If we cut a torus along a loop that wraps around it once, we obtain a tube.
We can then cut along a line traversing the length of the tube, obtaining
a square. (In general we can cut the surface of genus g along 2g circles or
line segments connecting boundary points without disconnecting it.) Since
the sphere has genus 0, the natural guess is that there is no way to remove
a circle without disconnecting it, and it certainly looks like this is the case.
This property of the sphere is known as the Jordan curve theorem after
Camille Jordan (1838-1922) who stated it in a famous textbook in 1887,
but Jordan’s proof was completely wrong, and the first correct proof was
given by Oswald Veblen (1880-1960) in 1905. While feasible in principle,
using the Jordan curve theorem to prove that the sphere and the torus are
not homeomorphic is looking rather difficult (to say the least) in practice.
Instead, we’re going to pursue a somewhat different approach to these issues
pioneered by Poincaré.

The following notion is one of the most important concepts of topology.
A homotopy is a continuous function

h : X × [0, 1] → Y

where X and Y are topological spaces. Intuitively we think of deforming a
function continuously over a unit interval of time, and the map

h(·, t) : X → Y

“at time t” is usually denoted by ht. Two continuous functions f, g : X → Y
are said to be homotopic, and we write f ≃ g, if there exists such an h
with h0 = f and h1 = g.

As usual the first order of business is to check that ‘is homotopic to’
is an equivalence relation. It is reflexive because for any f the “constant
homotopy” (x, t) 7→ f(x) shows that f ≃ f , and it is symmetric because
if h is a homotopy with h0 = f and h1 = g, then j : (x, t) 7→ h(x, 1 − t)
has j0 = g and j1 = f , so g ≃ f whenever f ≃ g. To verify transitivity
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suppose that e ≃ f and f ≃ g by virtue of homotopies h and j with e = h0,
h1 = f = j0, and j1 = g. The homotopy

(x, t) 7→
{

h(x, 2t), 0 ≤ t ≤ 1/2,

j(x, 2t − 1), 1/2 ≤ t ≤ 1,

deforms e into f between time 0 and time 1/2, then deforms f into g between
time 1/2 and time 1, showing that e ≃ g.

The homotopy class of a map f is its equivalence class, i.e., the set
of all maps that are homotopic to it. Although the most important thing
at the outset is to simply imagine a movie in which f deforms into g, you
should also be aware that if f and g are not homotopic, then they differ in
some sense that is qualitative. The space of homotopy classes of maps from
X to Y can have quite interesting and useful properties and structure.

There is a simple but fundamental point that should be established right
away, namely that the operation of passing from a function to its homotopy
class commutes with composition. If h : X×[0, 1] → Y and j : Y ×[0, 1] → Z
are homotopies, then

(x, t) 7→ jt(ht(x)) = j(h(x, t), t)

is a homotopy that shows that j0 ◦ h0 ≃ j1 ◦ h1. Any continuous function
g : Y → Z induces a function f 7→ g ◦ f taking continuous functions from
X to Y to continuous functions from X to Z, so any homotopy class of
functions from Y to Z induces a function taking homotopy classes of maps
from X to Y to homotopy classes of maps from X to Z. Similarly, any
homotopy class of maps from X to Y induces a function from the homotopy
classes of maps from Y to Z to the homotopy classes of maps from X to Z.

A closed path or loop in a topological space Y is a continuous function

ℓ : S1 → Y.

The space Y is simply connected if it is path connected and every loop in
Y is homotopic to a constant path. That is, every loop in Y can be continu-
ously deformed to a “path” that simply stays put at a certain point. Simple
connectedness is a topological property that depends only on a space’s home-
omorphism type. To see this suppose that j : Y → Ỹ is a homeomorphism.
Then the maps

ℓ 7→ j ◦ ℓ and ℓ̃ 7→ j−1 ◦ ℓ̃
induce inverse bijections between the set of loops in Y and the set of loops
in Ỹ . Since passage to homotopy classes commutes with composition, if ℓ
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and ℓ′ are homotopic, then so are j ◦ ℓ and j ◦ ℓ′, so j induces a bijection
between the set of homotopy classes of loops in Y and the set of homotopy
classes of loops in Ỹ . Consequently Y is simply connected if and only if Ỹ
is. To show that the sphere and the torus are not homeomorphic it suffices
to show that: a) the sphere is simply connected; b) the torus isn’t.

We’ll deal with the sphere first, applying a simple general principle: if Y
is a topological space, A ⊂ Y is simply connected, and every loop ℓ : S1 → Y
is homotopic to a loop ℓ′ : S1 → A, then Y is simply connected, because
there is a homotopy that deforms ℓ to ℓ′ over the interval [0, 1

2 ], then deforms
ℓ′ to a constant loop over the interval [12 , 1]. Recall that S2 has a real analytic
atlas consisting of the coordinate charts ϕN : UN → R2 and ϕS : US → R2

where

UN := S2 \ {(1, 0, 0)} and US := S2 \ {(−1, 0, 0)}.
Since ϕS is a homeomorphism, to show that S2 is simply connected it suffices
to show that any ℓ : S1 → S2 is homotopic to some ℓ̃ : S1 → US, and that
R2 is simply connected.

b

b

x∗

x

{(1 − t)x∗ + tx : 0 ≤ t ≤ 1}

Figure 9.7

It is very easy to give a direct proof that R2 is simply connected, but
there are some concepts and terminology here that everyone should know,
so we’ll drag it out a bit. A space Y is contractible if there is a homotopy
H : Y × [0, 1] → Y between IdY and a constant function. Such a homotopy
is called a contraction. A contractible space Y is simply connected because
for any loop ℓ : S1 → Y there is the homotopy

h : (s, t) 7→ H(ℓ(s), t)

with h0 = ℓ and h1 a constant loop. For example, a set S ⊂ Rn is star-

shaped (Figure 9.7) at a point x∗ ∈ S if, for each x ∈ S, the line segment
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{ (1 − t)x + tx∗ : 0 ≤ t ≤ 1 } is contained in S, in which case there is the
contraction

H(x, t) := (1 − t)x+ tx∗.

Of course a set is convex if and only if it is star-shaped at each of its points,
and Rn is convex, so it is simply connected.

Fix a loop ℓ : S1 → S2. To prove that S2 is simply connected it suf-
fices to show that ℓ is homotopic to a loop whose image doesn’t contain
(−1, 0, 0), which seems quite obvious, but proving it formally involves some
work. (There are methods for constructing “space filling curves” that can
be used to show there are continuous surjections from S1 to S2, so it’s not
automatically the case that ℓ “misses” some point of the range.) It’s actually
rather common in topological reasoning that the interesting conceptual ma-
terial can be expressed simply, but “simple” concrete constructions like our
deformation of ℓ take a lot of space to explain, or involve a certain amount
of complexity, even though it’s obvious that such a construction is possible.
(I’m afraid there will be other examples below.)

Of course the distance between (−1, 0, 0) and (1, 0, 0) is 2. Since S1 is
compact, ℓ is uniformly continuous (Proposition 9.3) so there is δ < 0 such
that the distance between ℓ(x) and ℓ(x′) is less than 2 whenever ‖x′−x‖ < δ.
To get a concrete description of S1 we treat it as the the image of the function

c : θ 7→ (cos θ, sin θ).

The domain of c is not compact, but since c is “periodic” it is not hard
to show that it must be uniformly continuous because its restriction to a
sufficiently large compact interval is uniformly continuous. Therefore there
is γ > 0 such that ‖c(θ′)−c(θ)‖ < δ whenever |θ′−θ| < γ. Choose an integer
k with 2π/k < γ, choose some θ0 ∈ R arbitrarily, and for i = 1, . . . , k let
θi := θ0 + 2πi

k and Ai := c([θi−1, θi]).

Consider a particular i, and suppose that ℓ(z) 6= (−1, 0, 0) for all z ∈ Ai.
(Otherwise (1, 0, 0) /∈ ℓ(Ai), and that case is handled symmetrically.) It is
easy to construct a homotopy h : Ai × [0, 1] → R2 that has h0 = ϕS ◦ ℓ|Ai

and h1(z) 6= (0, 0) for all z in the interior of Ai, and that “holds endpoints
fixed” in the sense that

ht(c(θi−1)) = h0(c(θi−1)) and ht(c(θi)) = h0(c(θi))

for all t. Let j := ϕ−1
S ◦ h. Then j : Ai × [0, 1] → S2 is a homotopy holding

endpoints fixed with j0 = ℓ|c(Ai) and j1(z) /∈ {(−1, 0, 0), (1, 0, 0)} for all z in
the interior of Ai.
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Since they hold endpoints fixed, we can combine these homotopies on
the various arcs Ai to construct a homotopy between ℓ and a loop ℓ′ that
maps no points outside of { c(θi) : 0 ≤ i ≤ k }) to (−1, 0, 0) or (1, 0, 0). But
now observe that in the construction above, if we had known that ℓ mapped
only finitely many points to (−1, 0, 0) or (1, 0, 0), then we could have chosen
a θ0 such that none of the points c(θi) are mapped to (−1, 0, 0) or (1, 0, 0),
and in that case these points wouldn’t be in the image of ℓ′. Therefore, by
repeating this process, if necessary, we can deform ℓ to a loop whose image
is contained in UN ∩ US . As we explained above, since UN ∩ US ⊂ US , this
is enough to prove that S2 is simply connected.

The rest of this section is devoted to showing that the torus is not simply
connected. There are various ad hoc ways to do this, but our real agenda
is to develop a powerful new concept, and this will involve several new
definitions.

Recall that a path in a topological space X is a continuous function
p : [0, 1] → X. If the final endpoint p(1) of a path p is the same as the initial
endpoint q(0) of a second path q, then we say they are composable. In
this case their composition p ∗ q is the path given by following p at double
the original speed, then following q at twice the pace:

p ∗ q : s 7→
{

p(2s), 0 ≤ s ≤ 1/2,

q(2s− 1), 1/2 ≤ s ≤ 1.

A homotopy of paths holding the end points fixed is a homotopy
h : [0, 1] × [0, 1] → X with

h(0, t) = h(0, 0) and h(1, t) = h(1, 0)

for all t. We will say that two paths p and q are homotopic rel endpoints

if there is a homotopy holding endpoints fixed with h0 = p and h1 = q. This
is, in fact, an equivalence relation: the proof is a matter of noting that our
earlier proof that ‘is homotopic to’ is an equivalence relation applies, with
slight and obvious modifications, to homotopies that hold the end points
fixed. The equivalence class of p is denoted by [p].

We would like to define a composition operation on homotopy classes of
composable paths by setting

[p] ∗ [q] := [p ∗ q]

when p and q are composable, but of course this doesn’t make sense unless we
can show that [p ∗ q] depends only on [p] and [q] and not on the particular
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representatives p and q. This is straightforward. Suppose that h and j
are homotopies holding endpoints fixed that show, respectively, that p is
homotopic rel endpoints to p′ and q is homotopic rel endpoints to q′. Then
ht and jt are composable for all t, and the homotopy

(s, t) 7→
{

h(2s, t), 0 ≤ s ≤ 1/2,

j(2s − 1, t), 1/2 ≤ s ≤ 1,

shows that p ∗ q is homotopic rel endpoints to p′ ∗ q′.
As an operation on paths, composition is not very well behaved. Among

other things, it’s not even associative. But composition of homotopy classes
of paths has more appealing properties. We’ll illustrate this by developing
several useful facts.

s

t

p q r

Figure 9.7

Suppose p, q, and r are paths with p(1) = q(0) and q(1) = r(0). Then
the definition of composition of homotopy classes implies that ([p]∗[q])∗[r] =
[(p ∗ q) ∗ r] and [p] ∗ ([q] ∗ [r]) = [p ∗ (q ∗ r)], and if we can show that (p ∗ q) ∗ r
and p ∗ (q ∗ r) are homotopic rel endpoints, so that [(p ∗ q) ∗ r] = [p ∗ (q ∗ r)],
then it will follow that composition of homotopy classes is associative. The
function

(s, t) 7→











p
(

4s/(t+ 1)
)

, 0 ≤ s ≤ (t+ 1)/4,

q
(

4s − t− 1
)

, (t+ 1)/4 ≤ s ≤ (t+ 2)/4,

r
(

(4s − t− 2)/(2 − t)
)

, (t+ 2)/4 ≤ s ≤ 1,

is an explicit homotopy with endpoints fixed that demonstrates this, thereby
fulfilling the author’s obligation to be rigorous and all that, but I’d like to
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suggest that you not study it. Instead, think about why the assertion should
be true, and consider Figure 9.7. If you think that the basic idea is clear
and that, with a little work, you could come up with a homotopy that would
do the job, feel free to spare yourself the tedious details of my construction.

For any x ∈ X let ωx be the constant path that maps every element of
[0, 1] to x. Then ωp(0) ∗ p and p ∗ ωp(1) are homotopic rel endpoints to p, so
that

[ωp(0)] ∗ [p] = [p] = [p] ∗ [ωp(1)].

The homotopies that prove this are

(s, t) 7→
{

xp(0), 0 ≤ s ≤ (1 − t)/2,

p
(

(2s+ t− 1
)

/(t+ 1)
)

, (1 − t)/2 ≤ s ≤ 1,

and

(s, t) 7→
{

p
(

s/(t+ 1)
)

, 0 ≤ s ≤ (1 + t)/2,

p(1), (1 + t)/2 ≤ s ≤ 1,

but again a visual understanding is primary, with the algebra being a ren-
dering of that.

