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Abstract

In the simplest (generic) case the fixed point index assigns an index of +1 or -1

to each fixed point of a function or correspondence, and these indices sum to +1.

If an isolated equilibrium is stable with respect to any process of adjustment to

equilibrium that is “natural,” in the sense that the agents adjust their strategies

in directions that increase utility, or prices adjust in the general direction of excess

demand, then the index of the equilibrium is +1. The index +1 principle asserts

that consequently only index +1 equilibria are empirically relevant; we argue that

this should be regarded as a fundamental principle of economic analysis. Since the

fixed point index has a general axiomatic characterization, the index +1 principle

is universally applicable to economic models in which equilibria are topological

fixed points. It does not depend on insignificant details of model specification.

The index +1 principle itself, and the hypothesis that processes of adjustment to

equilibrium are natural, are strongly supported by experimental evidence. The

index +1 principle can be seen as the multidimensional extension of Samuelson’s

correspondence principle.
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1 Introduction

Economists generally reject equilibria of games and markets that are manifestly unsta-

ble. For example, an unstable equilibrium of a market for a single good, or the mixed

equilibrium of a battle of the sexes, is thought to be impossible as an outcome that is

self-reproducing, in the sense that it is expected to occur, and then does occur, repeat-

edly. However, the meaning of instability quickly becomes vague as the dimension of the

space of endogenous variables increases. In physics and chemistry the notion of insta-

bility is clearly understood because the relevant theory gives a specific dynamic process

of adjustment to equilibrium. In contrast, a market or a game cannot have a process of

gradual adjustment to equilibrium that is well understood by the agents in the model

because instead of conforming to the process, they would try to exploit it. Although

economists may agree that unstable equilibria will not be observed, what this means in

general is far from clear. For example, after proposing that dynamic stability (along with

consistency (e.g., supply equals demand) and rational behavior of individuals) should be

regarded as one of three basic properties of equilibrium in general, Dixon (1990) goes on

to remark that “stability is often played down, since it is almost impossible to provide a

coherent account of stability in economics.”

This paper develops a simple, general, qualitative consequence of stability that rules

out many equilibria because they are unstable for any plausible process of adjustment

to equilibrium. As a refinement of equilibrium, it shares mathematical features with

the various refinements of Nash equilibrium that have been widely discussed, and is

(roughly speaking) as restrictive as some of the more powerful game theoretic refinements

such as strategic stability. However, because it is rooted in dynamic stability, rather

than intuition and reasoning concerning the nature of rationality, its motivation is more

compelling and less speculative. In addition to being in accord with intuition, it is

strongly supported by casual empiricism and existing experimental research.

The equilibria of an exchange economy, and the equilibria of a game, can be under-

stood as the fixed points of an upper hemicontinuous convex valued correspondence. The

fixed point index of a regular fixed point of a smooth function f is +1 or -1 according to

the sign of the determinant of the matrix of partial derivatives of Id− f . (A fixed point

is regular, by definition, if this determinant does not vanish.) If all equilibria are regular

(this case is generic for many models) the sum of the indices is +1.

The main thrust of this paper is that for the central models of economic theory,

namely game theory and general equilibrium, and almost certainly many other models

as well, the isolated equilibria with index -1 will not be self-reproducing outcomes because



1 INTRODUCTION 3

they cannot be dynamically stable with respect to any economically natural process of

adjustment to equilibrium. We describe this as the index +1 principle. It should be

thought of as a conjunction of two propositions:

(a) An isolated equilibrium will not be observed as a self-reproducing outcome if it is

not stable with respect to some dynamic process of adjustment to equilibrium that

is “natural.”

(b) If an isolated equilibrium is stable with respect to a natural process of adjustment

to equilibrium, then its index is +1.

The meaning of “natural” depends on the model. For game theory, a natural model

will be one in which each agent adjusts her mixed strategy in a direction that is weakly

utility improving, given the current mixed strategies of the other agents, and a mixed

strategy profile is a rest point of the process if and only if it is a Nash equilibrium. A

price adjustment process for an exchange economy will be natural if prices always adjust

in a direction whose inner product with current excess demand is nonnegative1 and a

price vector is a rest point of the process if and only if it is a Walrasian equilibrium. For

game theory and general equilibrium theory the only model of adjustment to equilibrium

satisfying the rational expectations hypothesis is that equilibrium is reached immediately,

so other models of adjustment, and reasoning based on their properties, necessarily

have some behavioral aspect. In this sense (a) is an hypothesis rather than a logical

consequence of other economic principles. As such, it can and should be assessed against

experience and available evidence.

In contrast, (b) is a mathematical assertion that has been proved by Demichelis and

Ritzberger (2003) for game theory and is proved herein for general equilibrium. The

method of proof is expected to be generally applicable to models in which equilibria are

topological fixed points.

We will argue that the index +1 principle should be regarded as a fundamental

principle of economic analysis, but insofar as the phrase ‘fundamental principle’ has no

definite, objective meaning, this assertion can only be regarded as a shorthand for a

collection of propositions that lend substance to this view. In the remainder of this

section we describe them briefly, and sketch how they will be developed in the remainder

of the paper.

However, before taking up this task it is important to stress a major caveat: by a

“principle” we do not mean a “law of economics” that holds without exception. The

1For the results of Section 3 it actually suffices to assume that the direction of adjustment is never a
negative scalar multiple of the gradient of expected utility, in the case of games, or excess demand, in
the case of markets.
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validity of the index +1 principle relative to any particular model depends on finding

a class of processes of adjustment to equilibrium that is compelling, in the sense that

processes of adjustment outside this class are implausible, and which allows the logic

of (b) to go through. The index +1 principle provides guidance concerning what one

should typically expect, and patterns of reasoning that can be used to assess its validity in

relation to particular models. Such a principle can be useful, illuminating, and powerful,

even if there are certain examples for which the underlying chain of reasoning fails.

A fundamental principle should be widely, if not universally, applicable. In Section

2 we present the axiom system for the fixed point index, and the theorem asserting the

unique existence of an index satisfying these axioms. This theorem encompasses the

Eilenberg-Montgomery fixed point theorem (Eilenberg and Montgomery (1946)) which

extends the Kakutani (1941) fixed point theorem to correspondences that are contractible

valued, and the Lefschetz fixed point theorem, which extends fixed point theory to do-

mains that are not contractible, hence nonconvex. Thus the index +1 principle can be

applied to the most fundamental models of economic theory, namely general equilibrium

theory and game theory, as well as all other models in which equilibrium can be expressed

as a topological fixed point. This includes infinite dimensional models, and models for

which the function or correspondence satisfies only minimal continuity conditions, and

is not in any sense smooth. As we will explain in more detail, the sequential equilibrium

concept of Kreps and Wilson (1982) can be put into this framework.

Roughly, the index assigns an integer to each set of fixed points that is clopen (both

closed and open) in the relative topology of the set of fixed points. The Euler character-

istic of a sufficiently well behaved compact set is the index of that set as the set of fixed

points of that set’s identity function. The Euler characteristic of a singleton is +1. The

general expression of (b) above is that if a sufficiently well behaved clopen set of fixed

points is stable with respect to natural dynamics, then its index is equal to its Euler

characteristic. (In this sense the phrase “index +1 principle” is slightly misleading, but

“index equals Euler characteristic principle” was rejected as insufficiently pithy.)

As the various mathematical arguments below illustrate, the index axioms constitute

a powerful analytic framework which frequently yields simple, direct proofs. For example,

although the determinant test alluded to above could be used to compute the indices of

most of the equilibria of the examples considered in the body of the paper, in almost all

cases it is easier to use reasoning based on the axioms. Independent of the merits of the

index +1 principle, this axiom system should be better known in economics.

In Section 3 we describe two results that show that (b) above holds for the two central

models of economic theory, namely game theory and general equilibrium theory. The
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first, due to Demichelis and Ritzberger (2003), asserts that if a connected component

of the set of Nash equilibria of a game is stable with respect to a dynamic process

of adjustment to equilibrium that is natural, in the sense described above, then the

component’s index is equal to its Euler characteristic. A variant of their argument is

used to establish a similar result for connected components of the set of equilibrium prices

of an exchange economy. The style of reasoning seen in the proofs should be applicable

to a wide variety of models and notions of natural adjustment processes. Section 4 also

describes a game studied by Balkenborg and Vermeulen (2016) that starkly illustrates

conflicts between dynamic stability and various notions of strategic stability.

A fundamental principle should not be unduly sensitive to minor details of a model’s

formulation and presentation. A game-theoretic model of a social interaction necessar-

ily excludes a host of pure strategies that are available in reality. Often the excluded

strategies are manifestly irrational, and it is, perhaps, almost an automatic reflex to pass

from this fact to the assumption that the predictions of the model will not be affected

by whether the strategy is available. However, Ben-Porath and Dekel (1992) point out

that certain concepts in the literature on refinements of Nash equilibrium are sensitive

to the inclusion of possibilities for self-destructive behavior. In Section 4 we show that

the index of a set of Nash equilibria does not depend on the inclusion or exclusion of

pure strategies that are not best responses at any equilibrium in the set, so the index is

insensitive to the inclusion or exclusion of strictly dominated pure strategies. We also

present another result that establishes that the index +1 principle is insensitive to the

details of the model’s presentation: if a simple game (the social scientist’s model) is

well approximated by a more complex game (reality) then the index of any set of Nash

equilibria of the simple game is the same as the index of the set of Nash equilibria of the

complex game that lie above this set.

A fundamental principle should be reliable. Section 5 assesses the extent to which

the index +1 is supported by empirical evidence. There does not seem to be an obvious

violation of the principle in anecdotal or historical experience. Although it has not been

the primary subject of any experimental study, there have been a fairly large number

of studies of games and markets with multiple equilibria, and these studies provide

substantial support. In addition, there is a fairly large literature studying adjustment

to equilibrium in games and markets. We describe the models that have been proposed,

and the experimental results that have been obtained, finding that on the whole they

provide strong support for (a) above.

In Section 6 we consider the index +1 principle in relation to Samuelson’s correspon-

dence principle. We decompose a prototypical example of the correspondence principle,
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as Samuelson presented it concretely, into three steps, the first two of which are the 1-

dimensional index +1 principle. In this sense the index +1 principle can be understood

as having the correspondence principle as its 1-dimensional special case. The third step

is the derivation of qualitative results for comparative statics, which quickly becomes

problematic as the dimension increases. Nowadays economic praxis attaches relatively

minor significance to consequences of the index +1 principle for comparative statics, but

we enjoy a much richer array of theoretical models and empirical strategies, for which

the index +1 principle has diverse consequences.

Section 7 summarizes and concludes.

2 The Fixed Point Index

In this section we present the axiomatic characterization of the fixed point index, em-

phasizing that it is applicable to domains of arbitrary (even infinite) dimension and

to functions and correspondences that need not satisfy any analogue of smoothness or

regularity, and which can have infinite sets of fixed points.

b

b

b
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Figure 1. Indices of Fixed Points of a Univariate Function

The key ideas are already illustrated by Figure 1, which shows the graph of a differ-

entiable function f : [0, 1] → [0, 1] that has three fixed points. At two of these the graph

of f goes from above the diagonal to below as we go from left two right. Each of these

has index +1. At the third fixed point the graph of f goes from below the diagonal to

above, and this fixed point has index -1. Since each of the fixed points of f is regular,

in the sense that the derivative of Id[0,1] − f does not vanish there, we can think of the

index of a fixed point as the sign of the derivative of Id[0,1]− f at that point. (In general

IdX denotes the identity function of the set X .) Note that the sum of the indices is
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+1 for all C1 functions whose fixed points are all regular. As we will see below, these

phenomena are completely general.

The most general setting for the fixed point index depends on certain advanced

topological concepts. If X and Y are sets, a set valued function F : X → Y assigns a set

F (x) ⊂ Y to each x ∈ X . (A function f : X → Y will be identified with the set valued

function x 7→ {f(x)}.) The graph of F is

Gr(F ) = { (x, y) ∈ X × Y : y ∈ F (x) }.

If C ⊂ X and F : C → X is a set valued function, the set of fixed points of F is

F(F ) = { x ∈ C : x ∈ F (x) }.

A set valued function F : X → Y is compact (convex, etc.) valued if each F (x) is

compact (convex, etc.). A correspondence is a nonempty valued set valued function. If

X and Y are topological spaces, a correspondence F : X → Y is upper hemicontinuous

if it is compact valued and, for each x ∈ C and each neighborhood V of F (x), there is a

neighborhood U ⊂ C of x such that F (x′) ⊂ V for all x′ ∈ U .

A topological space X is contractible if the identity function is homotopic to a con-

stant function. That is, there is a continuous function c : X × [0, 1] → X such that

c(·, 0) = IdX and c(·, 1) is a constant function. Any star shaped subset of a topological

vector space is contractible, and in particular convex sets are contractible. The circle is

an example of a space that is not contractible. (Although this is intuitive, it is not easy

to prove.)

If Z is a topological space and X ⊂ Z, a retraction of Z onto X is a continuous

function r : Z → X such that r(x) = x for all x ∈ X . We say that X is a retract of Z.

A topological space X is an absolute retract (AR) if, whenever Z is a metric space and

(a homeomorphic image of) X is a closed subspace, X is a retract of Z. A topological

space X is an absolute neighborhood retract (ANR) if, whenever Z is a metric space and

(a homeomorphic image of) X is a closed subspace, X is a retract of some neighborhood

U ⊂ Z of X .

Basic characterization results give concrete intuition concerning these classes of spaces.

A retract of a convex subset of a locally convex topological vector space is an AR, and

any AR has a homeomorphic image of this sort. (E.g., Section 7.5 of McLennan (2016).)

Similarly, a retract of an open subset of a convex subset of a locally convex topological

vector space is an ANR, and any ANR has such a homeomorphic image. (E.g., Section

7.4 of McLennan (2016).) An important intuition is that each point of an ANR has a

neighborhood that retains some of the simplicity of the neighborhood in the topological



2 THE FIXED POINT INDEX 8

vector space. Using this result, one can show that manifolds, finite simplicial complexes,

and convex subsets of normed linear spaces are ANR’s, so from the point of view of

economic modelling this is a quite general class of spaces. An ANR is an AR if and only

if it is contractible. (Theorem 7.5.4 of McLennan (2016).)

