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Abstract

We present a treatment for mathematical economists of three topics in

the theory of �xed points: (a) the Lefschetz �xed point index; (b) the Lef-

schetz �xed point theorem; (c) the theory of essential sets of �xed points.

Our treatment is geometric, based on elementary techniques, and largely self-

contained. In particular there is no essential reference to algebraic topology.

Within the chosen scope of the paper the results are at the level of generality

of the mathematical literature. The development of these theories for corre-

spondences is emphasized. It emerges that the solution concepts of Kohlberg

and Mertens (1986) have a de�nite, though obscure, place in this theory.
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Selected Topics in the Theory of Fixed Points

by

Andrew McLennan

1 Introduction

This paper presents three topics in the theory of �xed points:

(a) the Lefschetz �xed point index;

(b) the Lefschetz �xed point theorem;

(c) the theory of essential sets of �xed points.

In varying degrees the intent of this paper is to be simultaneously useful as

an exposition, a reference, and a contribution.

The subjects discussed here are at this point quite old within mathemat-

ics, with extensive literatures. In spite of this, and in spite of the obvious

relevance of �xed point theory to economics, the material presented here is

not widely known or much used by economists. This is, I believe, largely

due to the fact that these subjects had their origins in algebraic topology, a

branch of mathematics with a high cost of entry that is not generally part

of the background of mathematical economists. Here we develop the subject

from the point of view of di�erential and point set topology. This approach

is attractive both by virtue of its minimal prerequisites and because it em-

phasizes geometric concepts.

Within the chosen scope of this paper the cost of the restriction to nonal-
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gebraic techniques is surprisingly slight. The main loss is that the property

of the Lefschetz index known as normalization cannot be established. In

other respects our results are as general as those found in the mathemati-

cal literature. This level of generality should be su�cient for the needs of

mathematical economics to the extent that they can be foreseen at this point.

In fact our results concerning contractible valued correspondences appear

to go beyond the existing mathematical literature. (It should be mentioned

that the key lemma underlying these results is due to Mas-Colell (1974).)

Another aspect of originality is the observation that the upper topology (cf.

x2.1) provides a natural language for expressing many of the results.

The principal stimulus for a paper of this sort is the work of Kohlberg

and Mertens (1986) (henceforth KM) on various notions of \stability" for

noncooperative games. Their work came as a great surprise and has been

very in
uential, but we will show how their concepts have a very de�nite,

albeit obscure, place in a body of mathematics that had largely attained its

�nal form prior to Selten (1975).

Our story, then, is about a large group of scholars failing to bene�t from

preexisting work by another large group of scholars over an extended period of

time. To set the stage we begin with a potted history of the use of �xed point

theory in economics. In x4, after the main results have been presented, we

give a similar account of the evolution of �xed point theory in mathematics.

1.1 Fixed Point Theory in Economics

Variants of Brouwer's �xed point theorem are the key steps in the proofs

of the two central existence results in mathematical economics (Nash (1951)

and Arrow-Debreu (1954)). Naturally economists have been interested in

�xed point theory since this became clear, and there have been many appli-
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cations of generalizations of Brouwer's theorem. In particular, �xed point

theorems for convex subsets of in�nite dimensional spaces (Tychonov (1935),

Fan (1952) and Glicksberg (1952)) have been applied many times. There

have also been some applications of the Eilenberg-Montgomery (1946) �xed

point theorem, a purely topological extension of Kakutani's (1941) theorem.

The \stability" of �xed points has been an issue from the beginning. At

�rst (e.g. Samuelson (1948)) the question was posed in the sense of the sta-

bility of dynamical systems, but these investigations ultimately foundered

on the inability to �nd models of dynamic convergence to equilibrium that

were consistent with the rational expectations hypothesis and allowed non-

trivial dynamics. A nonmartingale price process induces speculation against

expected price changes, and a nontrivial trajectory in the space of mixed

strategies of a game typically induces some agent to switch to a pure strat-

egy. (Matching pennies is an adequate example.)

A more recent approach is to distinguish between equilibria that disap-

pear with small changes in the parameters from those that persist, in a cer-

tain topological sense, under any perturbations of the equilibrium conditions.

These questions were introduced into general equilibrium theory by Debreu

(1970), and they have been investigated extensively using the methods of

di�erential topology. Mas-Colell (1985) summarizes the work to date, stress-

ing its culmination in index theorems. Balasko (1988) is another excellent

extensive treatment.

From a general topological point of view the notion of a regular �xed

point is quite special, but there was not a large e�ort devoted to extending

the results in economics (especially index theory) to a framework based only

on topology and convex analysis. One can argue that the smooth case is ade-

quate by noting that regular economies are dense in the set of all economies,
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so analysis of regular economies is su�cient for manymathematical purposes.

In addition, in certain senses regular economies are \typical." Finally, there

is every reason to expect that econometric methodologies will be based on

an assumption of regularity.