For any path p let p− : s 7→ p(1− s) be the path that traverses the route
taken by p in the opposite direction. Then p∗p− is homotopic rel endpoints
to ωp(0), while p− ∗ p homotopic rel endpoints to ωp(1), so that

[p] ∗ [p−] = [ωp(0)] and [p−] ∗ [p] = [ωp(1)].

Once again, for the sake of completeness, we give an algebraic homotopy
establishing the first equation (since (p−)− = p, the second equation follows
from the first) expecting you to pass over it lightly if the idea seems clear:

(s, t) 7→
{

p
(

2s(1 − t)
)

, 0 ≤ s ≤ 1/2,

p−
(

1 − 2(1 − s)(1 − t)
)

, 1/2 ≤ s ≤ 1.

Composition of homotopy classes becomes even better behaved if we
restrict to those paths that begin and end at some particular point, because
any two such paths are composable. A pointed space is a pair (X,x0)
in which X is a topological space and x0 is an element of X called the
base point. In this context we’ll think of a loop based at x0 as a path
γ in X whose endpoints are both x0: γ(0) = x0 = γ(1). Reviewing our
results above, we see that composition of homotopy classes of loops based
at x0 is associative, that [ωx0] is a two sided identity for this operation,
and that for any loop based at x0, say γ, [γ−] is a two sided inverse of [γ].
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We have defined a group, called the fundamental group of (X,x0) and
denoted by π1(X,x0), consisting of homotopy classes of loops based at x0

with composition as the group operation.
To what extent does π1(X,x0) depend on the choice of x0? The definition

refers only to objects that lie entirely in the path component of x0. (Recall
that this is the set of all points x1 ∈ X such that there is a continuous
p : [0, 1] → X with p(0) = x0 and p(1) = x1.) For this reason there is not
much sense in applying this concept to pointed spaces that are not path
connected.

So suppose that X is path connected, x1 is another point in X, and p is
a path in X with p(0) = x0 and p(1) = x1. There is a function

ιp : π1(X,x0) → π1(X,x1) given by ιp([γ]) := [p ∗ γ ∗ p−].

If γ and η are any two loops with base point x0, then the difference between
p ∗ (γ ∗ η) ∗ p− and (p ∗ γ ∗ p−) ∗ (p ∗ η ∗ p−) (aside from details of timing) is
that the latter path has an extra trip from x1 to x0 and back in the middle,
and this can be deformed to a constant loop. More formally, the various
results above allow the calculation

[(p ∗ γ ∗ p−) ∗ (p ∗ η ∗ p−)] = [p ∗ γ ∗ (p− ∗ p) ∗ η ∗ p−]

= [p ∗ γ ∗ ωx1 ∗ η ∗ p−] = [p ∗ (γ ∗ η) ∗ p−].

This allows us to compute that ιp is a homomorphism:

ιp([γ]) ∗ ιp([η]) = [p ∗ γ ∗ p−] ∗ [p ∗ η ∗ p−] = [(p ∗ γ ∗ p−) ∗ (p ∗ η ∗ p−)]

= [p ∗ (γ ∗ η) ∗ p] = ιp([γ ∗ η]) = ιp([γ] ∗ [η]).

(Here the first and fourth equality are from the definition of ιp, and the
second and last are from the definition of composition of homotopy classes.)
In fact ιp is an isomorphism:

ιp−(ιp([γ])) = ιp−([p ∗ γ ∗ p−]) = [p− ∗ (p ∗ γ ∗ p−) ∗ p]

= [(p− ∗ p) ∗ γ ∗ (p− ∗ p)] = [ωx0 ∗ γ ∗ ωx0] = [γ].

In sum:

Proposition 9.29. If X is path connected and p : [0, 1] → X is continuous
with p(0) = x0 and p(1) = x1, then

ιp : π1(X,x0) → π1(X,x1) and ιp− : π1(X,x1) → π1(X,x0)

are inverse isomorphisms.
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One interesting possibility is that x1 = x0. Then p is a loop based at x0,
and

ιp([γ]) = [p] ∗ [γ] ∗ [p−] = [p] ∗ [γ] ∗ [p]−1 = C[p]([γ]).

Since the isomorphism type of π1(X,x0) doesn’t depend on x0 when X is
path connected (and this is the only interesting case) we typically talk about
(and think about) “the fundamental group of X” without mentioning the
base point.

It’s a good idea to pause briefly and contemplate the significance of the
fundamental group. We have a general method for passing from a pointed
space to a group. As we’ll see below, if two pointed spaces are homeomor-
phic (in the appropriate pointed sense) then their fundamental groups are
isomorphic. If we want to prove that two pointed spaces are not homeomor-
phic, it suffices to show that their fundamental groups are not isomorphic.

As a general matter, in order to prove that two mathematical objects are
different one has to define some attribute that is potentially different, then
“compute” the attributes of the two objects and show that they’re actually
different. The fundamental group seems promising insofar as it passes from
a pointed space to a quite different sort of object, but this wouldn’t amount
to much if there weren’t powerful and systematic ways to compute it. To
get a better sense of this we now study its most basic properties.

First of all, the relationship between the fundamental group and simple
connectedness is what one would naively expect, so if we can show that the
fundamental group of the torus is not trivial, it will follow that the torus is
not simply connected.

Proposition 9.30. Let X be a path connected space. Then X is simply
connected if and only if, for any x0 ∈ X, π1(X,x0) is the trivial group with
one element.

Proof. First suppose that the fundamental group is trivial, and let a loop ℓ :
S1 → X be given. Since π1(X,x0) is trivial and isomorphic to π1(X, ℓ(1, 0)),
the latter group is trivial. (We take (1, 0) to be the base point of S1.)
Therefore ℓ is homotopic (by a homotopy that holds endpoints fixed, not
that that matters) to ωℓ(1,0). Thus X is simply connected.

Now suppose that X is simply connected. Let γ be a loop based at x0.
Since X is simply connected there is a homotopy h : [0, 1]× [0, 1] → X with
h0 = γ, ht(0) = ht(1) for all t, and h1 a constant function. Let p be the
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path p(t) := h0(t) = h1(t), and let j be the homotopy

j(s, t) :=











p
(

2s
)

, 0 ≤ s ≤ 1
2 t,

h
(

(s− 1
2t)/(1 − t), t

)

, 1
2t ≤ s ≤ 1 − 1

2t,

p
(

2(1 − s)
)

, 1 − 1
2 t ≤ s ≤ 1.

(Even though the function (s, t) 7→ (s − 1
2t)/(1 − t) is discontinuous at

(1
2 , 1), j is continuous because h1 is a constant function. But, as usual, it is

better to convince yourself that the result is correct without studying this
construction.) This is a homotopy holding endpoints fixed between h0 = γ
and p ∗ p−. Thus [γ] = [p ∗ p−] = [ωx0], which shows that π1(X,x0) is
trivial.

A pointed map from (X,x0) to another pointed space (Y, y0) is a con-
tinuous function f : X → Y with f(x0) = y0. It will come as no surprise
that there is a category of pointed spaces and pointed maps, as I am sure
you can verify for yourself. If f is a pointed map from (X,x0) to (Y, y0)
and γ is a loop in X based at x0, then f ◦ γ is a loop in Y based at y0, and
if h : [0, 1] × [0, 1] → X is a homotopy holding endpoints fixed that shows
that γ and η are homotopic rel endpoints, then f ◦ h is a homotopy holding
endpoints fixed that shows that f ◦γ and f ◦η are homotopic rel endpoints.
This means that there is a well defined map

π1(f) : [γ] 7→ [f ◦ γ].

The identity f ◦ (γ ∗ η) = (f ◦ γ) ∗ (f ◦ η) is a straightforward consequence
of the definitions, so

π1(f)([γ ∗ η]) = [f ◦ (γ ∗ η)] = [f ◦ γ] ∗ [f ◦ η] = π1(f)([γ]) ∗ π1(f)([η]),

and consequently π1(f) : π1(X,x0) → π1(Y, y0) is a homomorphism.

We now come to perhaps the most important property of the fundamen-
tal group:

Theorem 9.31. π1 is a functor from the category of pointed spaces and
pointed maps to the category of groups and homomorphisms.

Proof. For any pointed space (X,x0) we have π1(Id(X,x0)) = Idπ1(X,x0) be-
cause if γ is a loop based at x0, then

π1(Id(X,x0))([γ]) = [IdX ◦ γ] = [γ] = Idπ1(X,x0)([γ]).
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If f : (X,x0) → (Y, y0) and g : (Y, y0) → (Z, z0) are pointed maps, then
π1(g ◦ f) = π1(g) ◦ π1(f) because

π1(g ◦ f)([γ]) = [g ◦ f ◦ γ] = π1(g)([f ◦ γ]) = π1(g)(π1(f)([γ])).

This result can be used in a variety of ways to extract information about
the fundamental group of one space if you know something about another
space’s fundamental group, and the particular example considered here is,
in this respect, fairly typical. We think of the torus as the cartesian product
S1 × S1 of two circles. Let i : S1 → S1 × S1 and r : S1 × S1 → S1 be the
maps

i(p) := (p, (1, 0)) and r(p, q) := p.

Then r ◦ i = IdS1 , so

π1(r) ◦ π1(i) = π1(r ◦ i) = π1(IdS1) = Idπ1(S1).

(Here we are letting the fact that the choice of base point doesn’t matter
creep into the notation. I expect that you can see how to make everything
kosher.) The point is that if the fundamental group of the torus was triv-
ial, the image of π1(r) would also be trivial, and this is impossible if the
fundamental group of S1 is not trivial. That is, if we can show that the fun-
damental group of S1 is not trivial, then it will follow that the fundamental
group of the torus is not trivial.

We’ll need a couple more concepts. Let X and X̃ be topological spaces,
and let c : X̃ → X be a continuous function. An open set U ⊂ X is c-small

if c−1(U) is a disjoint union of copies of U :

c−1(U) =
⋃

α∈A

Ũα

where A is an index set, the various Uα are open and pairwise disjoint,
and each c|Ũα

is a homeomorphism between Ũα and U . The map c is a
covering space for X if the c-small open sets cover X, so each x ∈ X has
a c-small open neighborhood. An obvious and pertinent example is the map
θ 7→ (cos θ, sin θ) from R to S1, and it is easy to give many others, e.g., the
“double covering” z 7→ z2 that maps C∗ onto itself.

Even though it plays no role in what follows, it is still worth mentioning
that if X is a smooth (Cr, real analytic, or holomorphic) manifold, then
there is an induced differential structure that makes X̃ a smooth manifold.
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Let {ϕβ : Uβ → Vβ}β∈B be a smooth atlas for X. The collection {ϕβ |Uβ∩Wγ}
is a smooth atlas for X whenever {Wγ}γ∈C is an open cover of X, so X has
a smooth atlas whose domains are all c-small, and consequently we may
assume that each Uβ is c-small. Whenever Ũβ,α is one of the copies of Uβ in
c−1(Uβ) let

ϕ̃β,α := ϕβ ◦ c|Ũβ,α
: Ũβ,α → Vβ.

Then the collection of all such maps is a smooth atlas for X̃ because ϕ̃β′,α′ ◦
ϕ̃−1
β,α always agrees with ϕβ′ ◦ ϕ−1

β on its domain of definition. This idea is
particularly important in the theory of Riemann surfaces.

X̃

c

X

bc

bc

Ũ3

bc

bc

Ũ2

bc

bc

Ũ1

bc

bc

Ũ0

bc

bc

Ũ−1

bc

bc

U

Figure 9.8

And its significance is quite a bit more general: for a wide variety of
structures on X “lifting” can be used to induce a structure on X̃ . The
example of particular interest to us is as follows. A lift of a map f : Y → X
is a continuous function f̃ : Y → X̃ such that c◦f̃ = f . Described intuitively,
the basic idea of the next result is as follows. Suppose that p : [0, 1] → X
is a path, and that x̃0 ∈ c−1(0) is given. We would like to show that there
is a unique lift p̃ : [0, 1] → X̃ with p̃(0) = x̃0. Supposing that we have
already shown that p|[0,s] has a unique lift p̃ : [0, s] → X̃ , let U be a c-small
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set containing p(s), and let Ũα ⊂ c−1(U) be the copy of U containing p̃(s).
Then for some ε > 0 we can use (c|Ũα

)−1 ◦p to extend p̃ to [0, s+ε], and this
extension is unique because continuity prevents an extension from jumping
from Ũα to some other Ũα′ .

Theorem 9.32 (Homotopy Lifting Property). If c : X̃ → X is a covering
space, h : Y × [0, 1] → X is a homotopy, and h̃0 : Y → X̃ is a lift of h0,
then there is a unique lift h̃ : Y × [0, 1] → X̃ that extends h̃0.

In a sense we will prove the homotopy lifting property three times,
preparing the general argument by passing through two special cases that,
together, amount to a more formal and precise rendering of the intuition
described above.

Lemma 9.33. If c : X̃ → X is a covering space, p : [s0, s1] → U is a
path where U ⊂ X is c-small, and x̃0 ∈ p−1(s0), then there is a unique lift
p̃ : [s0, s1] → X̃ with p̃(s0) = x̃0.

Proof. Suppose that c−1(U) = {Ũα}α∈A, as per the definition of a covering
space, and that x̃0 ∈ Ũβ. Then (c|Ũβ

)−1 ◦p is a lift of p|[s0,s1] that maps s0 to

x̃β. If p̃ is any lift of p|[s0,s1], then each of the sets p̃−1(Ũα) is an open subset
of [s0, s1], but [s0, s1] is connected, so only one of them can be nonempty.
Therefore (c|Ũβ

)−1 ◦ p is the only lift that maps s0 to x̃β.

To avoid repetition we give a separate a technical fact that will be applied
in each of the following two proofs.