A topological space X has the fixed point property if every continuous function from

X to itself has a fixed point. The Eilenberg-Montgomery fixed point theorem (Eilenberg

and Montgomery (1946)) implies that if X is a nonempty compact AR and F : X →

X is an upper hemicontinuous contractible valued correspondence, then F has a fixed

point. In addition to generalizing the Kakutani fixed point theorem by replacing the

geometric hypothesis of convexity with the conceptually more satisfactory topological

hypothesis of contractibility, this implies that every compact AR has the fixed point

property. Whether an arbitrary nonempty compact contractible metric space necessarily

has the fixed point property was unknown for several years, but Kinoshita (1953) gave an

example of a compact contractible subset of R3 that is not an AR and does not have the

fixed point property. In view of these results, the Eilenberg-Montgomery theorem seems

maximally general, and ANR’s seem to be the most general noncontractible setting in

which topological fixed point theory is well behaved.

Fix an ANR X . If C ⊂ X is compact and F : C → X is an upper hemicontinuous

and contractible valued correspondence, F is index admissible if F(F ) is contained in

the topological interior intC = C \ (X \ C) of C. (Often X is a naturally thought of as a

subset of a larger space Y—for example, we usually think of the space of mixed strategy

profiles of a game as embedded in a Euclidean space—in which case F is allowed to have

fixed points in the boundary of X relative to its inclusion in Y .) Let IX(C) be the set of

index admissible correspondences F : C → X , and let IX =
⋃

IX(C) where the union

is over all compact C ⊂ X .

Definition 1. A fixed point index for X is a function ΛX : IX → ZZ satisfying:

(I1) (Normalization) If c : C → X is a constant function whose value is in intC, then

ΛX(c) = 1.

(I2) (Additivity) If F : C → X is an element of IX , C1, . . . , Cr are pairwise disjoint

compact subsets of C, and F(F ) ⊂ intC1 ∪ . . . ∪ intCr, then

ΛX(F ) =
∑

i

ΛX(F |Ci
).

(I3) (Continuity) For each F : C → X in IX there is a neighborhood U ⊂ C × X of

Gr(F ) such that ΛX(F̂ ) = ΛX(F ) for every F̂ ∈ IX(C) with Gr(F̂ ) ⊂ U .
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An important method is to approximate a correspondence with a function. The

following result (see Ch. 9 of McLennan (2016) for a proof) implies that this is always

possible.

Proposition 1. Suppose that X and Y are ANR’s, C ⊂ X is compact, and F : C → Y is

an upper semicontinuous contractible valued correspondence. Then for any neighborhood

U of Gr(F ) there is a continuous function f : C → Y such that Gr(f) ⊂ U .

The finite dimensional version of this result for convex valued correspondences was

the method Kakutani (1941) used to prove his extension of Brouwer’s theorem. It was

generalized by Cellina (1969, 1970), extended to contractible valued correspondences by

Mas-Colell (1974), and to ANR’s by McLennan (1991).

To begin the process of understanding axioms (I1)–(I3) we observe that the existence

of an index for X implies quite general fixed point theorems. If F ∈ IX and F(F ) = ∅,

then Additivity gives both ΛX(F ) = ΛX(F |∅) and ΛX(F ) = ΛX(F |∅) + ΛX(F |∅), so

ΛX(F ) = 0. Therefore F(F ) 6= ∅ whenever ΛX(F ) 6= 0. Let X be a compact AR, and

let c : X × [0, 1] → X be a contraction. If f : X → X is a continuous function, then

f ◦ c (the function (x, t) 7→ c(t, f(x)) works equally well) is a homotopy between f and

a constant function, so Normalization and Continuity imply that ΛX(f) = 1. Now let

F : X → X be an upper hemicontinuous correspondence. The Eilenberg-Montgomery

fixed point theorem (Eilenberg and Montgomery (1946)) asserts that if F is acyclic2

valued, then F(F ) 6= ∅. Contractible spaces are acyclic, so the following weaker assertion

is a corollary: if F is contractible valued, then F(F ) 6= ∅. (Spaces that are acyclic but not

contractible are rare “in nature,” at least in economic theory, so one expects this version

to be adequate for economic applications.) The index provides a different route to this

conclusion: the fact that ΛX(f) = 1 whenever f : X → X is a continuous function and

Proposition 1 combine with Continuity to imply that ΛX(F ) = 1 whenever F : X → X

is an upper hemicontinuous contractible valued correspondence.

If X is a compact ANR, the Euler characteristic of X is χ(X) = ΛX(IdX) where

IdX : X → X is the identity function. The connection with dynamics investigated in

Section 3 suggests that the following is the most general formulation of the index +1

principle: if a connected component of the set of equilibria of an economic model is an

ANR, a necessary condition for it to be stable with respect to some natural adjustment

dynamics and thus potentially empirically relevant, is that its index agrees with its Euler

characteristic. The Euler characteristic of a singleton is +1 (this follows from Normal-

ization) so the special case of the index +1 principle motivating its name is: in order

2Acyclicity is a concept defined in terms of homology: a space X is acyclic if H0(X,ZZ) = ZZ and
Hi(X,ZZ) = 0 for all i > 0.
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to be potentially empirically relevant, the index (relative to the excess demand or best

response correspondence) of an isolated equilibrium must be +1.

The Continuity axiom is closely related to invariance under homotopy. Let C ⊂ X be

compact. A homotopy is an upper hemicontinuous contractible valued correspondence

H : C × [0, 1] → X.

We usually think of H as a continuous (in the appropriate topology) function taking each

t to a correspondence Ht = H(·, t) “at time t.” An index admissible homotopy (IAH) is

a homotopy H such that each Ht is index admissible. If H is an IAH, then Continuity

implies that Λ(Ht) is a (locally constant, hence) constant function of t, so

Λ(H0) = Λ(H1).

Many applications of Continuity invoke this fact, which we describe as Homotopy.

In view of Continuity, ΛX(F ) 6= 0 implies that the set of fixed points is essential in

the sense of Kinoshita (1952): for any neighborhood V of F(F ) there is a neighborhood

U ⊂ C ×X of Gr(F ) such that if F ′ : C → X is upper hemicontinuous and contractible

valued, then F(F ′) ∩ V 6= ∅. (To prove this note that if U is the neighborhood given by

Continuity, then U \{ (x, x) : x ∈ X\V } is also a neighborhood of Gr(F ).) Theorem 15.3

of McLennan (2016) provides a converse for convex valued correspondences: if X ⊂ R
m

is compact and convex, C ⊂ X is compact, F : C → X is upper hemicontinuous, convex

valued, and index admissible, F(F ) is connected, and ΛX(F ) = 0, then any neighborhood

U ⊂ C × X of Gr(F ) contains the graph of a continuous function f : C → X with

F(f) = ∅.

In effect ΛX assigns an index to each subset of the set of fixed points that is clopen

(both closed and open) in the subspace topology of this set. That is, if F : C → X is an

element of IX and K ⊂ F(F ) is clopen in the relative topology of F(F ), then there is a

compact neighborhood C ′ ⊂ C such that C ′ ∩ F(F ) = K, and Additivity implies that

ΛX(F |C′) = ΛX(F |C′∩C′′) = ΛX(F |C′′) for any two such neighborhoods C ′ and C ′′. Let

ΛF (K) denote this common value.

We now explain how the main methods of computing the index follow from the

axioms. First consider linear functions ℓ : Rm → R
m restricted to the unit disk D =

{ x ∈ R
m : ‖x‖ ≤ 1 }. Elementary matrix analysis shows that the set of ℓ whose unique

fixed point is zero has two path connected components, and continuity implies that the

sign of the determinant of IdRm − ℓ is constant on each component. Normalization and

Continuity imply that if ℓ is in the component containing the constant zero function, so

that this determinant is positive, then Λ(ℓ|D) = +1. More generally, if f : D → D is a
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C1 function that has a unique fixed point x∗ in the interior of D, and |IdRm −Df(x∗)| is

positive, then Λ(f) = +1. As Figure 1 suggests, such an f is homotopic to a function g

with three fixed points, at two of which |IdRm −Dg(x∗)| is positive and at one of which

it is negative. Since (by Continuity) the sum of the indices must be +1, if x∗ is the fixed

point at which |IdRm −Dg(x∗)| is negative, then Λg(x
∗) = −1.

In a Euclidean setting a continuous function can be approximated by a C1 function

whose fixed points are all regular, in the sense that the relevant determinant does not

vanish. (E.g., Hirsch (1976), Section 2.2.) Thus, in a Euclidean setting, the index

of a clopen set of fixed points can in principle always be computed by constructing a

suitable approximation, but of course this can be quite tedious in practice. Three ideas

often simplify the computation. First, if K is a clopen set of fixed points of F and

one can construct any sort of approximation of F that has no fixed points near K,

then ΛF (K) = 0. Second, if the set of fixed points of F has finitely many connected

components, say K1, . . . , Kr, ΛX(F ) is known (for instance because X is contractible)

and ΛF (K1), . . . ,ΛF (Kr−1) are already known, then

ΛF (Kr) = ΛX(F )− ΛF (K1)− · · · − ΛF (Kr−1).

Finally the Commutativity axiom introduced below sometimes allows one to compute

the index of a function by relating it to a function whose index is known.

We now introduce two other properties of the index.

(I4) (Commutativity3) If X and Y are compact ANR’s, and f : X → Y and g : Y → X

are continuous functions, then

ΛX(g ◦ f) = ΛY (f ◦ g).

(I5) (Multiplication) IfX and Y are ANR’s, F : C → X is an element of IX , G : D → Y

is an element of IY , and F ×G is the correspondence taking (x, y) to F (x)×G(y),

then

ΛX×Y (F ×G) = ΛX(F ) · ΛY (G).

Theorem 1. There is a unique assignment of an index ΛX to each ANR X that satisfies

(I1)–(I4), and this assignment also satisfies (I5).

3This is actually a special case that is adequate for our applications. The general version of Commu-
tativity is: if X and X̂ are ANR’s, C, D, Ĉ, and D̂ are compact sets with D ⊂ C ⊂ X and D̂ ⊂ Ĉ ⊂ X̂,
g : C → X̂ and ĝ : Ĉ → X are continuous with g(D) ⊂ int Ĉ and ĝ(D̂) ⊂ intC, ĝ ◦ g|D and g ◦ ĝ|

D̂
are

index admissible, and g(F(ĝ ◦ g|D)) = F(g ◦ ĝ|
D̂
), then ΛX(ĝ ◦ g|D) = Λ

X̂
(g ◦ ĝ|

D̂
).
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The proof of Theorem 1 is much too lengthy to present here in complete detail. It has

several stages. First, the unique existence of an index is established for smooth index

admissible functions f : C → R
m (where C is a compact subset of Rm) whose fixed

points are all regular, using the methods of differentiable topology. This index satisfies

Commutativity by virtue of a nontrivial result of linear algebra, and Multiplication is

a consequence of elementary properties of the determinant. The second stage uses the

fact that continuous functions can be approximated by smooth functions to extend the

index to continuous index admissible functions on Euclidean spaces. A compact subset

of an ANR can be “dominated,” in a certain sense, by a compact subset of a Euclidean

spaces that is the closure of its interior (Theorem 7.6.4 of McLennan (2016)). Using this

fact, one can show that if X is an ANR, C ⊂ X is compact, and f : C → X is an index

admissible function, then f can be approximated by f ◦ g′ ◦ g where C ′ is a compact

subset of some R
m, g : C → C ′ and g′ : C ′ → C are continuous. Continuity and the

general version of Commutativity imply that

ΛX(f) = ΛX(f ◦ g′ ◦ g) = ΛRm(g ◦ f ◦ g′).

This implies that there is at most one index for ANR’s that satisfies (I1)–(I4), and one

can verify that the index defined by this formula does indeed satisfy (I1)–(I5). Finally the

index is extended from functions to contractible valued correspondences using a suitable

generalization of Proposition 1.

Historically the fixed point index evolved out of the general development of algebraic

topology in the first half of the 20th century, beginning with the work of Poincaré and

Brouwer. Lefschetz and Hopf brought the fixed point theorem to the context of manifolds

in the 1920’s, and Leray and Schauder provided the initial formulation of the index during

the next two decades. In his Ph.D. thesis Browder (1948) used Commutatitivy to extend

the index to ANR’s as sketched above (we will see that Commutativity has other uses as

well) and the index was given an axiomatic formulation by O’Neill (1953). Book length

treatments include Brown (1971), Dugundji and Granas (2003), and Górniewicz (2006),

which study the subject from the point of view of pure mathematics, and McLennan

(2016), which is tailored to meet the needs of economists and economic applications.

The fixed point index for regular economies was introduced in general equilibrium

theory by Dierker (1972, 1974). It plays a role in the analysis of the Lemke-Howson

algorithm in Shapley (1974). Hofbauer (1990) applies the vector field index (defined

below) to dynamic issues in evolutionary game theory, and Ritzberger (1994) applies it

to game theory systematically.

Mas-Colell et al. (1995) mention that it is, in principle, possible to prove that the
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set of equilibria has a single connected component by showing that there are finitely

many components, each of which has index +1. At the time they wrote there was no

example in which uniqueness could not be proven by simpler methods, but Eraslan and

McLennan (2011) use this method to prove a uniqueness result, and at present no more

direct proof of their result is known.

We now discuss the fixed point index in relation to game theory. A semi-algebraic set

is a subset of a Euclidean space that is a defined by a logical formula that is built up from

polynomial equations and inequalities using ‘and,’ ‘or,’ ‘not,’ and parenthesis, according

to the usual rules. More concretely, a semi-algebraic set is a finite union of sets that are

defined by conjunctions of polynomial equations and inequalities. Fundamental results

of semi-algebraic geometry (e.g., Bochnak et al. (1987)) imply that a semi-algebraic set

has finitely many connected components, each of which is a path connected ANR. The

application of semi-algebraic geometry to game theory was pioneered by Blume and

Zame (1993), and that paper is recommended for a quick introduction to the subject’s

foundational results.