Lemma 9.34. Under the hypotheses of Theorem 9.32, for any y ∈ Y there
is an integer K, c-small open sets U1, . . . , UK ⊂ X, an open set V ⊂ Y
containing y, and numbers 0 = t0 < t1 < · · · < tK−1 < tK = 1, such that

h(V × [tk−1, tk]) ⊂ Uk for each k = 1, . . . ,K.

Proof. For each t ∈ [0, 1] let Ut be a c-small set containing h(y, t). Since h is
continuous, Zt := h−1(Ut) is open. The definition of the product topology
implies that there an open set Vt ⊂ Y and an open (in the relative topology of
[0, 1]) interval It such that (y, t) ∈ Vt×It ⊂ Zt. Since {y}× [0, 1] is compact,
the open cover {Vt×It : t ∈ [0, 1] } has a finite subcover V1×I1, . . . , VK×IK.
Let V := V1∩. . .∩VK . Then V ×I1, . . . , V ×IK is an open cover of {y}×[0, 1],
and for each k = 1, . . . ,K there is a c-small set Uk with V × Ik ⊂ h−1(Uk).

By reindexing we may achieve 0 ∈ I1 and make it the case that I2
contains the least upper bound of I1, I3 contains the least upper bound of
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I2, and so forth, terminating the process (and throwing out any redundant
elements of the cover) as soon as 1 ∈ IK . Choose t1 ∈ I1 ∩ I2, choose
t2 ∈ I2 ∩ I3 with t2 > t1, choose t3 ∈ I3 ∩ I4 with t3 > t2, and so forth until
tK−1 has been chosen.

Lemma 9.35. If c : X̃ → X is a covering space, p : [0, 1] → X is a path,
and x̃0 ∈ p−1(0), then there is a unique lift p̃ : [0, 1] → X̃ with p̃(0) = x̃0.

Proof. Thinking of [0, 1] as a cartesian product {y} × [0, 1], let U1, . . . , UK ,
and t0, . . . , tK be as above. Applying Lemma 9.33 repeatedly shows that
there is a unique function p̃ : [0, 1] → X̃ such that p̃(0) = x̃0 and each
p̃|[tk−1,tk] is a lift of p|[tk−1,tk]. (More concretely, once p̃|[t0,t1] has been de-
termined we know what p̃(t1) is, there is a unique p̃|[t1,t2] consistent with
this datum that determines p̃(t2), and so forth.) Since the sets [tk−1, tk]
constitute a finite closed cover of [0, 1], Proposition 3.26 implies that p̃ is
continuous, hence a lift.

In the situation described in the hypotheses of Theorem 9.32, the last
result can be applied to each point in Y , so there is a unique function
h̃ : Y × [0, 1] → X̃ extending h̃0 such that for each y ∈ Y , h̃|{y}×[0,1] is a

lift of h|{y}×[0,1]. Any lift has to agree with h̃ on each {y} × [0, 1], so there

can’t be another lift. But we still need to show that h̃ is a lift, and the one
remaining piece of that is showing that h̃ is continuous. Since continuity is a
local property, it suffices to show that each y ∈ Y has an open neighborhood
W such that h̃|W×[0,1] is continuous, and we will do this by showing that

for some such W , h|W×[0,1] has a lift: the restriction of h̃ to W × [0, 1] must
agree with this lift, and consequently must be continuous.

Proof of Theorem 9.32. Fixing a point y ∈ Y , let the c-small sets U1, . . . , UK ,
the open set V , and the numbers t0, . . . , tK be as in Lemma 9.34. Let
W0 := V , and define j̃0 : W0 × [0, t0] → X̃ by setting

j̃0(y
′, t′) := h̃0(y

′).

(Of course t0 = 0, so this seems a bit silly, but it conforms with the general
pattern below.) Of course j̃0 is a lift of h|W0×[0,t0].

Proceeding inductively, suppose that for some k = 1, . . . ,K we have
already found an open set Wk−1 ⊂ Y containing y and a lift j̃k−1 of
h|Wk−1×[0,tk−1] such that j̃k−1(y

′, 0) = h̃0(y
′) for all y′ ∈Wk−1. Let c−1(Uk) =

{Ũk,α}α∈A, as per the definition of a covering space, and let Ũk,β be the copy
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of Uk that contains j̃k−1(y, tk−1). It may not be the case that j̃k−1(y
′, tk−1) ∈

Ũk,β for all y′ ∈Wk−1, but we can set

Wk := { y′ ∈Wk−1 : j̃k−1(y
′, tk−1) ∈ Ũk,β }.

Then Wk contains y, and it’s open because j̃k−1 is continuous. Define j̃k :
Wk × [0, tk] → X̃ by setting

j̃k(y
′, t′) :=

{

j̃k−1(y
′, t′), 0 ≤ t′ ≤ tk−1,

(c|Ũk,β
)−1(h(y′, t′)), tk−1 ≤ t′ ≤ tk.

Then j̃k is well defined, and it is continuous on Wk × [0, tk−1] and on
Wk × [tk−1, tk]. These sets constitute a finite closed cover of Wk × [0, tk], so
Proposition 3.26 implies that j̃k is continuous and thus a lift of h|Wk×[0,tk].
By induction this construction is possible for all k. Assuming this has been
done, let W := WK and j̃ := j̃K . The uniqueness clause of the last result
implies that j̃ = h̃|W×[0,1], so h̃ is continuous on W × [0, 1]. Since y was an
arbitrary element of Y , this completes the proof.

Here is a useful and surprisingly simple consequence of the homotopy
lifting property.

Lemma 9.36. If c : X̃ → X is a covering space, h : [0, 1] × [0, 1] → X
is a homotopy that holds endpoints fixed, and h̃ is a lift of h, then h̃ holds
endpoints fixed.

Proof. The homotopy lifting property implies that there are unique lifts of
h(0, ·) and h(1, ·) mapping 0 to h̃(0, 0) and h̃(1, 0) respectively. Of course
h̃(0, ·) and h̃(1, ·) are such lifts, but so are the constant functions t 7→ h̃(0, 0)
and t 7→ h̃(1, 0).

We will now apply what we have learned to the covering space c : R → S1

where c(θ) := (cos θ, sin θ). Let γ : [0, 1] → S1 is a loop based at (1, 0). The
homotopy lifting property gives a unique lift γ̃ : [0, 1] → R with γ̃(0) = 0,
and since γ(1) = (1, 0) we have c(γ̃(1)) = (1, 0) and γ̃(1) = 2πnγ for some
integer nγ . We claim that nγ depends only on the associated element [γ]
of π1(S

1, (1, 0)). To see this observe that if h : [0, 1] × [0, 1] → S1 is a
homotopy of loops based at (1, 0) that holds endpoints fixed with h0 = γ,
and h̃ : [0, 1] × [0, 1] → R is a lift, then h̃ holds endpoints fixed, so

2πnh0 = h̃0(1) = h̃1(1) = 2πnh1 .
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Thus there is a well defined function [γ] 7→ nγ from π1(S
1, (1, 0)) to ZZ.

For each integer N the function γN : [0, 1] → S1 taking t to c(2πNt) is
a loop in S1 based at (1, 0) with nγN

= N , so this function is surjective.
We have now produced a function with domain π1(S

1, (1, 0)) whose image
contains more than one element of the range, thereby completing the proof
that π1(S

1, (1, 0)) is nontrivial, and that consequently the torus is not simply
connected and not homeomorphic to S2.

Of course it would make little sense to come this far without also showing
that [γ] 7→ nγ is an isomorphism between π1(S

1, (1, 0)) and ZZ when ZZ is
regarded as an additive group. If γ and η are two loops in S1 based at (1, 0),
and γ̃ and η̃ are the lifts with γ̃(0) = 0 and η̃(0) = 0, then

κ̃ : s 7→
{

γ̃(2s), 0 ≤ s ≤ 1
2 ,

γ̃(1) + η̃(2s − 1), 1
2 ≤ s ≤ 1,

is the lift of γ ∗ η mapping 0 to 0, and κ̃(1) = γ̃(1) + η̃(1). Therefore

nγ∗η = nγ + nη,

so [γ] 7→ nγ is a homomorphism. To establish that it’s injective we need
to show that its kernel is trivial. Let γ̃ be the lift of γ with γ̃(0) = 0, and
suppose that n[γ] = 0, so that γ̃(1) = 0. Then

h : (s, t) 7→ c((1 − t)γ̃(s))

is a homotopy holding endpoints fixed between h0 = γ and h1 = ω(1,0), so
[γ] = [ω(1,0)] is the identity element of π1(S

1, (1, 0)).
To further illustrate the power of the fundamental group we’ll prove the

two dimensional case of Brouwer’s fixed point theorem. Let

D2 = { (x, y) ∈ R2 : x2 + y2 ≤ 1 }

be the unit disk. Aiming at a contradiction, suppose that f : D2 → D2 is a
continuous function without a fixed point. Let r : D2 → S1 be the function
taking each p to the point3 where the ray emanating from f(p) and passing

3It is visually obvious that the ray in question intersects S1 exactly once, but a formal
proof allows us to review several concepts. To see that there is at least one such point
apply the intermediate value theorem to the restriction of the function t 7→ ‖p+t(p−f(p))‖
to [0,∞). Since a quadratic equation has at most two real roots, the line ℓ containing p
and f(p) intersects S1 at most twice. Since D2 and ℓ are both convex, their intersection
is convex. The continuity of the norm implies that the boundary points (in the relative
topology of ℓ) of D ∩ ℓ are in S1, and f(p) ∈ D2 ∩ ℓ, so it can’t be the case that both
points in S1 ∩ ℓ are past p on the ray emanating from f(p) and passing through p.
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through p intersects S1. Clearly r is continuous4. If p ∈ S1, then r(p) = p,
so r ◦ i = IdS1 where i : S1 → D2 is the inclusion. Consequently

π1(r) ◦ π1(i) = Idπ1(S1,(1,0)),

but D2 is convex, hence contractible and simple connected, with trivial
fundamental group (for any base point) so this is impossible.

b

b

b

f(p)

p

r(p)

Figure 9.9

9.6 Classification of Compact Manifolds

There are a few more things to say about functors like the fundamental group
and how they contribute to the study of manifolds. One can define functors
πn for n = 2, 3, . . . that associate with each pointed space (X,x0) a group of
homotopy classes of pointed maps from (Sn, (1, 0, . . . , 0)) to (X,x0). There
are many other functors from the category of (unpointed) topological spaces
to the categories of abelian groups and commutative rings. Of course these
are useful as ways of distinguishing manifolds, but, as often happens with
good ideas, the study of these functors has evolved into a subject in and of
itself, with a major impact on abstract algebra and an increasing number of
applications in areas other than topology.

4In this case the formal proof is just an annoyance. Suppose pn → p. For each n
there is some tn ≥ 0 such that r(pn) = pn + tn(pn − f(pn)), and the sequence {tn} is
bounded because the sequence {‖f(pn) − pn‖} is bounded away from 0, so (Theorem
3.44) it has a convergent subsequence. If t is the limit of a convergent subsequence, then
p + t(p − f(p)) ∈ S1, so, by the argument in the previous footnote, there is at at most
one such limit point. If t is the unique limit point, then tn → t (if tn was outside some
neighborhood of t for infinitely many n there would be a subsequence with a different
limit) and r(pn)→ p + t(p− f(p)) = r(p).
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The question we posed and answered in the last section is one element
of the analysis leading to the classification of compact connected surfaces
up to homeomorphism. Although Riemann’s concept of genus clearly points
toward a classification of oriented two dimensional manifolds, the first paper
explicitly considering this project was an 1870 paper of Möbius. He consid-
ered only surfaces that were embedded in R3 (which implies that the surface
is orientable) finding that any such surface is either the sphere or a direct
sum of finitely many toruses. This means that Riemann’s notion of genus
classifies surfaces embedded in R3: two such surfaces are homeomorphic if
and only if they have the same genus. In fact this result doesn’t depend on
embeddability, as we’ll explain below.

The theorem classifying all compact surfaces, including those that are
not orientable, was correctly stated by Walther van Dyke (1856-1934) in
1888, but he did not give a complete proof. Any connected compact surface
is either the sphere, a connected sum of finitely many copies of the torus,
a connected sum of the Klein bottle and finitely many copies of the torus,
or the connected sum of P 2(R) and finitely many copies of the torus. The
facts that drive this result are: (a) the connected sum of two copies of P 2(R)
is the Klein bottle; (b) the connected sum of three copies of P 2(R) is the
same as the connected sum of one copy of the torus and one copy of P 2(R).
(The proofs of these facts are in some sense elementary, but nonetheless
they involve sophisticated geometric imagination.) We can think of creating
an oriented surface of genus g as a matter of starting with a sphere and
attaching g “handles” by taking connected sums with torii. It is natural to
think of also taking a connected sum with finitely many copies of P 2(R), but
the third copy of P 2(R) fails to produce anything you can’t get by attaching
handles.

Once one has a complete and nonredundant list of surfaces, in order
to establish the classification theorem you must prove two things: (a) any
two elements of the list are not homeomorphic; (b) any connected compact
surface is homeomorphic to some element of the list. The fundamental group
is an adequate tool for this job if one can show that: (i) any two elements
of the list have different fundamental groups; (ii) any connected compact
surface has the same fundamental group as some element of the list; (iii)
if two connected compact surfaces have the same fundamental group, then
they are homeomorphic. All these things are true, but it would be hasty
to jump to the conclusion that this was the method employed in the first
rigorous proof of the classification theorem, which was given by Max Dehn
(1878-1952) and Poul Heegaard (1871-1948) in 1907, under the hypothesis
that the surface can be triangulated. (To tell the truth, I don’t know how
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the Dehn-Heegaard argument works.)
A simplex is a point, line segment, triangle, tetrahedron, or higher

dimensional analogue. A (finite) simplicial complex is a finite collection
of simplices in some Euclidean space with the following properties:

(a) each face (including ∅) of a member of the collection is also a member
of the collection;

(b) the intersection of any two simplices in the collection is a (possibly
empty) face of each of them.