For a finite strategic form game the set of Nash equilibria is a semi-algebraic set, so

it has finitely many connected components, each of which is closed and thus clopen in

the relative topology of the set of Nash equilibria. Of course the set of Nash equilibria is

also the set of fixed points of the best response correspondence, so each of its connected

components has an index, and the sum of the indices is +1. A component whose index

is nonzero is “robust” with respect to payoff perturbations and trembles: Continuity

implies that for any neighborhood U of the component there is a neighborhood V of the

game’s payoffs and a neighborhoodW of 0 in the space of trembles (in the sense of Selten

(1975)) such that for any payoff in V , and for any tremble in W , the perturbed game

has a Nash equilibrium in U . Wu and Jiang (1962) say that the component is essential

if it is robust with respect to payoff perturbations (this condition is weaker than the

component being essential in the sense of Kinoshita (1952)) and robustness with respect

to trembles implies that the component contains a strategically stable set in the sense of

Kohlberg and Mertens (1986). Thus the requirement that a component has a nonzero

index is already a quite strong refinement of the Nash equilibrium concept, which may

be further refined (without sacrificing existence) by replacing ‘nonzero’ with ‘positive’ or

‘odd.’ Of course the index is agnostic concerning which subsets of a component should

be regarded as “solutions” as per the discussion in Kohlberg and Mertens (1986). Also,

as we will see later, dynamic stability can favor a component of index zero.

The use of Kakutani’s theorem to prove the existence of Nash equilibrium of a nor-

mal form game, and to prove the existence of a competitive equilibrium in a general
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equilibrium setting, are of course very well known. It is less well known that the set of

sequential equilibria (Kreps and Wilson (1982)) of an extensive form game is also (the

projection of) the set of fixed points of an upper hemicontinuous contractible valued

correspondence, so that index theory can be applied. We now briefly sketch the main

ideas as they are developed in McLennan (1989a).

First we quickly review the sequential equilibrium concept of Kreps and Wilson

(1982). Let a finite extensive form game with perfect recall be given. (We assume

that the reader is familiar with the setting and terminology of Kreps and Wilson (1982).

Our discussion is slightly more general since we allow for the possibility that there are

information sets at which Nature chooses that are not initial.) A behavior strategy is an

assignment, to each information set, of a probability distribution over the set of actions

that are available there, which must agree with the given distribution if the information

set is controlled by Nature; it is interior if each probability distribution assigns positive

probability to all actions. A belief is an assignment, to each information set, of a proba-

bility distribution over (the set of nodes in) the information set. An assessment is a pair

consisting of a behavior strategy and a belief. If play is governed by an interior behavior

strategy, then every node occurs with positive probability, so there is an induced belief

that assigns the induced conditional distribution to each information set. An interior

consistent assessment is an assessment in which the behavior strategy is interior and the

belief is the one induced by it. The set of consistent assessments is the closure of the set

of interior consistent assessments.

Given a behavior strategy and a node, one can compute an expected payoff for each

player conditional on reaching the node. Given an assessment, an information set, and

an action at that information set, averaging (with weights given by the belief at the

information set) of the expected payoffs of the nodes resulting from choosing the action

at each of the nodes in the information set, computes an expected payoff (conditional

on reaching the information set) for the agent who controls the information set. An

assessment is myopically rational if, at each information set controlled by a player, the

behavior strategy assigns all probability to actions that maximize this expected utility. A

sequential equilibrium is a consistent, myopically rational assessment. Kreps and Wilson

show that, because the game satisfies perfect recall, a sequential equilibrium is fully

rational in the sense that there is no information set at which an agent can improve her

conditional expected utility by changing her behavior at that and/or other information

sets further down the game tree.

Given a consistent assessment, a sequential best response is a consistent assessment

that, at each information set, assigns all probability to actions that maximize condi-
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tional expected utility for the given consistent assessment. The sequential best response

correspondence is the correspondence that assigns the set of such best responses to each

consistent assessment. This is a correspondence mapping the set of consistent assess-

ments into itself that is upper hemicontinuous (because the relevant conditional expected

utilities are continuous functions) and which has the set of sequential equilibria as its

set of fixed points. However, whether this best response correspondence is contractible

valued (which would imply that the set of set of consistent assessments is contractible)

is unknown.

To obtain a well behaved correspondence we pass to a setting that keeps track of more

conditional probabilities. Let Z be a finite set. For any nonempty subset E let ∆(E)

be the set of probability measures on E. A conditional system (Rényi (1970), Myerson

(1986)) is an assignment of a probability measure p( · |E) ∈ ∆(E) to each nonempty

E ⊂ Z satisfying

p(C|E) = p(C|D) · p(D|E)

for all C ⊂ D ⊂ E ⊂ Z with D and E nonempty. A conditional system is interior if

all such probabilities are positive. The space of conditional systems is the closure of the

set of interior conditional systems, and is homeomorphic to a (|Z| − 1)-dimensional ball

(McLennan (1989b)).

Now let Z be the set of terminal nodes of the given finite extensive form game. A

conditional system gives conditional probabilities over all nonempty subsets of Z, so it

encodes a belief and, for each node in each information set, a distribution over the set

of actions at the information set conditional on the node being reached. A conditional

system is consistent if, for each information set, the distributions over actions at the

various nodes in the information set are all the same, and this distribution is the given one

if the information set is controlled by Nature. That is, a conditional system is consistent

if it has an unambiguous projection to a behavior strategy, so a consistent conditional

system projects onto an assessment, and in fact the set of consistent assessments is

precisely the image of this projection. The set of consistent conditional systems is the

closure of the set of interior consistent conditional systems, and it is also homeomorphic

to a closed Euclidean ball (McLennan (1989a)).

Given a consistent conditional system p, the expected utility conditional on reaching

an information set and choosing an action there is the one computed using the data of

the associated consistent assessment, as we described above. A conditional best response

to p is a consistent conditional system that assigns all probability at each information set

to the actions that maximize these conditional expected utilities, and the conditional best

response correspondence assigns the set of such conditional best responses to each p. As
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above, since the relevant expected utilities are continuous functions of p, the conditional

best response correspondence is upper hemicontinuous. McLennan (1989a) shows that

for any specification of a nonempty set of actions at each information set not controlled

by Nature, the set of consistent conditional systems that do not assign any probability

to other actions is contractible. Therefore the conditional best response correspondence

is contractible valued, and satisfies the hypotheses of the Eilenberg-Montgomery fixed

point theorem.

The set of sequential equilibria and the set of fixed points of the conditional best

response correspondence are both semi-algebraic sets, so each has finitely many path

connected components. Since a continuous function maps connected sets to connected

sets, each component of the set of fixed points of the conditional best response correspon-

dence is mapped into a component of the set of sequential equilibria by the projection

described above. If one defines the index of a component of the set of sequential equi-

libria to be the sum of the indices of the components of the set of fixed points of the

conditional best response correspondence that lie above it, then the sum of the indices

of the components of the set of sequential equilibria is +1, and there necessarily exist

components with odd index and components with positive index. By Continuity, any

component of the set of fixed points of the conditional best response correspondence with

nonzero index is robust with respect to perturbations of the conditional best response

correspondence, in the sense that sufficiently nearby perturbations will have fixed points

near the set, and a component of the set of sequential equilibria will be robust with

respect to perturbations of the extensive form payoffs (for example) if such a component

lies above it. In this connection we should mention an important result of Kreps and

Wilson (1982): for generic extensive form payoffs there are finitely many paths (distri-

butions on Z) induced by sequential equilibria. When there are finitely many paths,

each component of the set of sequential equilibria and each component of the set of fixed

points maps to a single path, and a path is robust with respect to perturbations of the

payoffs if one of the components of the set of fixed points of the conditional best response

correspondence that maps to it has nonzero index.

3 Natural Dynamics

In certain biological applications of game theory the pure strategies are thought of as

biological traits (often genes, but other interpretations are possible) while the payoffs

are reproduction rates such as the expected number of offspring surviving to adulthood.

If we imagine that members of today’s population are first matched with each other
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randomly, after which they play the game and achieve whatever reproductive success,

this gives rise to a discrete time dynamic system: the proportion of the population

playing a certain strategy tomorrow is the proportion of today’s population playing that

strategy times the average number of offspring, normalized by dividing by the size of

the population. Stability of an equilibrium with respect to such dynamics motivates the

concept of an evolutionarily stable strategy (Maynard Smith and Price (1973)). The

study of evolutionary dynamics began in biology with Taylor and Jonker (1978) and

eventually migrated to economics, where it generated a large literature that is surveyed

by (among others) Weibull (1995), Vega-Redondo (1996), Samuelson (1997), Hofbauer

and Sigmund (1998), Fudenberg and Levine (1998), Cressman (2003), and Sandholm

(2010).

Such dynamics are sensibly motivated when applied to simple organisms, and also to

large populations of myopic agents, such as drivers in a traffic network, whose aggregate

behavior adjusts gradually to changing circumstances. (Microfoundations of strategic dy-

namics are discussed in Section 1.2 of Sandholm (2010).) When agents are sophisticated

creatures who are aware of the adjustment process and can respond rapidly, gradual ad-

justment processes are conceptually problematic because of the possibility of exploiting

the adjustment process instead of following it. This is equally the case for processes

such as tatonnement that have been proposed as models of adjustment to equilibrium in

markets. In fact the only adjustment process that is fully consistent with the principal

of rational expectations (the agents understand the model and behave optimally relative

to its predictions) is to go to equilibrium immediately. Thus all models of dynamics of

strategic adjustment for sophisticated agents are to some extent behavioral, with some

aspect of bounded rationality. In addition, since the agents whose behavior is being

studied cannot have very precise knowledge of the dynamic adjustment process, there is

every reason to expect the social scientist to have at best a quite vague understanding

of it.

The considerations suggest that if reliable conclusions can be obtained from dynamic

considerations, they must be based on coarse qualitative properties of the dynamics. Fol-

lowing Demichelis and Ritzberger (2003), we say that a Nash equilibrium of a strategic

form game is potentially stable if it is locally stable with respect to some dynamic ad-

justment process that is natural, in the sense of not adjusting any component of a profile

of mixed strategies in a direction that lowers the agent’s expected utility. (Section 5.2 of

Sandholm (2010) discusses related concepts.) Similarly, an equilibrium of an exchange

economy is potentially stable if it is locally stable with respect to some dynamic adjust-

ment process in price space that never adjusts prices in a direction that is a negative
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multiple of excess demand. The most direct form of the hypothesis being advanced here

is that if an isolated equilibrium is not potentially stable, then it will not be observed

as an outcome that is self-reproducing in the sense of being expected to occur, and then

occurring, repeatedly.

This section presents two results that show that for the central models of economic

theory, namely finite strategic form games and general equilibrium, if an isolated equilib-

rium is potentially stable, then its index is +1. More generally, if a connected component

of the set of equilibria is potentially stable, and it is an ANR, then its index must coincide

with its Euler characteristic.

This is to be understood as a quite weak consequence of the presumption that a

self-reproducing outcome must be stable. There is no suggestion that it exhausts the

consequences of dynamic stability, and in fact in Section 5 we will see games with equi-

libria that are evidently unstable, but which are not rejected by this criterion.

We now introduce necessary formalities concerning vector fields, the vector field index,

and dynamics. Let H be an n-dimensional affine subspace of Rm, and let L be the n-

dimensional linear subspace of Rm that is parallel to H . (The Euclidean setting provides

certain technical simplifications, but all concepts and results extend to vector fields on

manifolds.)

If S ⊂ H , a vector field4 on S is a continuous function ν : S → L. An equilibrium of

ν is a point p ∈ S such that ν(p) = 0. Let E(ν) be the set of equilibria of ν. A vector

field ν : C → L is index admissible if C is a compact subset of H and E(ν) is contained

in the interior of C. Let VH(C) be the set of index admissible vector fields on C, and let

VH =
⋃

VH(C) where the union is over all compact C ⊂ H .

Definition 2. A vector field index for H is a function indH : VH → ZZ satisfying:

(I1) (Normalization) If p is an element of the interior of C and ν : C → L is the vector

field ν(q) = q − p, then indH(ν) = +1.

(I2) (Additivity) If ν : C → X is an element of VH , C1, . . . , Cr are pairwise disjoint

compact subsets of C, and E(ν) ⊂ intC1 ∪ . . . ∪ intCr, then

indH(ν) =
∑

i

indH(ν|Ci
).

(I3) (Continuity) For each ν : C → L in VH there is a neighborhood U ⊂ C × L of

Gr(ν) such that indH(ν̂) = indH(ν) for every ν̂ ∈ VH(C) with Gr(F̂ ) ⊂ U .

4For game theory it is also natural to consider the more general notion of a differential inclusion

which assigns a nonempty set of tangent vectors to each point. Smirnov (2002) provides an introduction
to the relevant theory.



3 NATURAL DYNAMICS 19

For a vector field ν : C → L let fν : C → H be the function fν(p) = p+ ν(p), and for

a continuous function f : C → H let νf : C → L be the vector field νf (p) = f(p)− p. Of

course νfν = ν and fνf = f , and ν is an index admissible vector field if and only if fν is an

index admissible function. If ΛH is a fixed point index for H , then ν 7→ (−1)nΛH(fν) is a

vector field index forH . Conversely, if indH is a vector field index, then f 7→ (−1)nind(νf)

is a fixed point index (for functions) for H . Thus existence and uniqueness of the vector

field index follows easily from existence and uniqueness of the fixed point index.

The sign (−1)n could be avoided by replacing the Normalization axiom above with

the requirement that if p ∈ intC, then the index of q 7→ p− q is +1, but unfortunately

(for us at least) the definition above is standard. The equations indH(ν) = ΛH(f−ν) and

ΛH(f) = ind(−νf ) are perhaps the simplest expressions of the relationship between the

fixed point index and the vector field index.

A vector field homotopy on a set S ⊂ H is a continuous function η : S × [0, 1] → L.

Let ηt = η(·, t) denote the vector field “at time t.” If η is a vector field homotopy on a

compact C, it is index admissible if each ηt is index admissible. If this is the case, then

Continuity implies that indH(η0) = indH(η1).

Let Σ ⊂ H be nonempty, closed, and convex. For p ∈ H let r(p) be the nearest

point in Σ. Evidently r : H → Σ is a retraction. We claim that r is Lipschitz with

Lipschitz constant 1. To see this note that if p, p′ ∈ H and r(p) 6= r(p′), then the line

segment between r(p) and r(p′) is contained in Σ, so it makes an obtuse angle with the

line segment between p and r(p) (otherwise some point between r(p) and r(p′) would be

closer to p than r(p)) and also with the line segment between p′ and r(p′). Therefore

‖r(p)− r(p′)‖ ≤ ‖p− p′‖.

If ν is a vector field on S ⊂ Σ, then we say that ν is not outward pointing if, for all

p ∈ S, ν(p) points into any half space that contains Σ and has p in its boundary. Formally

this condition is that 〈ν(p), η〉 ≥ 0 for all η ∈ L such that Σ ⊂ { y ∈ L : 〈y, η〉 ≥ 〈p, η〉 }.

In game theory equilibria are frequently in the boundary (relative to the topology

of H) of Σ. We extend the vector field index to this situation as follows. If ν is a not

outward pointing vector field on a compact C ⊂ Σ, we say that ν is index admissible if

it does not have any equilibria in the boundary C ∩ Σ \ C of C relative to the topology

of Σ. Let C̃ be a compact subset of H such that

(C̃ ∩H \ C̃) ∩ Σ = C ∩ Σ \ C.

For example, we could take C̃ = { p ∈ r−1(C) : ‖r(p)− p‖ ≤ ε } for some ε > 0. Then

ν̃|C̃ is index admissible in the previous sense, so indH(ν̃|C̃) is defined. By Additivity this

number does not depend on the choice of C̃, so we can define indΣ(ν) to be the common
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value of indH(ν̃|C̃) for all suitable C̃. It is easy to see that indΣ satisfies suitably modified

versions of Normalization, Additivity, and Continuity. In particular, if A is the set of

equilibria of ν and C ′ is a compact subset of C that contains A in its interior, then

indΣ(ν|C′) = indΣ(ν), and we can denote this number by indν(A).

We now discuss dynamics. Let Z̃ be an open subset of H , and let ν̃ : Z̃ → L

be a locally Lipschitz5 vector field. If a < b, a C1 function γ : [a, b] → Z̃ is a finite

trajectory of ν̃ if γ′(t) = ν̃(γ(t)) for all t. A trajectory of ν̃ is a C1 function from a

(closed, open, half open, bounded, or unbounded) interval of R whose restriction to

every compact subinterval is a finite trajectory. Foundational results of the theory of

ordinary differential equations imply that for any compact K ⊂ Z̃ there is an ε > 0

such that there is a unique Φ̃ : K × (−ε, ε) → Z̃ such that for each p ∈ K, Φ̃(p, 0) = p

and Φ̃(p, ·) is a trajectory of ν̃. In addition, Φ̃ is continuous, and if ν̃ is Cr for some

1 ≤ r ≤ ∞, then Φ̃ is Cr. From this it follows without great difficulty that there is a

maximal W̃ ⊂ Z̃ × R, called the flow domain of ν̃, such that:

(a) For each p ∈ Z̃, { t ∈ R : (p, t) ∈ W̃ } is an interval containing 0.

(b) There is a continuous Φ̃ : W̃ → Z̃ such that for each p ∈ Z̃, Φ̃(p, 0) = p and Φ̃(p, ·)

is a trajectory of ν̃.

In fact W̃ is open, there is a unique function Φ̃ satisfying (b) that is called the flow of

ν̃, Φ̃ is continuous, and if ν̃ is Cr, then so is Φ̃.

Let Z ⊂ Σ be open, and let ν : Z → L be a locally Lipschitz vector field that is not

outward pointing. Let Z̃ = r−1(Z), and for p ∈ Z̃ let

ν̃(p) = ν(r(p)) + r(p)− p.

If p /∈ Σ, then r(p) − p is the normal vector of a bounding hyperplane of Σ at r(p), so

if p ∈ r−1(S), then 〈r(p) − p, ν(r(p))〉 ≥ 0 and thus ν̃(p) 6= 0. In particular the only

equilibria of ν̃ are the equilibria of ν.

Since ν is locally Lipschitz and r is Lipschitz, ν̃ is locally Lipschitz. Let W̃ and Φ̃

be the flow domain and flow of ν̃. Proposition 15.4 of McLennan (2016) implies that

Φ̃(W̃ ∩ (Z × R+)) ⊂ Z. From this it follows that for any compact K ⊂ Z there is an

ε > 0 such that there is a unique Φ : K×[0, ε) → Z such that for each p ∈ K, Φ(p, 0) = p

and Φ(p, ·) is a trajectory of ν. As above, it follows without difficulty that there is a

maximal W ⊂ Z × R+, called the forward flow domain of ν, such that for each p ∈ Z,

5Recall that a function f : X → Y between metric spaces is Lipschitz if there is a constant ℓ ≥ 0
such that d(f(x), f(x′)) ≤ ℓd(x, x′) for all x, x′ ∈ X , and it is locally Lipschitz if each x ∈ X has a
neighborhood U such that f |U is Lipschitz.
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{ t ∈ R+ : (p, t) ∈ W } is an interval containing 0, and there is a continuous Φ : W → Z,

called the forward flow of ν, such that for each p ∈ Z, Φ(p, 0) = p and Φ(p, ·) is a

trajectory of ν. Again, if ν is Cr, then so is Φ. As with homotopies, it often works

well to treat the temporal argument as a subscript, writing Φt(p) in place of Φ(p, t). If

S ⊂ Z, I ⊂ R and S × I ⊂ W , then ΦI(S) = {Φt(p) : p ∈ S and t ∈ I }, and there are

abbreviations such as Φt(S) in place of Φ{t}(S) that should cause no confusion.

A set A ⊂ Z is forward invariant if A × R+ ⊂ W and ΦR+(A) ⊂ A. The set A is

Lyapunov stable if, for any neighborhood U ⊂ Z of A, there is a neighborhood U ′ ⊂ U

such that U ′ ×R+ ⊂ W and ΦR+(U
′) ∈ U . The set A is uniformly attractive if there is a

neighborhood U ⊂ Z of A such that U ×R+ ⊂ W and, for any neighborhood U ′ ⊂ Z of

A, there is a T ≥ 0 such that Φ[T,∞)(U) ⊂ U ′. Combining these conditions, the set A is

uniformly asymptotically stable if it is compact, forward invariant, Lyapunov stable, and

uniformly attractive. It turns out (McLennan (2016), Lemma 15.6) that if A is compact

and asymptotically stable, then it is uniformly asymptotically stable.

The domain of attraction of A is

D(A) = { p ∈ Z : lim sup
t→∞

d(Φt(p), A) = 0 }.

(Here d is the usual Euclidean metric on R
n, extended to points and closed sets by taking

the minimum distance from the point to points in the set.) A Lyapunov function for

D(A) and A is a continuous function L : D(A) → [0,∞) such that:

(a) L−1(0) = A.

(b) For each p ∈ D(A) the ν-derivative νL(p) = d
dt
L(Φt(p))|t=0 is defined, and there is

a continuous a : (0,∞) → (0,∞) such that νL(p) ≤ −a(d(p, A)) for all p ∈ D(A).

(c) For every neighborhood U of A there is ε > 0 such that L−1([0, ε]) ⊂ U .

It is intuitive and very well known that if A is compact and there is a Lyapunov function

for A, then A is uniformly asymptotically stable. The converse—if A is uniformly asymp-

totically stable, then there is a Lyapunov function for A—is also true. This is a highly

nontrivial result with a rather complicated history that is sketched by Nadzieja (1990).

Briefly, a sequence of partial solutions, over several decades, eventually culminated in a

complete (in the sense that the Lyapunov function can be required to be C∞) solution

of the problem for vector fields on open subsets of manifolds by Wilson (1969).

Theorem 15.13 of McLennan (2016) extends the result to not outward pointing vector

fields on convex sets, and more generally to vector fields that are not outward pointing

on analogous subsets of manifolds. The idea is that if A is asymptotically stable for ν,
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then (Theorem 15.12 of McLennan (2016)) it is also asymptotically stable for ν̃. Wilson’s

theorem gives a Lyapunov function for A and ν̃ whose restriction to the portion of the

domain lying in Σ is Lyapunov function for A and ν.

Suppose that A is compact and asymptotically stable. The domain of attraction

D(A) does not (by definition) contain any equilibria of ν outside of A, so for a compact

neighborhood C ⊂ D(A) of A, ν|C is index admissible. In addition, Additivity implies

that indH(ν|C) does not depend on the choice of C, and we denote the common value by

indν(A). There is the following relationship between asymptotic stability and the index.

Theorem 2. If A ⊂ Z is compact, asymptotically stable, and an ANR, then

ind−ν(A) = χ(A).

This is essentially due to Demichelis and Ritzberger (2003). Although the special case

when A is a single point is a well known result in the theory of dynamical systems, it seems

that the more general result was not developed in that literature (e.g., Krasnosel’ski and

Zabreiko (1984), Th. 52.1) even though it could have physical applications. Since generic

payoffs for an extensive form game give rise to associated normal forms with infinitely

many Nash equilibria, the additional generality is pertinent to that setting.

Here we only sketch the main ideas of one of the proofs given by Demichelis and

Ritzberger, referring the reader to Ch. 15 of McLennan (2016) for more details. The

converse Lyapunov theorem implies that there is a Lyapunov function L for ν and A.

For ε > 0 let Aε = L−1([0, ε]). Since A is an ANR, it is a retract of some neighborhood

of itself, which contains Aε for sufficiently small ε, so we can fix ε for which there is a

retraction r : Aε → A. Since A is compact, it has a compact neighborhood, and we can

require that Aε is contained in some such neighborhood, so we may assume that Aε is

compact.

For p ∈ D(A) let τ(p) = inf{ t ≥ 0 : Φt(p) ∈ Aε }. Since Φ is continuous, for any

c ∈ R the sets τ−1((−∞, c)) and τ−1((c,∞)) are open, so τ is continuous. Therefore

the function p 7→ Φτ(p)(p) is a retraction of D(A) onto Aε, which implies that Aε is a

retract of an open subset of Σ and thus an ANR. If i : A → Aε is the inclusion, then

Commutativity gives χ(A) = ΛA(r ◦ i) = ΛAε
(r ◦ i) = ΛAε

(r).

It is easy to see that for small t > 0, Φt and ftν |Aε
are index admissible homotopic. Fix

such a t. Then s 7→ sν gives a homotopy of vector fields between tν and ν that is index

admissible homotopic (in the obvious sense) so ΛAε
(Φt) = ΛAε

(ftν |Aε
) = ind(−tν|Aε

) =

ind(−ν|Aε
) = ind−ν(A). Since r is a retraction, continuity implies that the set of p ∈ Aε

such that Aε contains the line segment between p and r(p) is a neighborhood of Aε. Let

T be large enough that ΦT (Aε) is contained in this neighborhood. We can follow the
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homotopy s 7→ Φs from Φt to ΦT , use convex combination to create a homotopy between

ΦT and r ◦ ΦT , then follow the homotopy s 7→ r ◦ Φs from r ◦ ΦT to r, thereby creating

an index admissible homotopy between Φt and r, so Homotopy gives ΛAε
(Φt) = ΛAε

(r).

Combining the various results above gives ind−ν(A) = ΛAε
(Φt) = ΛAε

(r) = χ(A).

We now state the main result from Demichelis and Ritzberger (2003). Let

G = (S1, . . . , Sn, u1, . . . , un)

be a strategic form game. That is, S1, . . . , Sn are finite sets of pure strategies and

u1, . . . , un are real valued functions whose domain is the set S = S1 × · · · × Sn of pure

strategy profiles. Let N = {1, . . . , n}. For any nonempty finite set X let ∆(X) = {µ :

X → [0, 1] :
∑

µ(x) = 1 } be the set of probability measures on X . The set of mixed

strategies for agent i ∈ N is Σi = ∆(Si). Let Σ = Σ1 × · · · × Σn be the set of mixed

strategy profiles. Abusing notation, let ui also denote the multilinear extension of ui to

Σ:

ui(σ) =
∑

s∈S

(

∏

h∈N

σh(sh)
)

ui(s).

A mixed strategy profile σ∗ is a Nash equilibrium if ui(σ
∗) ≥ ui(τi, σ

∗
−i) for all i

and τi ∈ σi. (As usual (τi, σ
∗
−i) denotes the mixed strategy profile obtained from σ∗ by

replacing σ∗
i with τi.) Agent i’s set of best responses to σ ∈ Σ is

Bi(σ) = { τi ∈ Σi : ui(τi, σ−i) ≥ ui(τ
′
i , σ−i) for all τ

′
i ∈ Σi }.

The best response correspondence is the correspondence B : Σ → Σ given by B(σ) =

B1(σ)× · · · ×Bn(σ). Of course B is an upper hemicontinuous convex valued correspon-

dence whose fixed points are the Nash equilibria of G.

For each i let Hi = { τi ∈ R
Si :

∑

τi(si) = 1 } and Li = { τi ∈ R
Si :

∑

τi(si) = 0 },

and let H = H1 × · · · × Hn and L = L1 × · · · × Ln. A vector field ν : Σ → H can be

regarded as an n-tuple (ν1, . . . , νn) of vector fields νi : Σ → Li, and an element of Li can

be identified with the element of L with the same i-component and all other components

zero. The vector field ν is a payoff consistent selection dynamics if ν is not outward

pointing and Dui(σ)νi(σ) ≥ 0 for all σ ∈ Σ and i ∈ N , and it is a Nash dynamics if, in

addition, ν(σ) = 0 if and only if σ is a Nash equilibrium.

Theorem 3 (Demichelis and Ritzberger (2003)). If ν is a Nash dynamics and A is a

connected component of the set of Nash equilibria that is uniformly asymptotically stable

for ν, then ΛB(A) = ind−ν(A) = χ(A).

Remark: Demichelis and Ritzberger (Remark 2, p. 60) show that every payoff consistent

selection dynamics can be perturbed to a Nash dynamics by adding an arbitrarily small
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amount of the dynamics introduced by Brown and von Neumann (1950). Thus the

hypotheses of this result can be weakened by requiring only that ν is a payoff consistent

selection dynamics.