Figure 9.10

The space of a simplicial complex is the union of all its members. A
topological space is triangulable if it is homeomorphic to the space of a
simplicial complex. For example, the boundary of a tetrahedron, the bound-
ary of a octahedron (Figure 9.10) and the boundary of an icosahedron are
each the space of a simplicial complex that is homeomorphic to S2. The
topology of a simplicial complex is entirely determined once one specifies
the list of simplices, their dimensions, and their containment relations, so
(up to homeomorphism) a simplicial complex is a finite combinatorial object,
which presents many advantages, and for this reason simplicial complexes
are quite important in topology. Among other things, tools like the fun-
damental group are most easily defined and computed when the space can
be triangulated. In 1925 Tibor Rado (1895-1965) proved that any compact
surface is triangulable, so that the Dehn-Heegaard argument classifies all
compact surfaces. Around 1940 Stewart Cairns (1904-1982) and J. H. C.
Whitehead (1904-1960) proved that all compact C1 manifolds can be trian-
gulated, but there are topological manifolds with no triangulation.

With the topology of compact surfaces completely understood, the natu-
ral next step is to consider compact connected three dimensional manifolds.
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After some early missteps Poincaré formulated what would seem to be the
most basic question in the direction of a classification result: is a simply con-
nected compact three manifold necessarily homeomorphic to S3? Although
Poincaré didn’t express a strong view one way or the other, this became
known as the Poincaré Conjecture, and over the course of the 20th cen-
tury its stature increased until it became one of the most famous unsolved
problems of mathematics. In particular, it was one of the Clay Mathematics
Institute’s seven Millenium Prize Problems.

We’re going to use categories to provide a partial explanation of the diffi-
culty. Let T be the category of pointed spaces and pointed maps. There is a
closely related category T̂ whose objects are pointed spaces and whose mor-
phisms are not pointed maps, but are instead homotopy classes of pointed
maps. If f : (X,x0) → (Y, y0) is a pointed map, let {f} be the equivalence
class of f under the relation ‘is homotopic to by a homotopy keeping base
points fixed.’ There is a binary operation on homotopy classes that we’ll
describe as composition: if f : (X,x0) → (Y, y0) and g : (Y, y0) → (Z, z0)
are pointed maps, then

{g} ◦ {f} := {g ◦ f}.

As usual we have to show that this definition doesn’t depend on the choices
of reresentatives, i.e., {g ◦ f} is the same as {g′ ◦ f ′} for any f ′ ∈ {f} and
g′ ∈ {g}. The argument is just as before except that now the homotopies
h : X × [0, 1] → Y and j : Y × [0, 1] → Z hold the base points fixed:
ht(x0) = y0 and jt(y0) = z0 for all t. Then jt(ht(x0)) = z0 for all t, so
(x, t) 7→ jt(ht(x)) is a homotopy holding the base point fixed between j0 ◦h0

and j1 ◦ h1.

Composition of homotopy classes of pointed maps is associative by virtue
of the associativity of composition of pointed maps:

({h} ◦ {g}) ◦ {f} = {h ◦ g} ◦ {f} = {(h ◦ g) ◦ f} = {h ◦ (g ◦ f)}

= {h} ◦ {g ◦ f} = {h} ◦ ({g} ◦ {f}).

If f : (X,x0) → (Y, y0) is a pointed map, then

{Id(Y,y0)} ◦ {f} = {Id(Y,y0) ◦ f} = {f} = {f ◦ Id(X,x0)} = {f} ◦ {Id(X,x0)},

so the homotopy equivalence classes of the identity functions are two sided
identities for composition. As promised, we have shown that T̂ has all the
properties required of a category.
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We now arrive at one of the most important concepts in topology. Two
pointed spaces (X,x0) and (X ′, x′0) are homotopy equivalent if they are
isomorphic in T̂ . That is, there are pointed maps

ǫ : (X,x0) → (X ′, x′0) and ǫ′ : (X ′, x′0) → (X,x0)

such that {ǫ′}◦{ǫ} = {Id(X,x0)} and {ǫ}◦{ǫ′} = {Id(X′,x′0)
}, so that ǫ′◦ǫ and

ǫ◦ǫ′ are homotopic to Id(X,x0) and Id(X′,x′0)
by homotopies that keep the base

points fixed. A topological concept, say a functor on topological spaces, can
be used to prove that two spaces are not homeomorphic if it takes different
values on the two spaces. One reason homotopy equivalence is important is
that many topological concepts are “crude” measures of such differences in
the sense that they take the same value on any two spaces that are homotopy
equivalent. The following discussion illustrates this concretely.

There is a rather trivial functor F from T to T̂ that takes each pointed
space to itself and each pointed map to its homotopy class. The conditions
defining a functor, namely that

F (g ◦ f) = {g ◦ f} = {g} ◦ {f} = F (g) ◦ F (f)

and F (Id(X,x0)) = {Id(X,x0)}, are automatic.

There is also a covariant functor π̂1 from T̂ to the category of groups and
homomophism given by setting π̂1(X,x0) := π1(X,x0) whenever (X,x0) is
a pointed space and setting π̂1({f}) := π1(f) whenever f : (X,x0) → (Y, y0)
is a pointed map. The definition of π̂1({f}) is independent of the choice of
representative f because if f ′ ∈ {f}, then π1(f

′) = π1(f): concretely, if γ is a
loop inX based at x0, then f ′◦γ is homotopic to f◦γ, by a homotopy holding
the base point fixed, so that [f ′ ◦γ] = [f ◦γ]. The functorial properties of π̂1

are automatic consequences of the definitions and the functorial properties
of π1:

π̂1({g} ◦ {f}) = π̂1({g ◦ f}) = π1(g ◦ f) = π1(g) ◦ π1(f) = π̂1({g}) ◦ π̂1({f})

and
π̂1({Id(X,x0)}) = π1(Id(X,x0)) = Idπ1(X,x0) = Idπ̂1(X,x0).

These definitions give π̂1(F (X,x0)) = π1(X,x0) for each pointed space
(X,x0) and π̂1(F (f)) = π̂1({f}) = π1(f) for each pointed map f : (X,x0) →
(Y, y0), so

π1 = π̂1 ◦ F.
(Recall the discussion of composition of functors in Section 6.6.) Mathe-
maticians are inclined to think of functors like F as “forgetting” about the
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differences between homotopic pointed maps. The existence of a functor π̂1

satisfying this equation demonstrates that π1 doesn’t depend on the forgot-
ten information.

Let M be a compact connected 3-manifold, and let x0 be an arbitrary
point of M . Some fairly advanced tools are involved, but it’s not terribly
difficult to show that if π1(M,x0) is trivial, then (M,x0) is homotopy equiv-
alent to (S3, (1, 0, 0, 0)). Therefore the Poincaré Conjecture is equivalent to
the following assertion: if (M,x0) and (S3, (1, 0, 0, 0)) are homotopy equiv-
alent, then M and S3 are homeomorphic. For this reason a 3-manifold with
base point that is homotopy equivalent to (S3, (1, 0, 0, 0)) is called a homo-

topy 3-sphere, and a homotopy 3-sphere that’s not homeomorphic to S3 is
called a fake 3-sphere. The Poincaré conjecture boils down to the assertion
that there are no fake 3-spheres. Given the success that we had using the
fundamental group to prove that S2 and the torus are not homeomorphic,
it might seem natural to look for another functor that necessarily has a
different value for (S3, (1, 0, 0, 0)) and for (M,x0). Unfortunately there are
systematic reasons for being pessimistic about this approach.

Any covariant functorK maps isomorphic objects in the domain category
to isomorphic objects in the range category: if f : X → Y and g : Y → X
are inverse isomorphisms, then K(f) and K(g) are inverse isomorphisms
because

K(g) ◦K(f) = K(g ◦ f) = K(IdX) = IdK(X)

and

K(f) ◦K(g) = K(f ◦ g) = K(IdY ) = IdK(Y ).

We succeeded in showing that the torus and S2 are not homeomorphic be-
cause we were able to show that π1 maps them to nonisomorphic groups.
But this argument actually shows that the sphere and the torus are not even
homotopy equivalent because π̂1 would map them to isomorphic groups if
they were. If a functor from T to the category of groups is “really” a functor
on T̂ , in the sense that it factors into a composition of another functor and
F , then the natural strategy for using the the functor to prove that two
spaces are not homeomorphic will not work if the two spaces are homotopy
equivalent. Unfortunately, pretty much all the functors studied in algebraic
topology are like this, or have similar factorizations in the corresponding
categories of unpointed spaces. This is systematically related to the fact
that they are designed to detect discrete or qualitative differences between
functions, whereas two maps that are homotopic differ only in a quantitative
sense.
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That S2 is the only compact simply connected surface follows from the
classification: we have a nonredundant list of all compact two manifolds,
and (using tools for computing π1 that we haven’t covered) one can show
that S2 is the only simply connected element of the list. If one had a similar
classification of compact three manifolds, and adequate tools for computing
their fundamental groups, we could resolve the Poincaré conjecture, but this
is at best a distant prospect. Some new idea is needed.

For any n it makes sense to ask whether there can be a compact n-
dimensional manifold that is homotopy equivalent to Sn but not homeomor-
phic to it, and the Generalized Poincaré Conjecture is the assertion that
this cannot happen. (It does makes sense to ask whether an n-dimensional
simply connected compact manifold is necessarily homeomorphic to Sn, but
in general the answer is no.) In 1961 Stephen Smale (b. 1930) shocked ev-
eryone by proving the Generalized Poincaré Conjecture when the dimension
is at least five. It may seem surprising that the situation becomes simpler
in higher dimensions, but an admittedly inaccurate analogy may help. A
loop of string in R3 can be knotted in various ways (and in fact the study
of knots is an important and thriving area of topology) but there are no
nontrivial knots in Rn for n ≥ 4 because there are no “obstructions” to
deforming a knot into the so-called unknot.

In 1982 Michael Freedman (b. 1951) proved the four dimensional version
of the conjecture. Again, it may seem surprising that his methods don’t
work in three dimensions, but one of the main findings of low dimensional
topology is that dimensions three and four are very different. In honor of
these results Smale was awarded the Fields Medal in 1966, and Freedman
received it in 1986.

In late 2002 and 2003 Grigori Perelman (b. 1966) posted 3 papers on the
internet that sketched a proof of the original Poincaré Conjecture, complet-
ing a specific research program developed by Richard Hamilton (b. 1943)
that was in turn based on a geometric approach to the topology of three
manifolds originated by William Thurston (b. 1946). The papers were very
long, with numerous new ideas. Over the next three years six mathemati-
cians, working in three teams of two, set about filling in the details and
verifying the validity of the argument. In the middle of 2006 each team
posted a paper reporting its findings. These papers were 200, 327, and 493
pages long respectively. Each of the three teams attained a complete proof
that followed Perelman’s original outline, and although many of Perelman’s
arguments were expressed in extremely terse fashion, leaving numerous de-
tails to be filled in, all three teams agreed that all gaps in his argument were
minor. In August 2006 he was awarded the Fields Medal, which he refused
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as an expression of alienation from the mathematical community.
Like Andrew Wiles’ work on Fermat’s Last Theorem, Perelman’s proof

has a degree of depth, scope, and raw length that had never been seen in a
single piece of research prior to the late 20th century. Ultimately this is a
reflection of the power and precision of the abstractions that became possible
as a result of the set theory revolution. Mathematicians are now like sure
footed mountain goats who can cover great distances while travelling along
narrow ledges and craggy ridges at the highest levels of the subject.

Wiles and Perelman both worked in secret, and in isolation, for over half
a decade, minimizing contact with other mathematicians and people outside
their immediate families. Certainly one should have no confidence in one’s
ability to imagine what they felt at the ends of their journeys, and there
is no reason to doubt that achieving the ultimate goal was in many ways
quite exhilarating, but I am inclined to suspect that for each there was a
moment when he walked out into what computer programmers call the Big
Blue Room, took a deep breath, looked at the sky, and sadly began to come
to terms with the fact that he could never return to the paradise in which
he had spent the preceeding several years.



Chapter 10

More and More Math

Now vee may perhaps to begin.

—The “punch line” of Philip Roth’s novel Portnoy’s Complaint

This book has tried to explain little bits about a great many things while
giving some sort of organized picture of the very beginnings of contempo-
rary mathematics. The idea has been to stimulate your imagination while
doing very little to satisfy your curiosity. If I’ve succeeded, you’re now ea-
ger to continue, but you have to realize that you don’t know very much
about anything, so many subjects are simply inaccessible, while others are
sufficiently self-contained in a logical sense that you could study them “in
principle,” but in practice they presume more mathematical maturity than
you currently possess.

Whether you’re aiming at graduate school or just want to take a couple
more courses that sound fun, it’s a good idea to maintain a balance between
studying and recreational reading. To an unfortunate extent current instruc-
tional practices are based on an assumption that studying is the only way.
Sadly, this is a largely self fulfilling prophecy because it leads to an enor-
mous proliferation of textbooks, while the books intended for recreational
reading are few in number and hard to learn about. It is especially difficult
for those at the beginning level to know which are suitable, and of high
quality. You can, of course, try to read textbooks for fun, but textbooks
tend to be verbose, comprehensive (because the student wouldn’t be taking
the course if she didn’t “need” to know all that stuff) and weighed down
with the task of supplying the student with a substantial amount of work
over a period of several months.