To prove Theorem 3 one first observes that Theorem 2 implies that ind−ν(A) = χ(A).

The next result completes the argument.

Proposition 2. If ν is a Nash dynamics and A is a connected component of the set of

Nash equilibria, then ind−ν(A) = ΛB(A).

Proof. Since the set of Nash equilibria is semi-algebraic, there is a compact C ⊂ Σ with

A = F(B|C) that has no Nash equilibria in its topological boundary ∂C = C ∩ Σ \ C.

We have ind−ν(A) = indΣ(−ν|C).

For σ ∈ Σ and i ∈ N let γi(σ) ∈ R
Si be given by

γi(σ; si) := max{ui(si, σ−i)− ui(σ), 0},

and let b(σ) = (b1(σ), . . . , bn(σ)) ∈ Σ be given by

bi(σ; si) :=
σi(si) + γi(σ; si)

∑

ti∈Si
σi(ti) + γi(σ; ti)

.

(These functions were introduced by Nash (1950).) Let β(σ) = b(σ) − σ. Then the set

of Nash equilibria is the set of fixed points of the function b, and it is the set of vector

field equilibria of the vector field β. Evidently β is a Nash dynamics.

We claim that for any t ∈ [0, 1], (1− t)ν + tβ is a Nash dynamic. It is evidently not

outward pointing with Dui(σ)((1− t)νi(σ) + tβi(σ)) ≥ 0 for all σ ∈ Σ and i ∈ N . If σ is

not a Nash equilibrium, and t > 0, then this inequality holds strictly for some i, so that

(1 − t)νi(σ) + tβi(σ) 6= 0. If σ is a Nash equilibrium, then ν(σ) = β(σ) = 0. Theorem

15.3 of McLennan (2016) implies that indΣ(−ν|C) = indΣ(−β|C). The homotopy J :

C × [0, 1] → Σ given by

J(σ, t) = { (1− t)b(σ) + tτ : τ ∈ B(σ) }

is clearly upper hemicontinuous and convex valued. For any σ ∈ ∂C there is some i

such that σi /∈ Bi(σ), so that ui(τi, σ−i) > ui(σ) for every τi ∈ Bi(σ). Since ν is a Nash

dynamics, ui(bi(σ), σ−i) ≥ ui(σ), so ui(τi, σ−i) ≥ ui(σ) for all t and τ ∈ Jt(σ), with strict

inequality if t > 0. Therefore Jt does not have any fixed point in ∂C if t > 0, and J0

does not have any fixed point in ∂C because all the equilibria of ν are Nash equilibria.

Thus J is index admissible, so Continuity implies that

ind−ν(A) = ind−β(A) = ΛΣ(b|C) = ΛΣ(J0) = ΛΣ(J1) = ΛΣ(B|C) = ΛB(A).
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An interesting example due to Balkenborg and Vermeulen (2016) illustrates the

Demichelis-Ritzberger theorem, methods by which the index may be computed, and

the contrast between strategic and dynamic stability. Suppose that S1 = · · · = Sn, and

that for each i ∈ N and s ∈ S, ui(s) = 0 if s1 = · · · = sn and otherwise ui(s) = 1. In

words, the outcome is a failure for everyone if and only if everyone chooses the same pure

strategy. Balkenborg and Vermeulen say that such a G is a minimal diversity game.

The set of Nash equilibria is easily computed. First suppose that σ is a completely

mixed equilibrium. Then each agent i is indifferent between any two a, b ∈ S1 = · · · = Sn,

so
∏

k 6=i σk(a) =
∏

k 6=i σk(b), which implies that σi(a)/σi(b) =
∏

k∈N σk(a)/
∏

k∈N σk(b) =

σj(a)/σj(b) for all i and j. Therefore σ1 = · · · = σn, and consequently indifference

between all pure strategies implies that σ is the mixed strategy profile ρ in which each i

assigns equal probability to all pure strategies, which is evidently a Nash equilibrium.

Now suppose that σ is a Nash equilibrium with σi(a) = 0 for some agent i and pure

strategy a. Every j 6= i can insure a payoff of 1 by playing a, so σ ∈ Γ = { σ ∈ Σ :

u1(σ) = · · · = un(σ) = 1 }. Conversely, each element of Γ is a Nash equilibrium since

the common payoff is maximized. Thus the set of Nash equilibria is {ρ} ∪ Γ.

Consider the vector field ν on Σ given by νi(σ)(a) = σi(a)(ui(a, σ−i)− ui(σ)). Direct

computation shows that ν is a payoff consistent selection dynamics. By an argument

similar to the one given above (cf. Section 4 of Balkenborg and Vermeulen (2016)) the

only equilibria of this vector field outside of Γ are the mixed strategy profiles σ such

that σ1 = · · · = σn and each σi assigns equal probability to all elements of some subset

of the common set of pure strategies and no probability to pure strategies outside this

set. In particular, Γ has a neighborhood with no other equilibria of ν. Near Γ the flow

of ν increases the common utility, so Γ is uniformly asymptotically stable. Therefore the

index of Γ is its Euler characteristic.

Balkenborg and Vermeulen show that Γ is homeomorphic to a sphere of dimension

(m − 1)(n − 1) − 1 where m = |S1| = · · · = |Sn| is the common number of pure

strategies. We now compute the Euler characteristics of spheres. Consider the orthogonal

transformation of R2 with matrix

(

cos θ sin θ
− sin θ cos θ

)

. Applying this to each factor of the

d-fold cartesian product of R2 gives an orthogonal transformation ℓ of R2d whose only

fixed point is the origin, and the restriction of this map to the unit sphere gives a function

from the unit sphere to itself that is homotopic to the identity and which has no fixed

points. Thus the Euler characteristic of an odd dimensional sphere is 0. Applying ℓ and

IdR to the factors of the product R
2d × R gives an orthogonal transformation of R2d+1

whose restriction to the unit sphere is a function from the unit sphere to itself that is

homotopic to the identity and which has two fixed points, which may be thought of as
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the North and South Poles. At each of these the derivative of the function is ℓ, and since

|IdR2d − ℓ| =

∣

∣

∣

∣

1− cos θ − sin θ
sin θ 1− cos θ

∣

∣

∣

∣

d

= (2− 2 cos θ)d > 0,

the index of each is +1. Thus the Euler characteristic of an even dimensional sphere is

+2. Since the sum of the index of Γ and the index of {ρ} is +1, the index of {ρ} is +1

or -1 according to whether (m− 1)(n− 1)− 1 is odd or even.

In particular, {ρ} is essential in the sense of Kinoshita (1952). Balkenborg and

Vermeulen establish that it is stable in the sense of Kojima et al. (1985), so that is

satisfies all of the strategic stability concepts surveyed by Hillas et al. (2001). When

the game is perturbed by trembles in the sense of Selten (1975) it continues to be a

game of common interest, so any strategy profile maximizing the common utility is a

Nash equilibrium. Therefore Γ always contains Kohlberg-Mertens stable sets. When

(m − 1)(n − 1) − 1 is even, so that the index of Γ is +2, Γ is essential in the sense

of Kinoshita (1952), and Theorem 2 of Demichelis and Ritzberger (2003) implies that

it is stable in the sense of Mertens (1989, 1991), which implies that it satisfies all the

other concepts surveyed by Hillas et al. (2001). When (m − 1)(n − 1) − 1 is odd, Γ is

not essential in the sense of Kinoshita (1952) because its index is zero (Theorem 15.3

of McLennan (2016)). Balkenborg and Vermeulen conjecture that in this case Γ is not

BR-stable (as defined in Hillas et al. (2001)) and therefore does not satisfy the concepts

that are shown in Hillas et al. (2001) to be equivalent to BR-stability, and is not stable in

the sense of Mertens because this concept is stronger. They establish that this is the case

when m = 2 and n is odd, and when n = 2 and m is odd. The subject is quite intricate

(as Hillas et al. (2001) explain, details of definitions often vary across papers) but the

simple take away is that strategic stability concepts can strongly endorse sets such as {ρ}

which are dynamically unstable, and concepts stronger than Kohlberg-Mertens stability

can disparage a component of the set of equilibria that is uniquely dynamically stable.

L M R
L 1, 1 0,−1 −1, 1
M −1, 0 0, 0 −1, 0
R 1,−1 0,−1 −2,−2

(L, L) (L,R)

(M,M) (M,R)

(R,L) (R,M)

Figure 2a Figure 2b

Figure 2. A Game with a Circular Set of Nash Equilibria
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One of the strongest predictions of the index +1 principle is that for models in

which there is no component of the set of equilibria whose index agrees with its Euler

characteristic, observed behavior will not be characterized by repetition of any one of

the equilibria. The strategic form game in Figure 2a is from Appendix B of Kohlberg

and Mertens (1986). Inspection reveals that there are six pure equilibria. When these

are arranged in a circle, as shown in Figure 2b, it is easy to verify that mixtures of any

two “adjacent” pure equilibria are mixed equilibria. For each agent and each pair of pure

strategies for that agent, such mixtures evidently encompass all the equilibria in which

that agent mixes strictly over those two pure strategies. There are no equilibria in which

both agents mix over all three pure strategies (for each agent R is weakly dominated)

so there are no other equilibria. Thus the set of Nash equilibria is homeomorphic to a

circle. As always, its index is +1, but as we saw above, its Euler characteristic is zero.

(Concretely the identity map of a circle is homotopic to a map (rotate the circle slightly)

that has no fixed points.) Note that the instability predicted by the index +1 principle

is, for this example, rather delicate, insofar as slight perturbations of the payoffs give

games with strict pure equilibria, which are stable. (See Theorem 5 and the subsequent

discussion.)

We now describe an application to general equilibrium theory. Fix a number of

goods ℓ ≥ 1. Let e = (1, . . . , 1) ∈ R
ℓ, and let H = { p ∈ R

ℓ : 〈e, p〉 = 1 } and

L = { p ∈ R
ℓ : 〈e, p〉 = 0 }. Let P = H ∩ R

ℓ
++ be the open price simplex. Let the

aggregate excess demand function ζ : P → R
ℓ satisfy:

(a) 〈p, ζ(p)〉 = 0 for all p (Walras’ law).

(b) ζ is bounded below.

(c) ‖ζ(pn)‖ → ∞ whenever pn → p ∈ P \ P .

For p ∈ P let ζ̃(p) = ζ(p) − 〈e, ζ(p)〉p. Then ζ̃(p) ∈ L, so ζ̃ is a vector field on P .

Since p and ζ(p) are orthogonal, ζ̃(p) = 0 if and only if ζ(p) = 0. If ζ̃ is locally Lipschitz,

then the associated dynamic system is a continuous time version of tatonnement. This

dynamics is not invariant under changes in the units in which goods are measured.

(Roughly, if we go from measuring milk in quarts to measuring it in pints, the price is

halved and the numerical measure of excess demand is doubled, so the effective speed of

price adjustment is quadrupled.) Thus there are many versions of tatonnement, with no

apparent reason for preferring one to another. More generally, a natural price dynamics

is a locally Lipschitz vector field ν : P → L such that:

(a) ν is not outward pointing.
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(b) For all p ∈ P , ν(p) = 0 if and only if ζ(p) = 0.

(c) 〈ν(p), ζ̃(p)〉 ≥ 0 for all p ∈ P .

Theorem 4. If ν is a natural price dynamics and A is a compact set of equilibria that

has a neighborhood containing no other equilibria, then ind−ν(A) = ind−ζ̃(A). If, in

addition, A is asymptotically stable for ν and an ANR, then ind−ζ̃(A) = χ(A).

The proof is simple. Let C ⊂ P be a compact neighborhood of A that contains no

other equilibria. Then convex combination gives an index admissible homotopy between

ν|C and ζ̃|C . Therefore indH(−ν|C) = indH(−ζ̃|C), and since C is arbitrary C, this

establishes the first assertion. Of course the second is from Theorem 2.

Although it seems “natural” at first glance, from a mathematical point of view con-

dition (c) is unnecessarily strong. The key idea is that ν|C and ζ̃|C are index admissible

homotopic, which can be achieved in many ways. For example it would be enough to

require that ν(p) /∈ {αζ̃(p) : α ≤ 0 } for all p such that ζ(p) 6= 0. Similar remarks pertain

to the definition of payoff consistent selection dynamics.

The processes of adjustment to equilibrium observed in reality, and in experimental

settings, often have a stochastic aspect. For such processes one would expect analogues

of the results above that assert that with high probability the process will spend very

little time near an isolated equilibrium whose index is different from +1. Here “high

probability” and “very little” can be made precise either by considering a sequence of

models along which the stochastic aspect vanishes asymptotically, or by considering a

single model in which the stochastic aspect vanishes asymptotically as time goes to

infinity. These formulations are described, respectively, by the phrases “constant step

size” and “decreasing step size.”

Pemantle (1990) provides an elegantly formulated prototype for decreasing step size

results. His method of proof (see p. 703) is to find a direction along which perturbations

away from equilibrium will be positively reinforced. Because the process is bouncing

around at least a little bit, it will necessarily arrive eventually in a part of the state space

where this reinforcement will transport it some distance away with high probability. This

method was significantly extended by Benäım (1998) and Benäım and Weibull (2003).

Extensions of the main results to differential inclusions are given by Benäım et al. (2005)

(decreasing step size) and Roth and Sandholm (2013) (constant step size). Benäım

(1999) provides an expository overview of the innovations of Benäım and his coauthors,

and Pemantle (2007) and Sandholm (2010) give more recent surveys of this literature.

Examples of specific strategic adjustment processes that have been proposed by ex-

perimentalists include experience weighted attraction learning (Camerer and Ho (1999),
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Ho et al. (2007)) and individual evolutionary learning (Arifovic and Ledyard (2011),

Arifovic and Ledyard (2015)). Sandholm (2010) provides a recent and comprehensive

survey of the many processes considered the evolutionary game theory literature. Local

Walrasian dynamics and local Marshallian dynamics (Champsaur and Cornet (1990),

Bossaerts and Ledyard (2013)) are models of trading processes for general equilibrium

exchange economies. Typically these processes can be perturbed stochastically (if they

are not already stochastic) and then embedded in infinite horizon models in which the

stochastic aspect vanishes asymptotically. (In the case of models of trading, one would

also like to take limits along which the effective amount of out-of-equilibrium trade should

go to zero.)

Although game theory and general equilibrium are central and prototypical, there are

many other economic models in which equilibrium is a topological fixed point. Very often,

if not always, it will be possible to define a compelling notion of a “natural” process of

adjustment to equilibrium that is motivated by respect for the agents’ efforts to increase

their utilities. The intuitive ideas underlying the arguments in this section do not depend

on the specific features of the models we studied, so they should be broadly and flexibly

applicable. In this sense the results of this section are indicative but presumable far from

exhaustive. My personal expectation is that the index +1 principle will hold for most (in

some vague sense) models to which it might be applied. Nevertheless, the logic passing

from the presumption of stability to the conclusion that the index of the equilibrium

is +1 must be reconsidered in each instance. Once again, the index +1 principle is a

general principle and not a law of economics.

4 Insensivity to Minor Details

Economic modelling requires strategic simplification. A model necessarily specifies only

a few features of the world. The social scientist hopes that the selected features are the

critical ones, and that their interaction in the analysis of the model sheds light on how

economic outcomes are affected by their interaction in reality. In this section we consider

one of the many ways that the modelling effort can go wrong: the solution concept makes

misleading predictions because it is excessively sensitive to minor details of model spec-

ification. Most economists think about such issues rarely, if at all, but we have already

mentioned how Ben-Porath and Dekel (1992) showed that certain solution concepts in

the literature on refinements of Nash equilibrium gave different conclusions according

to which of the two agents was modelled as having a capacity for self destruction that

is always present in the world, but usually left out of economic models. A variety of
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reactions to this example can be found in the literature, but almost all game theorists

would agree that it raises important issues that deserve careful consideration.

The index +1 principle refines whatever equilibrium concept it is applied to, so it

is certainly fair to ask whether it might be similarly sensitive to insignificant details.

Perhaps it is impossible to give a final and definitive answer, because there is no end of

ways in which a model might be changed slightly. Nevertheless the results of this section

provides considerable reassurance, and might serve as a prototype for other results with

similar import.

We study two contexts in which there are two games, one of which is simple, and

may be thought of as the social scientist’s models, while the other is complex, and may

be thought of either as a more complex model, or as the actual world. In the first

context the simpler game is obtained by eliminating all pure strategies that are not best

responses at any equilibrium in a connected component of the set of Nash equilibria of

the complex game. We show that the component has the same index for the simple game

and the complex game.

In the second context, for each agent there is a function mapping the set of pure

strategies in the complex model onto the set of pure strategies of the simple game. The

complex game is an ε-approximation of the simple game if, for every profile of strategies

of the complex game, the payoffs in the complex game are within ε of the payoffs of the

projection in the simple game. Holding the simple game fixed, the result asserts that for

any clopen set of Nash equilibria of the simple game there is an ε > 0 such that if the

complex game is an ε-approximation, the set of its equilibria that project onto the given

set of equilibria has the same index.

We now present a general result concerning index theory that will be used in the

proofs of both of these results. Its proof illustrates typical modes of reasoning based on

the index axioms.

Lemma 1. Suppose that X and Y are ANR’s, C ⊂ X and D ⊂ Y are compact, r :

C → D and i : D → C are continuous, and r ◦ i = IdD. Let F : C → D be an

upper hemicontinuous contractible valued correspondence. Then i◦F and F ◦ i are upper

hemicontinuous contractible valued correspondences, and if i ◦ F and F ◦ i are index

admissible, then

ΛX(i ◦ F ) = ΛY (F ◦ i).

Proof. Automatically F ◦ i has compact, contractible values. Since i is continuous and

F has compact values, i ◦ F has compact values. If x ∈ C, then i|F (x) and r|i(F (x)) are

inverse continuous bijections, so i(F (x)) is contractible because it is homeomorphic to

F (x). Thus i ◦ F has contractible values.
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If x ∈ C and V ⊂ C is a neighborhood of i(F (x)), then i−1(V ) is a neighborhood

of F (x), and the upper hemicontinuity of F gives a neighborhood U of x such that

F (x′) ⊂ i−1(V ) and thus i(F (x′)) ⊂ V for all x′ ∈ U . Thus i◦F is upper hemicontinuous.

If y ∈ D and V is a neighborhood of F (i(y)), the upper hemicontinuity of F gives a

neighborhood U of i(y) such that F (x) ⊂ V for all x ∈ U , and continuity implies that

i−1(U) is a neighborhood of y. Thus F ◦ i is upper hemicontinuous.

We now show that for every open neighborhood V ⊂ D ×D of Gr(F ◦ i) there is a

neighborhood U ⊂ C×C of Gr(i◦F ) such that (i(D)×i(D))∩U ⊂ (i×i)(V ). Aiming at

a contradiction, suppose that every such U contained a point in (i(D)× i(D))\ (i× i)(V )

(which is compact, because it is (i × i)((D × D) \ V )). A limit point of a sequence of

such points is a point

(x, y) ∈ Gr(i ◦ F ) ∩ (i(D)× i(D)) \ (i× i)(V ).

There are w ∈ D such that i(w) = x, z ∈ F (x) such that i(z) = y, and z′ ∈ D such that

i(z′) = y, and i is injective, so z = z′. Thus (w, z) ∈ Gr(F ◦ i) and (i(w), i(z)) = (x, y),

so (x, y) ∈ (i× i)(Gr(F ◦ i)) ⊂ (i× i)(V ), which is a contradiction.

Now suppose that i ◦ F and F ◦ I are index admissible. Choose neighborhoods

U ⊂ C×C of Gr(i◦F ) and V ⊂ D×D of Gr(F ◦i) as per Continuity. We just showed that

by replacing U with a smaller neighborhood we may obtain (i(D)×i(D))∩U ⊂ (i×i)(V ).

Let U ′ = U ∩ (IdC × (i ◦ r))−1(U). Now (i ◦ r)|i(D) = Idi(D) and (IdC × (i ◦ r))|Gr(i◦F ) =

IdGr(i◦F ). Since U is a neighborhood of Gr(i ◦ F ), so is U ′.

Proposition 1 guarantees the existence of a continuous f : C → C with Gr(f) ⊂ U ′,

and for such an f we have Gr(i ◦ r ◦ f) ⊂ U . In addition

Gr(r ◦ f ◦ i) = (r × r)Gr(i ◦ r ◦ f |i(D)) = (r × r)((i(D)× i(D)) ∩Gr(i ◦ r ◦ f))

⊂ (r × r)((i(D)× i(D)) ∩ U) ⊂ (r × r)(i× i)(V ) = V.

Therefore

ΛX(i ◦ F ) = ΛX(i ◦ r ◦ f) = ΛY (r ◦ f ◦ i) = ΛY (F ◦ i)

where the first and last equalities are from Continuity and the second is from Commu-

tativity.

Let G = (S1, . . . , Sn, u1, . . . , un) be a strategic form game. We retain the notation

developed in the last section: N = {1, . . . , n}, S = S1 × · · · × Sn, Σi = ∆(Si), Σ = Σ1 ×

· · ·×Σn, Bi : Σ → Σi is agent i’s best response correspondence, and B = B1 × · · ·×Bn.

Let G̃ = (S̃1, . . . , S̃ñ, ũ1, . . . , ũñ) be a second normal form game. Let Ñ = {1, . . . , ñ},

and define S̃, Σ̃i, Σ̃, B̃i, and B̃ as above.
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We first suppose that ñ = n, that Si ⊂ S̃i for all i, and that ui(s) = ũi(s) for all

s ∈ S, so that G is obtained from G̃ by eliminating some pure strategies. In the obvious

way we regard each Σi as a subset of Σ̃i.

Theorem 5. Suppose that C ⊂ Σ̃ is compact and has no Nash equilibria of G̃ in its

boundary, and that ũi(σ̃−i, s̃i) < ũi(σ̃) for all Nash equilibria σ̃ of G̃, all i, and all

s̃i ∈ S̃i \ Si. Let D = C ∩ Σ. Then

ΛΣ(B|D) = ΛΣ̃(B̃|C).

Proof. Additivity implies that we may replace C with any smaller compact neighborhood

of the set of Nash equilibria that it contains, so we may assume that ũi(σ̃−i, s̃i) < ũi(σ̃)

for all σ̃ ∈ C, all i, and all s̃i ∈ S̃i \ Si. Then the image of B̃|C is contained in Σ.

For each i let Σ̂i = Σ̃i \ ∆(S̃i \ Si) if Si is a proper subset of S̃i, and otherwise let

Σ̂i = Σ̃i = Σi. Let Σ̂ = Σ̂1 × · · · × Σ̂n. Any element of Σ̃i is ασi + (1− α)τi for a unique

α ∈ [0, 1] and some σi ∈ Σi and τi ∈ Σ̂i, and σi is unique if α > 0. Let ri : Σ̂i → Σi be

the map ri(ασi + (1−α)τi) = σi, and let r = (r1, . . . , rn) : Σ̂ → Σ. Let i : Σ → Σ̂ be the

inclusion. Of course D contains all the fixed points of B̃|C , and Additivity implies that

ΛΣ̃(B̃C) is unaffected if we replace C with C∩r−1(D), so we may assume that r(C) ⊂ D.

If we set F = r ◦ B̃|C , then the claim follows from Lemma 1.

Thus the index is unaffected by the inclusion or exclusion of strictly dominated strate-

gies. Recall that a Nash equilibrium σ̃ of G̃ is strict if ũi(σ̃−i, s̃i) < ũi(σ̃) for all i and

all s̃i ∈ S̃i such that σ̃i(s̃i) = 0. Normalization implies that the index of the unique

function from a singleton to itself is +1, so this result implies that the index of a strict

pure equilibrium is +1. If all the Nash equilibria of G̃ are regular and strict, as is the

case for generic payoffs (Harsanyi (1973)), then the index of each is either +1 of -1. Gul

et al. (1993) used this and the fact that the sum of the indices is +1 to conclude that for

generic G̃ the number of mixed equilibria is not less than the number of pure equilibria

minus one.

We now assume that there are surjections θ : Ñ → N and πj : S̃j → Sθ(j) for each

j ∈ Ñ . Abusing notation, for i ∈ N let πi also denote the map πi : Σ̃ → Σi given by

πi(σ̃)(si) =
∑

j∈θ−1(i)

1

|θ−1(i)|

∑

s̃j∈π
−1
j (si)

σ̃j(s̃i),

and let π : Σ̃ → Σ be the map π(σ̃) = (π1(σ̃), . . . , πn(σ̃)). We say that G̃ is an ε-

approximation of G if

∣

∣ũj(s̃)− uθ(j)

(

πj(s̃j), π−θ(j)(s̃)
)
∣

∣ < ε
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for all j ∈ Ñ and s̃ ∈ S̃. That is, an agent’s payoff in the complicated game is within

ε of the payoff of that agent’s image in the simple game when she plays the image pure

strategy and the mixed strategies of others are the population averages in the complicated

game.

Theorem 6. Let D ⊂ Σ be compact. If the intersection of D with the set of Nash

equilibria of G is contained in int (D), then there is an ε > 0 such that if G̃ is an

ε-approximation of G and C = π−1(D), then B̃|C is index admissible and

ΛΣ̃(B̃|C) = ΛΣ(B|D).

This result provides some assurance that the index +1 principle is unlikely to con-

tradict itself. For example, it cannot be the case that only one equilibrium of G̃ with

index -1 lies above an index +1 equilibrium of G.

Proof. If G̃ is an ε-approximation of G and σ̃ is a Nash equilibrium of G̃, then π(σ̃) is

an ε-approximate equilibrium of G in the sense that each agent is achieving an expected

utility that is within ε of the optimum. If, for arbitrarily small ε, there was an ε-

approximate equilibrium of G in the topological boundary ∂D = D \ int (D) of D, then

a limit point of a suitable sequence of such strategy vectors would be a Nash equilibrium

in ∂D, contrary to assumption. Therefore there is an ε such that if 0 ≤ ε < ε and

G̃ is an ε-approximation of G, then G̃ has no Nash equilibria in π−1(∂D). For such

a G̃ continuity implies that π−1(int (D)) is open, so π−1(∂D) contains the topological

boundary of C, and consequently B̃|C is index admissible.

Fix a particular ε-approximation G̃ = (S̃1, . . . , S̃ñ, ũ1, . . . , ũñ) where 0 ≤ ε < ε. For

t ∈ [0, 1] let G̃t = (S̃1, . . . , S̃ñ, ũ
t
1, . . . , ũ

t
ñ) where

ũt
j(s̃) = (1− t)ũj(s̃) + tuθ(j)(πj(s̃j), π−θ(j)(s̃)),

and let B̃t be defined as above. Then G̃t is an (1 − t)ε-approximation of G, so B̃t|C

is index admissible, and t 7→ B̃t|C is an IAH. By Homotopy it suffices to show that

ΛΣ̃(B̃
0|C) = ΛΣ(B|D), which is to say that it suffices to establish the claim when G̃ is a

0-approximation, which we now assume.

For each j ∈ Ñ fix a map ŝj : Sθ(j) → S̃j such that πj ◦ ŝj = IdSθ(j)
, and let Ŝj be

the image of ŝj . Let Σ̂j be the set of σ̃j ∈ Σ̃j such that σ̃j(s̃j) = 0 whenever s̃j /∈ Ŝj .

For σ̃ ∈ Σ̃ let B̂j(σ̃) = B̃(σ̃) ∩ Σ̂j , and let B̂(σ̃) = B̂1(σ̃) × · · · × B̂ñ(σ̃). There is an

obvious homotopy between B̃ and B̂ that restricts to an IAH between B̃|C and B̂|C , so

ΛΣ̃(B̃|C) = ΛΣ̃(B̂|C).
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Let ι : Σ → Σ̃ be the linear extension of the map s 7→ (ŝj(sθ(j))). Evidently π◦ι = IdΣ.

Let i = ι|D and r = π|C . Then B|D = B|D ◦ r ◦ i and B̂|C = i ◦ B|D ◦ r, so Lemma 1

(with F = B|D ◦ r) implies that ΛΣ̃(B̂|C) = ΛΣ(B|D).