It’s also a good idea to aim for a good balance between reading and

423
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working problems. This book has deemphasized problem solving in part
because it’s a book about concepts, not puzzles, and in part in reaction to my
experience with students who only want to learn to do the problems that will
be the basis of their grade, perhaps because they never had instructors who
expected anything else. In my own study I don’t do very many problems,
but that’s partly because I’m already pretty good at it, and I also do a fair
amount of problem solving in the course of my writing and research. But a
large part of the pleasure of mathematics comes from figuring things out for
yourself, and you can’t develop a truly firm grasp of a subject without doing
some of this. If you like solving problems, by all means indulge yourself. If
it’s not really your cup of tea, try to solve a few more than might otherwise
be your inclination.

If you’re serious about this stuff, it’s also a good idea to work on writing.
Historically it has been difficult to give writing assignments in mathematics
because the subject isn’t that well suited to it, but even more fundamentally
because the technology was totally inadequate. TEX and LATEX have changed
all that: using online tutorials you can fairly quickly get to the point where
you are producing typesetting of English prose that is as clear and beautiful
as what you see in the best books. After that there is still a great deal to
learn about formatting, and about typesetting mathematics, but most of it
can be picked up as you go along by looking things up in references (many
are available online) as the need arises.

Writing clear, aesthetically pleasing mathematics requires all the skills
that constitute good prose style, and much more. An excellent way to
practice is to rewrite a proof of moderate length that seems a bit foggy
or confusing. Begin by typing up the proof verbatim using LATEX. Then
start changing anything and everything about it you don’t like, trying to
highlight the key ideas, guide the reader’s mind along an easy path, and
generally make everything as simple and elegant as you can. Continue until
you can’t think of a single way to make things even slightly better. Unless
the author of the proof you started with is very good, you’ll find that the
process goes on for quite a while, with improvements in one aspect revealing
opportunities to improve other things, or necessitating minor adjustments
here and there, and that the final result is quite different from what you
started with. You’ll also find that this type of exercise does at least as much
as problem solving to solidify your understanding of the material.
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10.1 Some Other Books

There are, of course, a huge number of math books in the world, many of
which are quite good in at least some sense. One good way to get recom-
mendations is to ask your instructors, since they’ll know about your current
level and your interests, and they’ll have their own favorites. In order to be
included in the list below, a book had to be about truly interesting math-
ematics, it had to be accessible to readers with very little background, and
it had to not be a textbook.

In rough order of increasing difficulty:

• M. Aigner and G.M. Ziegler, Proofs from the Book, third edition,
Springer-Verlag, 1992.

– Paul Erdös (1913-1996) was one of the great mathematicians of
the 20th century, and an extremely beloved figure in the mathe-
matical community of his era. Partly as a result of persecution
during the McCarthy era, he became unemployed, and took up a
life of constant travel around the world, staying with friends wher-
ever he went, always doing mathematics, to the end of his life.
A mathematician’s Erdös number is the number of steps from
her to Erdös in the coauthor graph. For example, if she wrote a
paper with Jones, and Jones and Smith have a paper together,
and Smith once wrote a paper with Erdös, then her Erdös num-
ber is three unless there’s a shorter path. One of Erdös’ concepts
is God’s Book of Proofs where the Supreme Fascist (his term for
the deity) records perfect and wonderful arguments. Proofs from

the Book is a collection of elementary proofs, from the fields of
mathematics he was most interested in, that are, in the opinion
of Erdös and the authors, “bookworthy.”

• C.C. Adams, The Knot Book: an Elementary Introduction to the

Mathematical Theory of Knots, American Mathematical Society, 2001.

– Two ways of arranging a loop of string in space are equivalent if
you can move the string from one position to the other without
cutting it, and a knot is an equivalence class of this relation.
That is, a knot is pretty much what you’ve always thought it
was. Knot theory is a thriving field of research, and The Knot

Book gives a relaxed and informal (but rigorous) description of
some parts of it that can be explained with pictures and a bit of



426 CHAPTER 10. MORE AND MORE MATH

elementary algebra. A remarkable wealth of material meets these
conditions, including some advanced concepts of low dimensional
topology and the work for which Vaughan Jones (b. 1952) was
awarded the Fields Medal in 1990. The subject is full of easily
stated open problems, some of which just might be cracked by a
clever amateur.

• J.D. Sally and P.J. Sally, Roots to Research: a Vertical Development

of Mathematical Problems, American Mathematical Society, 2007.

– The standard approach to mathematics education is “horizontal,”
laying down one layer of bricks at a time. This seems logical, and
is necessary to at least some extent, but an exclusively horizontal
approach leads to tunnel vision while frustrating students who
want to obtain some glimmer of more advanced topics and con-
temporary research. Like this book, Roots to Research is vertical,
aiming to take students quickly to a high level, but instead of em-
phasizing generalities, the Sally’s study five particular problems.
In each case they begin with aspects that can be understood us-
ing only high school algebra, then slowly build up the theory,
eventually applying more advanced concepts, and finally arriving
at recent results. Their expectation is that most students below
the level of graduate studies will not make it all the way, but
can still benefit from trying to go a bit past their comfort levels.
Reading their book will make it easier to read this one because
you will see the concepts developed here applied again and again.
Reading this book will give you the tools you need to go a bit
further with each of the topics they study. Going back and forth,
according to your mood, will make both books more enjoyable.

• V. Klee and S. Wagon, Old and New Unsolved Problems in Plane

Geometry and Number Theory, Mathematical Association of America
Dolciani Mathematical Expositions No. 11, 1991.

– Beginning with any positive integer n0, form the sequence n1, n2, . . .
according to the rule

nk+1 :=

{

nk/2, if nk is even,

3nk + 1, if nk is odd.

Is it the case that for any n0 the sequence eventually settles into
the cycle . . . , 1, 4, 2, 1, 4, 2, 1, . . .? Legend has it that this problem
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passed from one university mathematics department to the next
after it was discovered, in each case preventing anyone from get-
ting anything done for about a month, after which everyone gave
up and went back to whatever they had been doing. Klee and
Wagon talk about some of the biggies like the Riemann hypoth-
esis, but there are also lots of simple, seductive, totally baffling
problems like this that are good to think about even if you’re
very unlikely to solve one.

• J.W. Milnor, Topology from the Differentiable Viewpoint, University
Press of Virginia, 1965.

– Milnor’s slender monograph is an ideal next step into differential
topology for those who made it through this book. Technicalities
are minimized by focusing on the simplest and most ideal cases,
allowing a rapid approach to ideas that were then at the forefront
of research, and are now fundamental in the study of the topology
of manifolds. Milnor is universally acknowledged to be one of the
greatest expositors ever, and this book is as simple, lucid, and
perfect in all its details, as anything he ever wrote.

• G.H. Hardy and E.M. Wright, An Introduction to the Theory of Num-

bers, fifth edition, Oxford University Press, 1979.

– Over its 2500 year history number theory has accumulated many
interesting results and larger theories that are beautiful and sur-
prising, but require little more than high school algebra and some
logical thought. Hardy and Wright were at the top of the field
during their lives, and this book is an undisputed masterpiece.
The material it covers permeates the rest of mathematics and is
fundamental to all aspects of number theory.

• J.H. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer-
Verlag, 1992.

– The subject matter of this book is (or at least is thought to
be) more advanced than what the other books on this list treat,
but the authors do a marvelous job of keeping everything con-
crete. The subject itself is extremely beautiful, a meeting place
of number theory, algebra, and analysis, and highly relevant to
contemporary research.



Appendix A

Problems

A problem below is described as an “Exercise” if its primary purpose is to
give some practice with computations, or perhaps to illustrate some concept.
The primary purpose of an “Extension” is to introduce an important concept
or result. In some cases the distinction is not clear cut. In many cases the
solution of a problem depends on the earlier problems for the same chapter.
(If the solution depends on an earlier problem for a different chapter, that
will be noted.)

Problems for Chapter 1

Extension 1.1: The order of a group G is the cardinality of G. A group is finite if its

order is finite, in which case the order of G is denoted by o(G). Show that if G is a finite

group and g ∈ G, then there is a natural number n such that gn = eG. The least such

natural number is called the order or period of g.

Extension 1.2: A group is cyclic if there is an element γ such that

G = { γn : n is an integer }.

An element γ ∈ G with this property is called a generator of G.

(a) Prove that for every integer n there is a cyclic group Cn with o(Cn) = n.

(b) Prove that if d is a natural number that divides n, then Cn has a subgroup H with
o(H) = d.

(c) When is a cyclic group simple?

Extension 1.3: Prove that if G and H are groups, then G×H is a group if we define
the group operation by the formula

(g, h)(g′, h′) := (gg′, hh′).

428
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Exercise 1.4: A finite group can be described by its multiplication table. The multi-
plication tables for the unique (up to isomorphism) groups with two and three elements
are:

e a

e e a
a a e

and

e a b

e e a b
a a b e
b b e a

Find the two possible multiplication tables for groups with four elements. If you really

enjoy this sort of thing, show that there are three possible multiplication tables for groups

with six elements, so that C6, C2 × C3, and S3 are (again, up to isomorphism) the only

groups with six elements.

Exercise 1.5: Let C be the cube with vertices (±1,±1,±1).

(a) Describe the group G of symmetries of C.

(b) Identify four vertices of C that are the vertices of a regular tetrahedron T . Describe
the group H of symmetries of T .

(c) Determine which elements of G induce symmetries of T , and show that they con-
stitute a subgroup of G. Is this subgroup normal?

Extension 1.6: Prove that for any group G the map (g, a) 7→ ga is an action of G on
itself. For any set X let Sym(X) be the set of bijections f : X → X.

(a) Prove that if the product gf of two elements of Sym(X) is defined to be the com-
position g ◦ f , then Sym(X) is a group.

(b) Let G be a group, and define ϕ : G → Sym(G) by letting ϕ(g) : G → G be the
function a 7→ ga. Prove that ϕ is a homomorphism.

(c) Prove that ϕ is injective, hence an isomorphism between G and ϕ(G).

We have proved Cayley’s theorem, which is the assertion that every group G is iso-

morphic is a subgroup of Sym(G). In particular, if G is finite, then it is isomorphic to a

subgroup of So(G).

Exercise 1.7: Use induction to prove that

1 + 2 + · · ·+ n =
n(n + 1)

2

for every n = 1, 2, . . ..

Exercise 1.8: Prove that if X is an uncountable infinite set and C is a countable subset,

then X \ C is uncountable. (Hint: proof by contradiction.)

Exercise 1.9: Prove that the set Q of rational numbers is countable.

Extension 1.10: For any set X the power set of X is the set of subsets of X. Often

the power set of X is denoted by 2X , but sometimes you will see P (X) or P(X). Prove

that for any function f : X → 2X the set {x ∈ X : x /∈ f(x) } is not in the image of

f . (Note the similarity to Russell’s Paradox.) Roughly, this implies that for any set X,

there is another set, namely 2X , whose cardinality is greater. But there is some work to
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do (defining “greater” for cardinalities, and proving that it has certain properties) before

this becomes precise.

Problems for Chapter 2

Extension 2.1: Prove that a finite integral domain is a field.

Extension 2.2: A division ring is a possibly noncommutative ring with unit whose
nonzero elements have unique multiplicative inverses. That is, it satisfies (R1)-(R7) and
the two sided version of (F8) (for each r ∈ R\{0} there is a unique s such that rs = sr = 1)
but multiplication need not be commutative. The ring of quaternions is

H := { a + bi + cj + dk : a, b, c, d ∈ R }

with addition and multiplication defined as follows: if α = a + bi + cj + dk and α′ =
a′ + b′i + c′j + d′k, then

α + α′ := (a + a′) + (b + b′)i + (c + c′)j + (d + d′)k

and

αα′ := (aa′ − bb′ − cc′ − dd′) + (ab′ + a′b + cd′ − c′d)i + (ac′ + a′c− bd′ + b′d)j

+(ad′ + a′d + bc′ − b′c)k.

(a) The quaternions were discovered by William Rowan Hamilton in a flash of inspi-
ration as he was walking past Brougham Bridge in Dublin, and he celebrated the
moment by carving the formula

i2 = j2 = k2 = ijk = −1

in a stone of the bridge. Prove that this formula implies all the multiplicative rela-
tions between i, j, and k that are embedded in the formula for multiplication. (Here
associativity of multiplication, 1 being the multiplicative identity, and (−1)2 = 1
are taken as given.)

(b) Prove that H satisfies (R1)-(R7). (It is easier to prove (R5) if you have already
established (R6).)

(c) The conjugate of α = a + bi + cj + dk is α∗ := a− bi− cj − dk, and the norm of
α is

‖α‖ :=
√

αα∗ =
√

α∗α =
p

a2 + b2 + c2 + d2.

Prove that if α 6= 0, then α∗/‖α‖2 is a two sided multiplicative inverse of α, and
the unique multiplicative inverse from either side.

(d) If you feel like a challenge you can try to prove that ‖αα′‖ = ‖α‖ ‖α′‖ for all
α, α′ ∈ H. (Writing out the entire calculation would be extremely tedious; if you
think about what would happen if you used the distributive and associative laws
to expand (αα′)(αα′)∗ you should be able to see that certain terms cancel. To see
this more concretely write out the calculation when α = a + bi and α′ = a′ + c′j.)