5 Experimental Evidence

We now describe experimental research related to the index +1 principle, which is of

two sorts. First, although there have been no studies in which the index +1 principle

was itself the central issue, there have been a number of studies of games and markets

with several equilibria, some of which have an index different from +1. Here we look for

direct confirmation or violation of the index +1 principle. Second, many authors have

studied the processes of adjustment to equilibrium in considerable detail, and we can ask

whether the models they brought to this data, and the experimental findings, support

the hypothesis that, in practice, processes of adjustment to equilibrium are natural in

the senses considered in Section 3.

Before proceeding to this literature, we should first of all note that there are no an-

necdotal or historical examples in which unstable equilibria are or were self-reproducing,

at least so far as I am aware. Such an example would be quite surprising and coun-

terintuitive, not just for a mathematically trained social scientist, but also for ordinary

people, which suggests that an expectation of stability is part of our instinctive or com-

monsensical understanding of how the world works.

In deciding what might constitute a test of the index +1 principle, it is first of all

necessary to confront the fact that Nash equilibrium does a poor job of describing human

behavior in all but the simplest settings. In part this is true even for decision problems,

but in games the complexity of reasoning about the reasoning, and reliability, of other

agents, quickly becomes overwhelming as the size of the game increases. For this reason

a compelling counterexample to the index +1 principle would necessarily be quite simple.

In the overview of literature below, some studies have been excluded on this basis. It

is certainly possible that others that should have been included have, regrettably, been

overlooked.

In a coordination game all agents have the same set of pure strategies, and maximal

payoffs are attained if all agents play the same pure strategy, so for each agent, each pure

strategy is the unique best response if all other agents are playing that pure strategy.

The best known example is the battle of the sexes.

Consider a coordination game in which two agents each have the same three pure

strategies. Each player receives one dollar if both players choose the same pure strategy,
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and she receives nothing if they fail to coordinate. This game has three pure equilibria,

three equilibria in which each agent assigns equal probability to two of the pure strategies

and no probability to the third, and a totally mixed equilibrium in which each agent

assigns probability one third to each pure strategy. Each of the three pure equilibria

is strict and therefore has index +1. Each of the three equilibria that mix over two

pure strategies has the same index in the game obtained by eliminating the third pure

strategy (by Theorem 5) which is -1 because the reduced game has three Nash equilibria,

and the two pure equilibria each have index +1. Since the sum of the indices is +1, the

totally mixed equilibrium has index +1. The totally mixed equilibrium is evidently not

dynamically stable, which illustrates an important point: the index +1 principle does

not exhaust the consequences of dynamic stability. (It is also an additional example of

the divergence between strategic stability and dynamic stability.) More generally, for the

coordination games considered in experimental studies to date only the pure equilibria

are stable with respect to natural dynamics, and these studies test not only the index +1

principle, but also the stronger hypothesis that only pure equilibria are self-reproducing

outcomes.

This literature already brings forth a concern that pervades the experimental evi-

dence, as it relates to the index +1 principle: the number of rounds is often quite small,

so a failure to converge does not imply that there will not eventually be convergence,

nor can it be taken as strong evidence of convergence to a mixed equilibrium. In the

experiments of Cox et al. (2001) testing the Jordan (1991) model of Bayesian learning

there is frequent convergence to pure equilibria of the battle of the sexes when the same

players are matched repeatedly, but not when players are rematched randomly. The

number of rounds (15) seems insufficient to allow nonconvergence to be construed as

evidence of convergence to the mixed equilibrium. In Cooper et al. (1990) seven co-

horts of eleven players played seven different coordination games. Each cohort played 22

rounds in which 10 players were matched with each other and one player sat out. Each

player played against each other player twice, but the orderings of the matchups were

random. In each of the seven cohorts play converged to a pure Nash equilibrium, which

was sometimes Pareto dominated, and the selected equilibrium seemed to be affected

by varying the payoffs of a dominated pure strategy. In van Huyck et al. (1990) agents

played a coordination game with a reward for the group’s minimum effort and a lesser

penalty, or no penalty, for individual effort. For games with large numbers of players

play converged to the minimum effort equilibrium when individual effort was penalized

and to the maximum effort equilibrium when it was not. When players were paired,

either permanently or randomly in each period, and played the two player version with
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effort penalty, played converged mostly to the efficient equilibrium but sometimes to the

minimum effort equilibrium. In all cases there was a strong tendency to converge to

some pure Nash equilibrium.

We now describe two studies of games in which there are multiple equilibria. In

neither of them do we see convergence to an equilibrium with an index other than +1.

Friedman (1996) (see also Bouchez and Friedman (2008)) is an experimental study

of a variety of games, including some with multiple equilibria. The results are generally

supportive of the hypothesis that play will not converge to unstable equilibria. (The au-

thors suggest that apparent convergence to an unstable mixed equilibrium may actually

be slow divergence away from it, which is consistent with the small run lengths (typi-

cally 10 or 16 rounds) and the limited information provided to the participants in several

treatments.) This study included a single population Hawk-Dove-Bourgeois game with

two equilibria, one of which is stable, so that the index of the other is zero. The combined

data from this paper and subsequent experiments is described by Bouchez and Fried-

man (2008) as follows: “Loose (tight) convergence was found to some BE [behavioral

equilibrium] in 41 (7) of 46 half-runs, loose (tight) convergence to the EE [evolutionary

equilibrium] in 8 (3) half runs, and no loose or tight converge was found to the edge

[index zero] equilibrium in spite of its large area.”

Cox and Walker (1998) is an experimental study of two Cournot duopoly games, one

of which has a unique equilibrium in which both firms’ quantities are positive, while

the other has three equilibria, two of which are monopolistic and have index +1, while

the third, in which both firms have positive production, has index -1. In all but one

experiment 20 subjects were divided into two groups, and in each of 30 market periods

there was a random matching of the members of the two groups, with each pair playing

the duopoly game. Play generally converged to one of the equilibria (even though the

data was inconsistent with the particular learning models discussed in the paper) but

the index -1 equilibrium was not observed. “The results of the experiments ... strongly

suggest that the theoretical stability properties of a Nash equilibrium can serve as an

effective ‘refinement,’ distinguishing equilibria that subjects can be expected to play from

those that they generally will not play.”

In a signalling game a Sender is informed of his type and chooses a message, after

which a Receiver (who has prior beliefs concerning the type, but sees only the message)

chooses an action. Payoffs depend jointly on the type, message and action. In the

example6 shown in Figure 3 the Sender is weak with probability 0.1 and strong with

6The numbers are taken from Cho and Kreps (1987). The story has been adjusted to avoid cultural
references that might be incomprehensible now.
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probability 0.9. The Receiver would like to attack if the Sender is weak and withdraw

if the Sender is strong. The Sender’s message is the choice of whether to listen to the

blues, which he prefers if he is strong, or to classical music, which he prefers if he is weak.

The Sender’s utility is the sum of 2 or 0 utils, according to whether a fight is avoided,

and 1 or 0 utils, according to whether he listens to his favorite music.
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Figure 3: Cho and Kreps’ Beer-Quiche Game

A sequential equilibrium for this game consists of mixed strategies for the two types

of Senders and for the Receiver at each of the two information sets, together with beliefs

at the two information sets. The behavior of the two Sender types must be optimal

taking the Receiver’s behavior as given, the behavior of the Receiver must be optimal

taking the beliefs as given, and the beliefs must be given by Bayesian updating when it

is well defined.

First consider sequential equilibria in which the strong Sender always listens to the

blues. Bayesian updating requires that when she hears the blues, the Receiver believes

that the Sender is strong with probability at least 0.9, so she will not attack. If the

weak Sender sometimes listened to classical music, the Receiver would believe that the

Sender was certainly weak when she heard classical music, and the weak Sender would

be better off switching to the blues. Therefore the weak Sender always listens to the

blues, the Receiver’s beliefs after hearing classical music must justify attacking, and she

must assign enough probability to attacking to deter the weak Sender. The set of such

equilibria is

{ (BW , BS,WB, αAC + (1− α)WC , 0.1W + 0.9S, βW + (1− β)S) :
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α = 1 and β ≥ 0.5, or α ≥ 0.5 and β = 0.5 }.

(Here the components are the weak and strong Sender’s strategies, the Receiver’s strate-

gies after hearing the blues and hearing classical music, and the Receiver’s beliefs after

hearing the blues and hearing classical music.)

Now consider sequential equilibria in which the strong Sender sometimes listens to

classical music. The probability of an attack after classical music must be less than the

probability of an attack after the blues, so the weak Sender always listens to classical

music. Therefore the strong Sender always listens to classical music (otherwise Bayesian

updating would assign all probability to the strong Sender after the blues) the Receiver’s

beliefs after hearing the blues must justify attacking, and she must assign enough prob-

ability to attacking to deter the strong Sender. The set of such equilibria is

{ (CW , CS, γAB + (1− γ)WB,WC , δW + (1− δ)S, 0.1W + 0.9S) :

γ = 1 and δ ≥ 0.5, or γ ≥ 0.5 and δ = 0.5 }.

The second set vanishes if we perturb the best response correspondence by requiring

both types of Sender to listen to each type of music with at least probability ε: the

Receiver will play WB unless the weak Sender is assigning more than probability ε to

BW , and any pair of mixed strategies for the Receiver that makes BW a best response for

the weak Sender will make BS the only best response for the strong Sender. Since small

perturbations of the best response correpondence eliminate the second set of equilibria,

its index (as described in Section 2) is zero, so the index of the first set of sequential

equilibria is +1.

Kohlberg and Mertens (1986), Cho and Kreps (1987), and Banks and Sobel (1987)

propose a range of equilibrium refinements that select the first set of equilibria. In

each case an existence theorem for the refinement is proved by showing that certain

sequences of perturbations of the best response correspondence do not permit sequences

of approximate equilibria that converge to an equilibrium violating the refinement. The

points of view of the various pairs of authors are somewhat different, but in each case

the motivation appeals to strategic intuition. In an equilibrium from the second set

the weak Sender cannot possibly benefit by deviating to BW , but the strong Sender can

benefit from deviating to BS if the Receiver then believes that the Sender is strong. Such

a belief is well motivated by a consideration of the Sender’s incentives, and the strong

Sender will deviate if he expects the Receiver to reason along these lines. For this reason

equilibria in the first (second) set are said to be intuitive (unintuitive).

Banks et al. (1994) use signalling games to test the refinements experimentally. The

refinements can be ordered according to strength, and their experiments use a sequence of
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signalling games that discriminate between each solution concept and the next strongest

refinement. In each case the equilibrium satisfying the stronger refinement has index +1.

On the whole the data tend to support the refinements, but there is considerable out-

of-equilibrium play. Even in the longest run lengths (20 rounds) there is little evidence

of convergence. Although signalling games are perhaps quite simple in a mathematical

sense, they certainly stress human cognition. In one paper in this literature the authors,

to their credit, mention that a referee pointed out that their analysis of one of their

games was incorrect. Other authors use software to check their analyses.

Brandts and Holt (1992, 1993) are able to induce the unintuitive equilibrium by

manipulating the parameters of the game and the conditions of the experiment in certain

ways. Their main conclusion is that equilibrium selection is strongly affected by the

dynamics of adjustment. Paltrow and Schotter (1993) run the same experiments except

that the subjects do not see the other player’s payoff, with similar results. Anderson and

Camerer (2000) replicate some of the results of Brandts and Holt (1992), but also extend

the run length to 30 rounds. They found clear evidence that lengthening the run length

leads to convergence in the treatment that induces the intuitive equilibrium, but in the

treatment inducing the unintuitive equilibrium, the out-of-equilibrium message continued

to be chosen at about the same rate as in the 9th through 12th periods, suggesting

that substantially greater run lengths might eventually result in divergence from the

unintuitive equilibrium, followed by convergence to the intuitive equilibrium.

It is important to note that if the unintuitive equilibrium is in fact an example of an

equilibrium with index 0 that can be a self-reproducing outcome, it is possible precisely

because the dynamic adjustment process leading away from that equilibrium can be shut

down. The Receiver might explain this concretely as follows: “Perhaps a strong Sender

sometimes imagines that their deviation sends a message about their type, but deviators

are always ill informed or confused about the game, or the equilibrium in effect, or they

simply had an accident. In practical experience such people tend to be weak. On those

rare occasions when I hear the blues, my attacks succeed more often than not. That’s

how it’s always been, and I don’t expect things to change.” In this sense this example

reminds us that the index +1 principle is not a “law,” and that its conclusion may fail

in examples that do not conform to its underlying logic.

We now consider market examples. Gale (1963) presents an example of a symmetric

two good exchange economy with three equilibria. The interior equilibrium is egalitarian

but unstable (index -1) while the two boundary equilibria are stable (index +1) but

highly inegalitarian. Crockett et al. (2011) implements this example experimentally,

finding (contrary to the prior expectations of some of the authors) “robust evidence that
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prices in laboratory Gale economies resist the interior equilibrium and march upward or

downward toward the corner equilibria.”

The Walrasian (tatonnement) and Marshallian models of market adjustment in a

partial equilibrium setting were pitted against each other experimentally by Plott and

George (1992), Plott and Smith (1999), and Plott (2000). In the Walrasian model the

variable being adjusted is price: if the amount demanded at the current price exceeds (is

less than) the amount supplied, the price increases (decreases). In the Marshallian model

the variable of equilibration is quantity: if the price at which consumers are willing to

consume the current quantity is less (more) than the price at which suppliers are willing

to provide it, then the quantity decreases (increases). An equilibrium at which the supply

curve is upward sloping and the demand curve is downward sloping is stable for both

dynamics. However, if the signs of the two curves’ slopes are the same, then the models

produce opposite predictions concerning stability.

Thus a setting that contrasts the Walrasian and Marshallian models is necessarily

one in which the supply curve slopes down or the demand curve slopes up. Plott and

George (1992) use externalities in production to induce downward sloping supply, Plott

and Smith (1999) used externalities in consumption to induce upward sloping demand,

and Plott (2000) used income effects to induce downward sloping (that is, backward

bending) supply of labor. The experimental results in Plott and George (1992) and

Plott and Smith (1999) strongly support the Marshallian model, but the data in Plott

(2000) support the Walrasian model with at least equal strength. The models in these

papers are not general equilibrium models, the equilibria are not fixed points, and in

fact Marshallian dynamics is not even defined in a general equilibrium setting. Thus

these studies are not close to being direct tests of the index +1 principle. Nevertheless,

collectively they cast doubt on how the relationship between naive dynamics and stability

is conventionally understood, and they raise many questions.

There is an extensive experimental literature that attempts to understand dynamic

adjustment in games and markets, so we can ask what light it sheds on the question of

whether adjustment dynamics are natural, in the sense that the agents in games adjust

their strategies in directions that increase payoffs, and in markets price adjustment is not

contrary to excess demand. Perhaps the first point to emphasize about this literature

is that it seems to have never considered the possibility that dynamic adjustment might

not be natural. I have not found any studies that claim that data exhibits unnatural

dynamics, but there seem to be no studies that attempt to induce unnatural dynamics.

What we can hope to find in this literature is confirmation that actual adjustment

does resemble natural processes such as best response dynamics and tatonnement. There
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are specific models such as Champsaur and Cornet (1990), Camerer and Ho (1999), Ho

et al. (2007), Arifovic and Ledyard (2011), Bossaerts and Ledyard (2013), and Arifovic

and Ledyard (2015) that have been advanced as candidates to fit experimental data,

and, to a greater or lesser extent, some of these studies do achieve a good fit. (I am

not competent to assess such claims in any detail.) Selten (1991) proposes a model

of strategic adjustment in which each of two populations first computes best response

dynamics of the opponent population, then adjusts in the direction of best response to

this anticipation. Tang (2001) tests this experimentally, comparing a game that is stable

with respect to the Selten model, but not for best response dynamics, with a game that

is unstable for both dynamics. Play does not converge to the unique equilibrium in either

case, but comes closer for the game that is stable for the Selten model.

Without committing to a particular model, we can ask whether experimental data

exhibits the qualitative features predicted by models such as tatonnement. The two

features we consider are nonconvergence when the unique equilibrium is unstable and

cycling.

There is considerable experimental evidence that instability of naive (tatonnement or

best response) dynamics can lead to nonconvergence. Anderson et al. (2004) and Hirota

et al. (2005) are experimental implementations of the Scarf (1960) example of an exchange

economy with a unique equilibrium that is unstable with respect to tatonnement. They

produce extensive evidence that actual price dynamics in double oral auctions are well

modelled by tatonnement. In particular, the unique equilibrium is not stable. Goeree

and Lindsay (2012) replicate Anderson et al. (2004) and also show that the equilibrium

is achieved in experiments using a different market mechanism in which agents submit

demand schedules. Chen and Tang (1998), Healy (2006), and Van Essen et al. (2010)

find that the Walker (1981) mechanism implementing Lindahl equilibrium does not con-

verge to the unique equilibrium, at least within the number of periods allowed in the

experiments. This mechanism was shown to be unstable by Kim (1987).

It is common for games, including even quite simple ones, to have best response

dynamics that are cyclic. Cason et al. (2003) find clear cycles in the data of Cason and

Friedman (2003). Xu and Wang (2011) conducted experiments in which two populations

of 8 subjects played 300 rounds of the game Coyness and Philandering, with random

rematching after each round, finding that population averages followed cyclic dynamics.

Xu et al. (2014) analyze experimental data concerning 2 × 2 games from Selten and

Chmura (2008), again finding evidence of cycling.

Until recently there had been little experimental work on Rock-Paper-Scissors with

human subjects (Semmann et al. (2003) is perhaps the earliest study) but there have
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been several studies in recent years. In a generalized version one can vary the ratio of the

benefit of winning (relative to a tie) to the loss from losing (again relative to a tie). As

Hoffman et al. (2015) explain the unique Nash equilibrium is stable (unstable) for best

response dynamics if the benefit of winning exceeds (is less than) the loss from losing.

(See also Example 3.3.2 and pp. 351–356 of Sandholm (2010) and the illustrations on

p. 759 of Sandholm (2015).) They find that aggregate behavior is further from the Nash

equilibrium in the unstable case. Cason et al. (2010) study a variant with an additional

strategy called Dumb that is never a best response. Like Hoffman et al. (2015), but

unlike Semmann et al. (2003), they find no evidence of cycling even though the time

average of a cycle provides a somewhat better description of aggregate behavior than the

Nash equilibrium. Using different software that provides visual information to subjects

and allows continuous time play, Cason et al. (2014) find clear and persistent cycles.

Very recently Xu et al. (2013), Wang and Xu (2014), and Wang et al. (2014) produced

persistent cycles in discrete time, and Frey and Goldstone (2013) found cyclic behavior

in discrete time play of a variant of RPS.

Models of strategic adjustment are supported by data that respond in the expected

manner to changes in factors that have been theoretically identified as relevant. Chen and

Gazzale (2004) find faster and and tighter convergence to the unique Nash equilibrium

when a parameter of a game is set in a range that makes the game supermodular.

Summing up, the experimental evidence supporting the index +1 principle seems

quite strong. In games with multiple equilibria there is no evidence of convergence to

equilibria with indices different from +1. Possibly in the signalling game of Figure 3

the index 0 equilibrium can persist if the system is induced to start there, but this is

easily understood in terms of the underlying dynamics. Although dynamic adjustment

processes such as tatonnement and best response dynamics are inconsistent with the

rational expectations hypotheses, experimental data is in accord with such processes,

at least roughly, and qualitative features predicted by these models have been found in

many studies.

6 Samuelson’s Correspondence Principle

The correspondence principle was described by Paul Samuelson in two articles (Samuel-

son (1941, 1942)) and his famous Foundations of Economic Analysis (Samuelson (1947))

after being stated informally by Hicks (1939). The idea can be illustrated in a two good

exchange economy. Figure 4a shows the excess demand for the second good as a func-

tion of the second good’s price, when the first good is the numeraire. There are three
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equilibria, two of which are stable relative to price dynamics that increase (decrease) the

price of the second good when it is in excess demand (supply).

p

ζ(p)

b b b

p

ζ(p)

b b bb b b

Figure 4a. Excess Demand

and Dynamics

Figure 4b. Increased Demand

for the Second Good

Figure 4. Excess Demand and Comparative Statics

Figure 4b shows the effect of changing a parameter in a way that increases demand

for the second good. This has the expected effect of increasing the second good’s equi-

librium price for the two stable equilibria, but it leads to a price decrease in the unstable

equilibrium. In a nutshell, Samuelson’s understanding of the correspondence principle

was that dynamic stability had implications for comparative statics.

In this example the correspondence principle combines three elements: a) equilibria

that are unstable with respect to natural dynamics will not be observed; b) therefore

excess demand is downward sloping at the equilibria that are empirically relevant; c) this

allows us to sign certain comparative statics. The first two of these are the 1-dimensional

case of the index +1 principle.

We now quickly review the mathematics of comparative statics. Consider a system

of equations 0 = g(x, α) ∈ R
n where x ∈ R

n and α ∈ R. Here we are thinking of g(·, α)

as the function Id − f(·, α), where f(·, α) is the function whose fixed points are the

equilibria for parameter α. Fix an initial value α∗ of the parameter and an equilibrium

x∗ for this parameter, let M be the matrix of partial derivatives ∂gi
∂xj

(x∗, α∗), and let ∆

be its determinant. Differentiating the equation g(x(α), α) = 0 gives the equation

M ·
dx

dα
+

∂g

∂α
= 0

where dx
dα

is the vector with entries
dxj

dα
(x∗) and ∂g

∂α
is the vector with entries ∂gi

∂α
(x∗, α∗).

Let ∆ij be the (i, j)-cofactor of M , which is the determinant of the matrix obtained by

eliminating the ith row and the jth column of M . Then the (i, j)-entry of the inverse of

M is ∆ji/∆, so we obtain the formula

dxj

dα
= −

∑n

i=1∆ji
∂gi
∂α

∆
.
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In order to sign this quantity one needs to sign both the numerator and the denomi-

nator. The index +1 principle is the condition ∆ > 0. One way in which the numerator

can be signed is that M is a (positive or negative) definite matrix, so that each ∆ij has

a known sign, and that the ∂gi
∂α

all have the same sign. Another possibility is that for

some i (most commonly i = j) it is known a priori that ∂gk
∂α

= 0 for all k 6= i, and that
∂gi
∂α

and ∆ji have definite signs. As the dimension n increases, the sorts of assumptions

that have such implications become quite complex and restrictive. All of the concrete

examples given by Samuelson are low dimensional. Basset et al. (1968) analyze many

additional special cases, and provide an overview of related research.

Samuelson saw the correspondence principle as an initial insight gleaned from the de-

velopment of a dynamic approach to economic analysis, whose relationship to static mod-

els was comparable to the relationship between static and dynamic analysis in physics:

“An understanding of this principle is all the more important at a time when pure eco-

nomic theory has undergone a revolution of thought—from statical to dynamical modes.”

(Foundations of Economic Analysis, p. 284).

Researchers in general equilibrium theory (e.g., Arrow and Hurwicz (1958); Arrow

et al. (1959)) found some special cases in which some equilibria are necessarily stable with

respect to Walrasian tatonnement dynamics, but examples developed by Scarf (1960)

showed that this phenomenon is restricted to very small numbers of goods or agents.

After summarizing this line of research, Arrow and Hahn expressed the following negative

assessment (General Competitive Analysis, p. 321):

Thus what the “correspondence principle” amounts to is this: Most of the restric-
tions on the form of the excess-demand functions that are at present known to be
sufficient to insure global stability are also sufficient to allow certain exercises in
comparing equilibria. It should be added that these same conditions also turn up
in the discussion of the uniqueness of a competitive equilibrium. All these restric-
tions share the characteristic that they are not necessary for the task for which they
were invented; they are only sufficient and this explains why the correspondence
principle “isn’t.”

Over the last half century the correspondence principle has appeared only rather

infrequently in theoretical economics. In addition to the work of Basset et al. (1968)

already mentioned, a variant of the correspondence principle for certain international

trade models is developed in Samuelson (1971), Bhagwati et al. (1987), and Kemp et al.

(1990), and a version of the correspondence principle for dynamic optimization prob-

lems arises in the work of Burmeister and Long (1977), Brock (1977), and Magill and

Scheinkman (1979). Perhaps the most important work is due to Echenique (2002, 2004)

(see also Echenique (2008)) who works with games with strategic complementarities
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(Topkis (1979); Vives (1990); Milgrom and Roberts (1990)) that satisfy very strong or-

der theoretic conditions, but are otherwise technically quite general. This is part of the

literature (surveyed by Amir (2005)) that now constitutes our most general understand-

ing of monotone comparative statics.

In comparing Samuelson’s perspective with ours, three broad points emerge.

Samuelson wrote during the heyday of logical positivism, which attempted to under-

stand science as a collection of testable hypotheses. While economics clearly provided

some large scale overview of its subject matter, the discipline was somewhat embarrassed

to find itself with a paucity of concrete predictions that could be applied to available

data sets. For this reason great conceptual importance was attached to the method of

comparative statics. Since the time he wrote empirical methods in economics have be-

come enormously more sophisticated, and game theory provides an entirely different set

of testable hypotheses.

Although dynamic models have proliferated in economics, these are for the most part

models of static equilibria that unfold over time. There is no evidence that Samuelson

(at the time he wrote Foundations of Economic Analysis) understood the distinction

between this sort of dynamic model and a model of dynamic adjustment to equilibrium.

Samuelson’s expectation that economic theory would develop through the interplay of

dynamics and statics was, in this sense, largely unfulfilled.

The index +1 principle successfully generalizes parts a) and b) of the correspondence

principle (as we describe it above) to multiple dimensions. Its utility in comparative

statics may be rather slight, but it is applicable across the much broader range of eco-

nomic models that are available now, with a variety of important consequences. In this

sense Arrow and Hahn were excessively dismissive.

7 Concluding Remarks

Samuelson’s vision of a theory of economic dynamics, in which each aspect of dynamic

analysis would have a corresponding implication for static analysis, did not come to

pass. Dynamic models have proliferated, but for the most part those that are thought to

respect the agents’ rationality are not models of strategic adjustment to equilibrium, but

are instead models of essentially static equilibria that play out over time. Nevertheless,

the index +1 principle is a successful multidimensional extension of the key properties

of the particular examples Samuelson examined.

The index +1 principle is universally applicable to economic models in which equi-

libria are topological fixed points, because it is rooted in the axiomatic characterization
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of the fixed point index. As many of the arguments in this paper illustrate, the index

axioms often allow simple and direct proofs of very general results. In an important

sense the (quite lengthy) proof of Theorem 1 encompasses much of the technical nitty

gritty that often burdens concrete discussions of the index, and the index axioms are a

supple and powerful distillate.

The index +1 principle is well behaved with respect to inclusion/exclusion of strictly

dominated strategies, and also with respect to comparison of a simple model with a

complex reality that approximates it. These results suggest that the index +1 principle

identifies a feature of economic reality, rather than an artifact of otherwise insignificant

modelling choices, and they provide a prototype for more results in this direction.

The underlying justification of the index +1 principle is that equilibria that do not

satisfy it are unstable with respect to any natural adjustment dynamics. Insofar as the

only process of adjustment to equilibrium that is consistent with the rational expec-

tations hypothesis is to go to the equilibrium immediately, the hypothesis that actual

adjustment processes are natural is necessarily to some extent behavioral. Nevertheless,

experimental evidence provides quite strong support for the index +1 principle, and for

natural adjustment dynamics.

Thus the index +1 principle should be seen as a reliable refinement of equilibrium

across the entire range of economic models in which equilibria are topological fixed points.

Its significance in comparative statics is rather slight, because achieving definite signs

for responses to changes in exogenous parameters requires many additional restrictions

when there are several endogenous variables. But the toolbox of empirical strategies is

much more varied than when Samuelson wrote, experiments allow data to be customized,

and game theory has brought many new perspectives into economic analysis. The index

+1 principle is, in a sense, only one bit of information, but it surely has many interesting

and useful consequences.
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