Extension 2.3: Let R be a commutative ring. Prove that if I and J are ideals of R,
then so are:
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(a) I ∩ J ;

(b) I + J := { i + j : i ∈ I and j ∈ J };
(c) IJ := { i1, j1 + · · ·+ injn : n = 1, 2, . . ., i1, . . . , in ∈ I , and j1, . . . , jn ∈ J };
(d) (I : J) := { r ∈ R : rJ ⊂ I }. (This is called the ideal quotient of I and J .)

Extension 2.4: Suppose that R is a commutative ring with unit, and I is an ideal that
is a proper subset of R.

(a) Prove that the quotient module R/I is a commutative ring with unit if we define
multiplication by the formula (a + I)(b + I) := ab + I .

(b) We say that I is a prime ideal if, whenever a, b,∈ R and ab ∈ I , either a ∈ I or
b ∈ I .

(i) Prove that the prime ideals of ZZ are the principal ideals (p) where p is a
prime number.

(ii) Prove that if I is a prime ideal if and only if R/I is an integral domain.

(c) Prove that if J is an ideal of R that contains I , then J/I is an ideal of R/I . Prove
that if A is an ideal of R/I , then J := { a ∈ R : a + I ∈ A } is an ideal of R that
contains I , and A = J/I .

(d) We say that I is a maximal ideal of R if it is not a proper subset of another ideal
of R that is, in turn, a proper subset of R.

(i) Prove that a maximal ideal is prime. (Hint: If I is maximal and a ∈ R \ I ,
then the smallest ideal containing a and I is all of R, so 1 = ra + i for some
r ∈ R and i ∈ I . Since 1 /∈ I because I is a proper subset of R, it is enough
to prove that if a, b ∈ R \ I and ab ∈ I , then 1 ∈ I .)

(ii) Use Theorem 2.19 to prove that I is maximal if and only if R/I is a field.

Extension 2.5: Let R be an integral domain. A set S ⊂ R is multiplicative if 1 ∈ S
and st ∈ S whenever s, t ∈ S. For such a set we define an equivalence relation on R × S
by specifying that (a, s) and (b, t) are equivalent if at = bs.

(a) Prove that this is, in fact, an equivalence relation. We denote the equivalence class
of (a, s) by a/s, and the set of equivalence classes is S−1R.

(b) Addition and multiplication of equivalence classes are defined by the formulas a/s+
b/t = (at+bs)/st and a/s·b/t = ab/st. Prove that these definitions are independent
of the choices of representatives, and that they turn S−1R into a ring.

(c) Give two or three “interesting” multiplicative subsets S ⊂ ZZ, and for each describe
the derived ring of fractions S−1ZZ.

(d) Show that the function ϕ : R → S−1R given by the formula ϕ(r) := r/1 is an
injective homomorphism.

(e) If I is an ideal of R, then R \ I is multiplicative if and only if I is prime. (This
is simply what the definition of a prime ideal says.) When P is a prime ideal we
write RP instead of (R \ P )−1R. Observing that (0) is prime, show that R(0) is a
field, and conclude that any integral domain is isomorphic to a subring of a field.

(f) If ϕ : Rk → Rℓ is an R-module homomorphism, then the matrix of ϕ is also the
matrix of an S−1R-module homomorphism ϕ̃ : (S−1R)k → (S−1R)ℓ.
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(i) Prove that ϕ̃ is injective (surjective) if and only if ϕ is injective (surjective).

(ii) Prove that if k 6= ℓ, then Rk and Rℓ are not isomorphic. (This requires a
result from Chapter 4, so you should probably return to this later if you don’t
see how things work.)

Exercise 2.6: Let R be a principal ideal domain. Prove that any two nonzero elements

of R, say a and b, have a least common multiple. That is, there is a nonzero c ∈ R

such that a|c and b|c, and c|d for all d such that a|d and b|d.

Extension 2.7: Let G be a finite group. Prove that if H is a subgroup of G, then

o(G/H) = o(G)/o(H). (Whenever X is a finite set that has a partition into subsets

that all have the same number of elements, the number of “cells” in the partition times

the number of elements in each cell is the number of elements of X.) Observing that

the order o(g) of any element g ∈ G is the number of elements of the cyclic subgroup

{g, g2, . . . , go(g) = eG} generated by g, conclude that go(G) = eG for every g ∈ G. Applying

this to the multiplicative group ZZ∗
p, where p is a prime, conclude that for every integer

a it is the case that ap−1 ≡ 1 mod p and ap ≡ a mod p. This result was discovered by

Fermat, and is known as Fermat’s little theorem.

Exercise 2.8: Let R be a commutative ring, let M be an R-module, let N and P be
submodules of M , and define

(N : P ) := { r ∈ R : rP ⊂ N }.

Prove that (N : P ) is an ideal of R. The annihilator of M is ({0}, M); this is the set of

r such that rm = 0 for all m ∈M .

Exercise 2.9: Prove that if M is an R-module, where R is a commutative ring, and N

and P are submodules of M , then (N + P )/P is isomorphic to N/(N ∩ P ).

Problems for Chapter 3

Extension 3.1: Let τ be the set of U ⊂ R such that for every a ∈ U there is an

ε > 0 such that [a, a + ε) ⊂ U . Prove that τ is a topology. The space (R, τ ) is called the

Sorgenfrey line.

Extension 3.2: Let (X, τ ) be a topological space, and let f : X → Y be a function.

(a) Prove that σ := { V ⊂ Y : f−1(V ) ∈ τ } is (the collection of open sets of) a
topology for Y . This is called the quotient topology induced by f .

(b) If σ′ and σ′′ are topologies for Y with σ′ ⊂ σ′′, so that every σ′-open set is σ′′-open,
then we say that σ′ is coarser than σ′′, and that σ′′ is finer than σ′. Prove that
if f is continuous when Y has the topology σ′, then σ′ is coarser than the quotient
topology.

(c) Recall that f is an open map (closed map) if it is continuous and f(U) is open
whenever U ⊂ X is open (f(C) is closed whenever C ⊂ X is closed). Prove that
if f is surjective and either an open map or a closed map, then Y has the quotient
topology.
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Exercise 3.3: Let f : [0,∞) → [0,∞) be a function with f(0) = 0, f(t) > f(s)
whenever t > s, and f(s, t) ≤ f(s)+ f(t) for all s and t. Let (X, d) be a metric space, and
let d̃ := f ◦ d : X ×X → [0,∞).

(a) Prove that d̃ is a metric.

(b) Prove that the topology induced by d̃ is coarser than the topology induced by d.

(c) Prove that if f is continuous at 0, then d and d̃ induce the same topology.

Extension 3.4: Prove that if X and Y are topological spaces, then the product topology

on X × Y is the coarsest topology such that the projections πX : (x, y) 7→ x and πY :

(x, y) 7→ y are continuous. Prove that the projections are open maps, and give an example

showing that they are not necessarily closed maps.

Exercise 3.5: Let X and Y be topological spaces, and let X × Y have the product
topology. Suppose that A ⊂ X and B ⊂ Y .

(a) Prove that the interior of A × B is the cartesian product of the interior of A and
the interior of B, and the closure of A × B is the cartesian product of the closure
of A and the closure of B.

(b) Describe the boundary A×B in terms of the closures and boundaries of A and B.

(c) Prove that the topology A×B inherits as a subspace of X × Y coincides with the
product topology derived from the subspace topologies of A and B.

Extension 3.6: If R is a commutative ring, an R-module M is Noetherian if each of
its submodules is finitely generated. (Since the ideals of R are precisely the submodules, R
is a Noetherian ring if and only if it is a Noetherian R-module.) Prove that the following
are equivalent:

(a) M is Noetherian;

(b) every increasing sequence of submodules M1 ⊂M2 ⊂ . . . “stabilizes”: there is some
K such that Mk = MK for all k ≥ K;

(c) any collection of submodules of M has an element that is maximal in the sense of
not being a subset of some other element of the collection.

Extension 3.7: A collection of subsets of a set has the finite intersection property

if any finite subcollection has a nonempty intersection. Prove that a topological space

is compact if and only if, whenever a collection of closed sets has the finite intersection

property, the intersection of all elements of the collection is nonempty.

Extension 3.8: Let X and Y be topological spaces. A bijection f : X → Y is a

homeomorphism if it is continuous and its inverse is also continuous. Prove that if X

is compact, Y is a Hausdorff space, and f : X → Y is a continuous bijection, then f is a

homeomorphism. (Hint: prove that if C is a closed subset of X, then f(C) is closed.)

Extension 3.9: In addition to “Hausdorffness,” there are several “separation” conditions
that are similar but logically distinct. A topological space X is a T1 space (terrible
terminology, but it seems that the world is stuck with it) if, for each x ∈ X, the singleton
{x} is a closed set. It is regular if, for any x ∈ X and any open set U containing x, there
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is a closed neighborhood of x that is contained in U . A topological space X is normal
if, for any disjoint closed sets C and D, there are disjoint open sets U and V with C ⊂ U
and D ⊂ V .

(a) Prove that the space Xn discussed at the beginning of Section 3.4 is not T1 or
regular when n ≥ 2, but it is always normal.

(b) Prove that any metric space is T1, regular, and normal.

(c) Prove that if X is T1 and regular, then it is Hausdorff.

(d) Prove that if X is Hausdorff, K ⊂ X is compact, and x ∈ X \ K, then there are
disjoint open sets U and V with K ⊂ U and x ∈ V .

(e) Prove that if X is Hausdorff and compact, then it is normal.

(f) Prove that if X is regular, K ⊂ X is compact, and U is an open superset of K,
then there is an open V that contains K and whose closure is contained in U .

(g) Prove that if X is regular and compact, then it is normal.

(h) Prove that if X and Y are T1 (or regular, or Hausdorff) then so is X × Y . (The
product of two normal spaces is not necessarily normal. The standard example is
the Sorgenfrey plane, which is the product of two copies of the Sorgenfrey line;
we won’t discuss it further here, but you might like to look at the Wikipedia entry.)

Exercise 3.10: Prove that if A is a connected subset of a topological space X, then the

closure of A is connected.

Exercise 3.11: Let X and Y be topological spaces, and let X × Y have the product
topology.

(a) Prove that for each x ∈ X the map y 7→ (x, y) is a homeomorphism between Y and
{ (x, y) : y ∈ Y } (with its relative topology as a subspace of X × Y ).

(b) Prove that if X and Y are connected, then so is X × Y .

Problems for Chapter 4

Exercise 4.1: Show that if the characteristic of the field k is 0, then (1, 1, 0, 0),

(2, 1,−1, 0), and (0, 0, 0, 5) are linearly independent elements of k4. For which primes

p is it the case that these vectors are not linearly independent when the characteristic of

k is p.

Exercise 4.2: Suppose that W is a linear subspace of the vector space V . Prove that

X ←→ X/W is a bijection between the linear subspaces of V that contain W and the

linear subspaces of V/W .

Extension 4.3: Let V and W be vector spaces, and let L(V, W ) be the set of linear
transformations from V to W .

(a) Prove that L(V, W ) is a vector space if the vector operations are defined naturally:
(ℓ1 + ℓ2)(v) := ℓ1(v) + ℓ2(v) and (αℓ)(v) := αℓ(v).
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(b) Prove that if U and X are vector spaces and k : U → V and m : W → X are
linear transformations, then the map ℓ 7→ m ◦ ℓ ◦ k is a linear transformation from
L(V, W ) to L(U, X).

Extension 4.4: If V is a vector space over the field k, then the dual space of V is

V ∗ := L(V, k).

Elements of V ∗ are called linear functionals. If W is a second vector space and ℓ : V →
W is linear, define ℓ∗ : W ∗ → V ∗ by letting ℓ(w∗) be the linear functional v 7→ w∗(ℓ(v)).

(a) Prove that (IdV )∗ = IdV ∗ .

(b) Prove that if X is a third vector space and m ∈ L(W,X), then (m ◦ ℓ)∗ = ℓ∗ ◦m∗.

(c) Suppose that v1, . . . , vn is a basis of V , and for i = 1, . . . , n define v∗
i ∈ V ∗ by the

formula
v∗

i (α1v1 + · · ·+ αnvn) := αi.

Then v∗
1 , . . . , v∗

n is the dual basis associated with v1, . . . , vn. Prove that it is, in
fact, a basis of V ∗.

Since a vector space and its dual have the same dimension, the distinction between the two

might seem insignificant, but in applications it is obvious. In economics, for example, V

might be the set of vectors consisting of quantities of iron, rubber, and coal (with negative

quantities understood as debts) in which case an element of V ∗ is naturally interpreted

as a triple consisting of a price of iron, a price of rubber, and a price of coal.

Extension 4.5: Let V be a vector space over R. An inner product on V is a function

〈·, ·〉 : V × V → R

such that for all v, v′, w ∈W and α ∈ R:

(a) 〈w, v〉 = 〈v, w〉,
(b) 〈v + v′, w〉 = 〈v, w〉+ 〈v′, w〉,
(c) 〈αv, w〉 = α〈v, w〉, and

(d) 〈v, v〉 ≥ 0, with equality if and only if v = 0.

Recall that any inner product induces a norm given by the formula ‖v‖ := 〈v, v〉1/2. If
‖v‖ = 1, then we say that v is a unit vector, and when 〈v, w〉 = 0 we say that v and w
are orthogonal. A collection { vi : i ∈ I } ⊂ V is an orthonormal set if its elements
are unit vectors and distinct elements are orthogonal, so that 〈vi, vj〉 = δij for all i, j ∈ I .
(Here δij is the Kronecker delta.) An orthonormal basis is an orthonormal set that is
also a basis. If W is a linear subspace, then the orthogonal complement of W is

W⊥ := { v ∈ V : 〈v, w〉 = 0 for all w ∈W }.
(a) Prove that if v1, . . . , vn is an orthonormal basis of V and v1, . . . , vk is a basis of W ,

then vk+1, . . . , vn is a basis of W⊥.

(b) Let w1, . . . , wk be linearly independent. Define u1, . . . , uk and v1, . . . , vk inductively
by the formulas

ui := wi − 〈wi, v1〉v1 − · · · − 〈wi, vi−1〉vi−1 and vi :=
ui

‖ui‖
.

(This procedure is called the Gram-Schmidt orthonormalization process.)
Prove that {v1, . . . , vk} is an orthonormal set with the same span as w1, . . . , wk.
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(c) Prove that if V is n-dimensional and W is a k-dimensional subspace, then there
is an orthonormal basis v1, . . . , vn such that v1, . . . , vk an orthonormal basis of W .
Conclude that dim W + dim W⊥ = dim V .

(d) Prove that if v1, . . . , vk is an orthonormal set and w ∈ V , then

k
X

i=1

〈w, vi〉2 ≤ ‖w‖2.

This is called Bessel’s inequality. When does it hold with equality?

Extension 4.6: When F and K are fields, with K an extension of F , we say that K
is a finite extension of F if K is a finite dimensional vector space over F . In this case
the degree of K over F , denoted by [K : F ], is the dimension of K. Suppose that K is a
finite extension of F , and that L is an intermediate field, so that F ⊂ L ⊂ K.

(a) Prove that K is a finite extension of L. (Hint: the L-span of any subset of K
contains the F -span.)

(b) Prove that [K : F ] = [K : L][L : F ]. (Hint: show that if x1, . . . , xm is a basis of L,
as a vector space over F , and if y1, . . . , yn is a basis of K, as a vector space over L,
then { xiyj : i = 1, . . . , m, j = 1, . . . , n } is a basis of K as a vector space over F .)

(c) A minimal polynomial for x ∈ K is a polynomial f ∈ F [X] such that f(x) = 0
and g(x) 6= 0 for all polynomials g ∈ F [X] of lower degree. Prove that for each
x ∈ K there is a unique minimal polynomial that is monic.

(d) Prove that the degree of a minimal polynomial of x divides [K : F ]. (Hint: if n is
the degree of minimal polynomials of x, then 1, x, . . . , xn−1 spans a field.)

Problems for Chapter 5

Exercise 5.1: Compute the determinants of each of the following matrices twice, first
by applying the formula defining the determinant, then using row and column operations.

0

@

1 0 2
3 4 1
0 3 1

1

A

0

@

2 3 7
1 0 5
6 3 1

1

A

Extension 5.2: Let ℓ : V → V be a linear transformation, where V is a finite dimensional

vector space over a field k. We say that ℓ is nilpotent if ℓe = 0 for some integer e. Prove

that if e is the least such integer, then the minimal polynomial of ℓ is Xe.

Extension 5.3: Let R be a ring, and let M be an R-module. We say that m is a torsion

element if Ann(m) 6= (0). The torsion submodule of M , denoted by MT , is the set of

all torsion elements of M . We say that M is a torsion R-module if MT = M , and we

say that M is torsion free if MT = (0). Prove the MT is actually a submodule of M .

Extension 5.4: Suppose that R is a PID and M is an R-module.
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(a) Suppose that g and h generate M and a and b are ring elements with a 6= 0 whose
greatest common divisor is 1, so that as + bt = 1 for some s and t. (When we say
that “the greatest common divisor of a, . . . , ar is 1,” what we really mean is that
any greatest common divisor is a unit, so that the ideal generated by a, . . . , ar is
all of R. There will be similar expressions below, which should be interpreted in
the same spirit.) Prove that M is generated by ag + bh and −tg + sh.

(b) Prove that if g1, . . . , gr is a system of generators for M , a1, . . . , ar are elements of R
whose greatest common divisor is 1, a1 6= 0, and g := a1g1 + · · ·+ argr, then there
are g′

2, . . . , g
′
r such that g, g′

2, . . . , g
′
r is a system of generators for M . (Hint: Let N

be the submodule generated by g2, . . . , gr, let d be the greatest common divisor of
a2, . . . , ar, and let h := (a2/d)g2 + · · ·+ (ar/d)gr.)

The underlying idea of the proof is similar to Gaussian elimination, but this becomes a

bit obscure when we simplify things by combining induction with the 2× 2 case.

Extension 5.5: An R-module M is free if it is an internal direct sum of copies of R.
That is, there is a system of generators { gi : i ∈ I }, which may be infinite, such that each
m ∈M has a unique representation of the form

m = a1gi1 + · · ·+ argir .

(a) Prove that if R is a PID and M is a finitely generated torsion free R-module, then
M is free.

(b) Prove that if R is a PID and M is a finitely generated free R-module, then any
submodule N is finitely generated and free.

It is actually the case that if R is a PID, then any submodule of a free R-module is free,

even when R is not finitely generated, but the proof requires a sophisticated application

of the axiom of choice that is used to produce a minimal set of generators.

Exercise 5.6: Prove that a PID is Noetherian.

Extension 5.7: (Structure Theorem for PID’s I: Existence) Let R be a PID, let
M be a finitely generated R-module, and let r be the minimal number of elements of any
system of generators for M . We will say that a system of generators g1, . . . , gr is taut
if Ann(g1) not a proper subset of Ann(g′

1) for some other system of generators g′
1, . . . , g

′
r

with r elements.

(a) Prove there there is a taut system of generators.

(b) Suppose g1, . . . , gr is a taut system of generators, let N := Rg2 + · · · + Rgr, and
assume that N = Rg2⊕ · · · ⊕Rgr. Prove that a1 = 0 whenever a1g1 + a2g2 + · · ·+
argr = 0. (Hint: apply Problem 5.4.)

(c) Prove that if g1, . . . , gr is a taut system of generators, then M = Rg1 ⊕ · · · ⊕Rgr.

(d) Prove that if g1, . . . , gr is a taut system of generators and Ann(g2) ⊃ · · · ⊃ Ann(gr),
then Ann(g1) ⊃ Ann(g2). (Hint: apply Problem 5.4.)

Prove that there is a system of generators g1, . . . , gr with M = Rg1 ⊕ · · · ⊕ Rgr and

Ann(g1) ⊃ · · · ⊃ Ann(gr).

Extension 5.8: (Structure Theorem for PID’s II: Uniqueness) Let R be a PID,
let M be a finitely generated R-module, and let r be the minimal number of elements of
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any system of generators for M . Suppose that g1, . . . , gr is a system of generators with
M = Rg1 ⊕ · · · ⊕Rgr and Ann(g1) ⊃ · · · ⊃ Ann(gr), and let g′

1, . . . , g
′
s be another system

of generators with M = Rg′
1 ⊕ · · · ⊕Rg′

s and Ann(g′
1) ⊃ · · · ⊃ Ann(g′

s). We wish to show
that s = r and Ann(g′

i) = Ann(gi) for all i, so we may assume we are dealing with a
counterexample for which r is minimal.

(a) Let Ann(g1) = (d1), and show that d1 ∈ Ann(g′
1) by considering d1M .

(b) Prove that in a PID R any proper (in the sense of not being all of R) ideal I is
contained in a proper prime ideal.

(c) Prove that if P is a proper prime ideal that contains Ann(g1), then M/PM is
isomorphic to the direct sum of r copies of R/P , and also isomorphic to the direct
sum of s copies of R/P . Applying Problem 2.5.f.ii, conclude that s = r.

(d) Let Ann(g′
1) = (d′

1), and show that Ann(g′
i) = Ann(gi) for all i by considering d′

1M .

Extension 5.9: Let G be a finitely generated abelian group.

(a) Prove that G is isomorphic to a unique group of the form

ZZn ⊕ ZZd1 ⊕ · · · ⊕ ZZdk

where d1, . . . , dk ≥ 2 with di|dj whenever i < j.

(b) Prove that if m and n are relatively prime, then ZZmn is isomorphic to ZZm ⊕ ZZn.

(c) Prove that G is isomorphic to a unique (up to reordering of the pairs (pi, ei) group
of the form

ZZn ⊕ ZZp
e1
1
⊕ · · · ⊕ ZZp

em
m

where p1, . . . , pm are (not necessarily distinct) primes.

This is called the structure theorem for finitely generated abelian groups.

Extension 5.10: (Proof of Theorem 5.22) Let V be a finite dimensional vector
space, and let ℓ ∈ End(V ) be an endomorphism whose minimal polynomial has the prime
factorization p = pe1

1 · · · pei
k . For each i let Ui be the kernel of pei

i (ℓ), and let Zi be the
image of qi(ℓ) where qi :=

Q

j 6=i p
ej

j .

(a) Prove that the ideal of k[X] generated by q1, . . . , qk is all of k[X], so there are
polynomials h1, . . . , hk such that h1q1 + · · · hkqk = 1.

(b) Prove that Z1 + · · ·+ Zk = V because q1(ℓ)h1(ℓ) + · · ·+ qk(ℓ)hk(ℓ) = IdV .

(c) Prove that each Ui is an invariant subspace of ℓ because pei
i (ℓ)ℓ = ℓpei

i (ℓ).

(d) Prove that Zi ⊂ Ui for all i.

(e) Prove that if u1 + · · · + uk = 0 with ui ∈ Ui for all i, then for each i we have
qj(ℓ)ui = 0 for all j 6= i because pei

i |qj , and consequently 0 = qi(ℓ)(u1 + · · ·+uk) =
qi(ℓ)ui, so ui = 0 because h1(ℓ)q1(ℓ) + · · · + hk(ℓ)qk(ℓ) = IdV . Conclude that
V = U1 ⊕ · · · ⊕ Uk, and that Zi = Ui for all i.

Problems for Chapter 6

Extension 6.1: Recall that Mn(k) is the ring of n× n matrices with entries in k, and
let f : Mn(k)→Mn(k) be the function f(A) = A2.
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(a) Prove that Df(A)B = AB + BA.

(b) Generalizing this result, find the derivative of the function A 7→ p(A) for an arbi-
trary polynomial a0 + a1X + · · ·+ amXm ∈ k[X].

Exercise 6.2: Suppose that x, u, v ∈ Rn, let p : R→ Rn be the function p(s) := x+su,
and let q : R→ Rn be the function q(t) := tv.

(a) Express the function D(s, t) := ‖p(s)− q(t)‖2 in terms of the inner product.

(b) Compute ∂D
∂s

(s, t) and ∂D
∂t

(s, t).

(c) When is there a unique pair (s∗, t∗) such that ∂D
∂s

(s∗, t∗) = 0 = ∂D
∂t

(s∗, t∗)? Relate
you answer to the Cauchy-Schwartz inequality.

Extension 6.3: Suppose that P ⊂ Rm and X ⊂ Rn are open, and that U : P ×X → R
is a C1 function. For (p, x) ∈ P × X let DpU(p, x) and DxU(p, x) be the derivatives of
the functions U(·, x) : P → R and U(p, ·) : X → R at p and x respectively. Suppose that
C : P → X is a C1 function, and let M : P → R be the function M(p) := U(p, C(p)).
Use the chain rule to prove that if DxU(p, C(p)) = 0, then

DM(p) = DpU(p, M(p)).

This result is known in economics as the envelope theorem. The idea is that U

is a quantity that you want to maximize (e.g., utility or profits) while p is a parameter

(e.g., prices) that you don’t control, and x is something you get to choose. If, for each p,

C(p) is the optimal choice, then DxU(p, C(p)) = 0. When we then ask how the optimized

value of the problem M(p) changes as p changes we don’t need to know how changes in

p affect C(p). For example, the change in profits resulting from a change in the price

you charge your customers is, to a fair approximation, simply the price change times the

amount you are currently selling, and the change resulting from a change in some input

price is the input price change times the amount of that input you are consuming. The

specific applications of the envelope theorem to the theory of production are known as

Hotelling’s lemma.

Exercise 6.4: For a ring R let G(R) be the underlying commutative group given by

addition, and for a ring homomorphism ϕ : R→ S let G(ϕ) be ϕ understood as a function

from G(R) to G(S). Prove that G is a covariant functor from the category of rings and

homomorphisms to the category of groups and homomorphisms.

Extension 6.5: If G is a group and g, h ∈ G, the commutator of g and h is

[g, h] := ghg−1h−1.

The commutator subgroup of G is the smallest subgroup of G containing all the com-
mutators. It is denoted by [G, G].

(a) Show that [g, h]−1 = [h, g], so [G, G] is the collection of all finite products of com-
mutators.

(b) Prove that the commutator subgroup is normal. (Hint: first show that f [g, h]f−1 =
[f, [g, h]] · [g, h].)
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(c) The abelianization of G is Gab := G/[G, G]. Prove that Gab is abelian.

(d) Define a sequence of subgroups G(0), G(1), G(2), . . . inductively by letting G(0) := G
and

G(n) := [G(n−1), G(n−1)]

for all n ≥ 1. The group G is solvable if G(n) = {eG} for some n. Prove that
if ϕ : G → H is a homomorphism, then ϕ(G(n)) ⊂ H(n) for all n, so there are
homomorphisms

ϕ(n) : G(n−1)/G(n) → H(n−1)/H(n)

given by ϕ(n)(G(n)g) := H(n)ϕ(g).

(e) Prove that for each n = 1, 2, . . . there is covariant functor from the category of
groups and homomorphisms to the category of abelian groups and homomorphisms
that takes each G to G(n−1)/G(n) and each ϕ to ϕ(n).

Extension 6.6: Use the univariate version of Taylor’s theorem to prove that if f :

(a, b)→ R is C2 and f(t∗) ≥ f(t) for all t ∈ (a, b), then f ′′(t∗) ≤ 0.

Extension 6.7: An n×n matrix A with entries in R is said to be negative semidefinite
if vT Av ≤ 0 for all v ∈ Rn. Suppose that U ⊂ Rn is open, f : U → R is C2, and
f(x∗) ≥ f(x) for all x ∈ U . Prove that the matrix

0

B

B

B

B

B

B

@

∂2f

∂x2
1
(x∗) ∂2f

∂x1∂x2
(x∗) · · · ∂2f

∂x1∂xn
(x∗)

∂2f
∂x2∂x1

(x∗) ∂2f

∂x2
2
(x∗) · · · ∂2f

∂x2∂xn
(x∗)

...
...

. . .
...

∂2f
∂xn∂x1

(x∗) ∂2f
∂xn∂x2

(x∗) · · · ∂2f
∂x2

n
(x∗)

1

C

C

C

C

C

C

A

is negative semidefinite by applying the last problem to the function t 7→ f(x∗ + tv).

Extension 6.8: Suppose that f : [a, b] → R and g : [a, b] → R are continuous and
differentiable at each t ∈ (a, b). Apply Rolle’s theorem to the function

h(t) :=
`

f(b)− f(a)
´`

g(x)− g(a)
´

−
`

g(b)− g(a)
´`

f(x)− f(a)
´

to obtain a t ∈ (a, b) such that

`

f(b)− f(a)
´

g′(t)−
`

g(b)− g(a)
´

f ′(t) = 0.

If g(b)− g(a) and g′(t) are both nonzero, then

f ′(t)

g′(t)
=

f(b)− f(a)

g(b)− g(a)
.

This is known as Cauchy’s mean value theorem.

Extension 6.9: Suppose that f : (a, b) → R and g : (a, b) → R are differentiable with
g′(t) 6= 0 for all t, and limt→a f(t) = 0 = limt→a g(t). Use Cauchy’s mean value theorem
to prove L’Hopital’s rule:

lim
t→a

f(t)

g(t)
= lim

t→a

f ′(t)

g′(t)

whenever the right hand side limit exists.
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Problems for Chapter 7

Exercise 7.1: Prove that compositions of conformal maps are conformal. Use this to
prove the Cauchy-Riemann equations for the polar representation z = reiθ:

∂u

∂r
=

1

r

∂v

∂θ
and

∂v

∂r
= −1

r

∂u

∂θ
, which imply that

∂f

∂r
=

1

ir

∂f

∂θ
.

Extension 7.2: The Laplacian is the differential operator ∆ := ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n
. What

we mean by this is that if U ⊂ Rn is open and g : U → R is C2, then ∆g : U → R is the
function

∆g(x) :=
∂2g

∂x2
1

(x) + · · ·+ ∂2g

∂x2
n

(x).

If ∆g(x) = 0 for all x ∈ U , then g is said to be harmonic. Use the Cauchy-Riemann

equations to prove that if U ⊂ C is open, f = u + iv : U → C is C1 in the complex sense,

and u and v are C2 in the real sense, then u and v are harmonic.

Extension 7.3: (Schwarz lemma) Let D := { z ∈ C : |z| < 1 }, and let f : D → D be
an analytic function with f(0) = 0.

(a) Define g : D → C by setting g(0) = f ′(0) and g(z) = f(z)/z if z 6= 0. Prove that g
is analytic.

(b) For each r < 1 apply the maximum modulus principle to the restriction of g to the
set of z with |z| ≤ r, arriving at the conclusion that |f(z)| ≤ |z| for all z, and that
if |f(z)| = |z| for some z, then g is constant, so f(z) = αz for some α with |α| = 1.

(c) Prove that if f is a bijection and f−1 : D → D is analytic, then there is an α with
|α| = 1 such that f(z) = αz for all z.

Extension 7.4: An Hermitian inner product on Cn is a function 〈·, ·〉 : Cn×Cn → C
such that for all u, v, w ∈ Cn and all α ∈ C:

(1) 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉;
(2) 〈αu, v〉 = α〈u, v〉;
(3) 〈v, u〉 = 〈u, v〉;
(4) 〈u, u〉 ≥ 0 with equality if and only if u = 0.

Prove that, in addition, 〈u, v + w〉 = 〈u, v〉+ 〈u, w〉 and 〈u, αv〉 = α〈u, v〉. The standard

Hermitian inner product is 〈u, v〉 := u1v1 + · · ·+ unvn; verify that it satisfies (1)-(4).

Discuss the extension of all the concepts and results of Problem 4.5 to this setting. Prove

that the standard Hermitian inner product is not differentiable in the complex sense. For

A ∈ Mn(C) let A denote the matrix whose entries are the complex conjugates of the

entries of A. We say that A is unitary if AA
T

= I . Prove that A is unitary if and only if

it preserves the standard Hermitian inner product in the sense that 〈Au,Av〉 = 〈u, v〉 for

all u, v ∈ Cn.
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Problems for Chapter 8

Exercise 8.1: Give a formal proof that if f : M → N is a Cr function, where M and N

are Cr manifolds, and P ⊂M is a Cr submanifold, then f |P : P → N is Cr.

Extension 8.2: A Lie group is a C∞ (or complex analytic, if the underlying field is
C) manifold G that is also a group with group operations (g, h) 7→ gh and g 7→ g−1 that
are C∞ (complex analytic) functions.

(a) Prove that if H ⊂ G is both a subgroup and a C∞ (complex analytic) submanifold,
then H is also a Lie group.

(b) Use the regular value theorem to prove that the circle C = { z ∈ C : |z| = 1 } and
the set {α ∈ H : |α| = 1 } of unit quaternions are Lie groups with multiplication
as the group operation.

(c) Prove that general linear groups Gln(R) := {A ∈ Mn(R) : |A| 6= 0 } and
Gln(C) := {A ∈ Mn(C) : |A| 6= 0 } are Lie groups with matrix multiplication as
the group operation. (Hint: Cramer’s rule.)

(d) Use the regular value theorem to prove that the special linear groups SLn(R) :=
{A ∈Mn(R) : |A| = 1 } and SLn(C) := {A ∈Mn(C) : |A| = 1 } are Lie groups.

(e) A matrix A ∈ Mn(R) is symmetric if AT = A. Let Symn(R) be the set of
symmetric matrices in Mn(R). Observe that Symn(R) is a 1

2
(n + 1)n-dimensional

linear subspace of Mn(R), and in this sense a C∞ manifold. Prove that every
A ∈ Mn(R) is a regular point of the function A 7→ A + AT from Mn(R) to
Symn(R).

(f) Use the regular value theorem to prove that if J is a nonsingular symmetric matrix,
then {A ∈ Mn(R) : AT JA = J } is a Lie group with matrix multiplication as the
group operation. When J = I is the identity matrix this yields the orthogonal
group O(n), when

J =

„

0 I
−I 0

«

it gives the symplectic group Sp(2n), and when

J =

0

B

B

B

@

−1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

1

C

C

C

A

the result is the Lorentz group.

(g) The unitary group U(n) is the set of n×n unitary matrices. Use the fact that it
is the set of matrices that preserve the Hermitian inner product to prove that it is
a Lie group (over R, but not over C).

Problems for Chapter 9

Extension 9.1: The integral of a continuous function g = x + iy : [a, b]→ C is defined
to be

Z b

a

g(t)dt :=

Z b

a

x(t)dt + i

Z b

a

y(t) dt.
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If f : U → C is continuous, where U ⊂ C is open, and γ : [a, b]→ U is C1, let

Z

γ

f :=

Z b

a

f(γ(t))γ′(t) dt.

This is called a contour integral.

(a) Prove that the definition of
R

γ
f does not depend on the parameterization of γ in

the sense that if λ : [c, d]→ [a, b] is a C1 function with λ(c) = a and λ(d) = b, then
R

γ◦λ
f =

R

γ
f .

A 1-form on an open set V ⊂ C is an expression of the form f(z)dz where f : V → C
is continuous. A 1-form ω on a Riemann surface C is defined to be a specification of a
1-form fϕ(z)dz on V for each analytic coordinate chart ϕ : U → V , where these 1-forms
are required to satisfy the following consistency condition:

fϕ2 (ϕ2(p)) =
`

ϕ1 ◦ ϕ−1
2

´′
(ϕ2(p)) · fϕ1(ϕ1(p))

whenever ϕ1 : U1 → V1 and ϕ2 : U2 → V2 are analytic coordinate charts and p ∈ U1 ∩ U2.
If ω is a 1-form on C and γ : [a, b]→ C is a path, let

Z

γ

ω :=

Z

ϕ1◦γ|[t0,t1]

fϕ1 + · · ·+
Z

ϕk◦γ|[tk−1,tk]

fϕk

where a = t0 < t1 < · · · < tk−1 < tk = b and each ϕi : Ui → Vi is an analytic coordinate
chart with γ([ti−1, ti]) ⊂ Ui.

(b) Prove that the definition of
R

γ
ω is independent of the choices of t0, . . . , tk and

ϕ1, . . . , ϕk.

Exercise 9.2: Suppose you are at the origin in hyperbolic space. We will say that

objects at a point p in hyperbolic space have apparent distance d if, in the limit as

ε → 0, the amount of your visual field that a small object at p occupies is ε/d times the

amount of your visual field that it would occupy if it was at distance ε from the origin.

Describe the relationship between apparent distance and actual distance. Consider an

object moving away from the origin at constant speed. Describe its “apparent speed” as

a function of time.

Extension 9.3: There is a way to connect two Riemann surfaces C1 and C2 to each

other, along the lines suggested by Figure 9.6. Let D := { z ∈ C : |z| < 2 } be the open

disk of radius 2 centered at the origin in C, let B := { z ∈ C : |z| ≤ 1/2 } be the closed

disk of radius 1/2, and let A := D\B. (Such a set is called an annulus.) Let ι : A→ A be

the map ι(z) := 1/z; of course ι is an analytic diffeomorphism. Suppose that ϕ1 : U1 → D

and ϕ2 : U2 → D are analytic coordinate charts for U1 ⊂ C1 and U2 ⊂ C2. The idea is to

create a new Riemann surface C1#C2 by using ι to “glue” C1\ϕ−1
1 (B) and C2\ϕ−1

2 (B) to

each other. Specifically, for each z ∈ A we identify ϕ−1
1 (z) and ϕ−1

2 (ι(z)). Give a formal

description of this construction by specifying a system of coordinate charts, verifying that

they have analytic overlap, and showing that the space they describe is Hausdorff.
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Exercise 9.4: Suppose that a0 + a1X + · · · + amX and b0 + b1X + · · · + bmX are
polynomials in C[X] of the same degree that don’t have any common roots in C. Prove
that the function

[z, w] 7→ [a0w
m + a1zwm−1 + · · ·+ anzm, b0w

m + b1zwm−1 + · · ·+ bnzm]

from the Riemann sphere to itself is complex analytic.

Exercise 9.5: Use the homotopy lifting property to prove that if c : X̃ → X is a covering

space with X̃ connected, then (for any base points) π1(c) : π1(X̃)→ π1(X) is injective.

Extension 9.6: A topological space is locally simply connected if each point has
a simply connected neighborhood. Let X be a topological space that is connected and
locally simply connected, and fix a base point x0 ∈ X. Let X̃ be the set of equivalence
classes [p] of paths p : [0, 1] → X with p(0) = x0, where two paths p, q are equivalent if
p(1) = q(1) and the element of π1(X, x0) corresponding to p ∗ q− is the identity, so that
p ∗ q− is homotopic, by a homotopy holding endpoints fixed, to the constant path at x0.
Let c : X̃ → X be the function [p] 7→ p(1), and endow X̃ with the topology in which the
open sets are the sets Ũ ⊂ X̃ such that c(Ũ) is open in X.

(a) Prove that this collection of sets actually is a topology for X̃.

(b) Fix x ∈ X, a simply connected neighborhood U , and x̃ = [p] ∈ c−1(x). Let Ũ be
the set of [p ∗ q] where q : [0, 1] → U is a path with q(0) = p(1). Prove that c|Ũ is
a bijection and consequently a homeomorphism.

(c) Prove that if x̃′ = [p′] is a second element of c−1(x) and Ũ ′ is the set of [p∗q] where
q : [0, 1] → U is a path with q(0) = p′(1), then Ũ ∩ Ũ ′ = ∅. Conclude that c is a
covering space.

(d) Use the homotopy lifting property to prove that X̃ is simply connected.

(e) Use the homotopy lifting property to prove that if ĉ : X̂ → X is a another covering
space, then there is a covering space d : X̃ → X̂ such that ĉ ◦ d = c.

In recognition of property (e), c is called the universal covering space of X. Now
let H be a subgroup of π1(X, x0), let X̃H be the set of equivalence classes [p] of paths
p : [0, 1] → X with p(0) = x0, where two paths p, q are equivalent if p(1) = q(1) and the
element of π1(X, x0) corresponding to p ∗ q− is an element of H , and let cH : X̃H → X be
the function [p] 7→ p(1). Repeat all the steps above, with suitable modifications. Describe
π1(X̃H , x̃H), where x̃H may be any element of c−1

H (x0), and describe

π1(cH) : π1(X̃H , x̃H)→ π1(X, x0).
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Möbius, August, 147
manifold, 300

matrix, 44
maximal ideal, 431

maximizer, 126
maximum, 126

maximum modulus principle, 134
mean value theorem, 249

metric, 91
metric space, 90

metrizability, 301
Millenium Prize problems, 300
Milnor, John, 322

minimal polynomial, 201, 436
minimizer, 127
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