The situation in game theory is drastically di�erent. The graph of the

best response correspondence of a normal form game is a de�nite geometric

object in a certain �nite dimensional Euclidean space. Although the property

of having only regular equilibria is \generic" in the space of normal form

payo�s (Kreps and Wilson (1982)), this property may be nongeneric in the

set of normal form payo�s derived from a given extensive form. The study of

robustness of equilibria with respect to perturbations was initiated by Selten

(1975) and has been very active since then.

These investigations were conducted without the bene�t of the portions

of the mathematical theory of �xed points laid out below. The consequences

of this ignorance can clearly be traced in the discussion of an example due

to Kohlberg.

[Insert Figure 1]

Here (R; r) is both a perfect (Selten (1975)) and proper (Myerson (1978))

equilibrium, but it is not thought to be reasonable. Rationality precludesM

from being chosen, but it allows a quite sensible explanation of why L might

be chosen, so the only belief for agent 2 consistent with the hypothesis that

agent 1 is rational is the unit mass at L:

The inability to eliminate (R; r) was generally viewed as a serious defect

of existing solution concepts. Several years elapsed before solution concepts

without this defect were proposed (Pearce (1984), McLennan (1985), and

KM, among others). Since it is more restrictive than these notions, the
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notion of an essential set of �xed points also resolves this example, so it

certainly would have been investigated had there been any awareness of it.

The story of how economists became aware of the theory of essential sets

is also illuminating. Stimulated by the �rst version of Kohlberg and Mertens'

paper, Mas-Colell rediscovered methods due essentially to Kinoshita (1952)

and pointed out that they could be used to establish several of Kohlberg and

Mertens' results. This approach to the subject was widely discussed for over

a year before Kinoshita's work was rediscovered.

Before moving on to the description of the mathematical theory we should

also mention that there have been a variety of other applications of the ideas

below in mathematical economics. Some of these are discussed at various

points below, and at this point we would like to apologize to those authors

whose work may have been unjustly ignored.

1.2 The Lefschetz Fixed Point Index

The Lefschetz �xed point index is the key to all three topics, so it is

treated �rst in Section 2. If X is a compact metric space, Y is a subset of

X; and F : Y ! X is a function or correspondence, let F(F ) be the set of

�xed points of F: An admissible pair is a pair (F; U) where U is an open

subset of X and F : �U ! X is an upper hemicontinuous correspondence

with F(F )
T
( �U � U) = ;: (We reserve the symbol @ for the boundary of

@-manifolds.) A Lefschetz �xed point index is a function from a class of

admissible pairs to the integers that satis�es certain axioms.

This type of index is a generalization of the �xed point index de�ned in

di�erential topology (e.g. Guillemin and Pollack (1974, x3.4) or Appendix

B below), and the geometric intuition for it is the same. Very roughly, the

index of the pair (F; U) is the sum of the indices of the �xed points of F
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in U; where the index of an individual �xed point is +1 or �1 according

to whether IdX � F is orientation preserving or orientation reversing at the

�xed point.

Index theory has been studied extensively in pure mathematics. The

central results in this literature, called index theorems, state that for various

classes of spaces and maps the index exists and is uniquely characterized by

a system of axioms. In Section 2 (and related appendices) index theorems

are proved at several levels of generality. We begin with extremely well be-

haved smooth functions. Using \bootstrap" arguments, we proceed through

a series of generalizations, eventually attaining the level of generality of the

mathematical literature as represented by Brown (1971).

Aside from the large scale architecture, the results and methods of proof in

Section 2 are not new, but the material is still of some interest from the point

of view of pure mathematics. We demonstrate the possibility of detaching

index theory from an unintuitive fact of homological algebra, the Hopf (1929)

trace theorem, thereby attaining an entirely nonalgebraic exposition. The

Hopf trace theorem was the basis of the �rst proof of the Lefschetz �xed

point theorem for general �nite simplicial complexes1 and it has been an

1The following notions are basic in topology but uncommon in economics. A (combi-

natoric) simplicial complex is a pair (V; S) where V is a set of vertices and S is a set of

nonempty �nite subsets of V with the property that �
0

2 S whenever ; 6= �
0

� � 2 S:

Elements of S are called simplices. For � 2 S; let j�j = fx 2 R
�
+ � R

V
j�v2� xv = 1g:

The space X =
S
�2S

j�j is the canonical realization of (V; S): If h : X ! Y is a home-

omorphism, then (V; S) and h constitute a triangulation of Y; while Y and h constitute

a realization of (V; S): We say that Y is a (geometric) simplicial complex, and the sets

h(j�j) are also called simplices. If T � S with �0 2 T whenever � 6= �0 � � 2 T; then

we say that (V; T ) is a subcomplex of (V; S) and
S
�2T

h(j�j) is a subcomplex of Y . The

space X is compact if and only if S is �nite. (Consider an open cover fX�g�2S where

each X� is X with a point removed from the interior of j�j � cf: Borsuk (1967, p.72).) A

famous and deep result is that every manifold with boundary is a simplicial complex - cf.

Munkres (1963).
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essential element of almost all treatments of the subject since then. The

possibility of such a treatment has been noted by Brown (1970), but no

author has found occasion to proceed as we have.

1.3 The Lefschetz Fixed Point Theorem

The axioms characterizing the index easily imply that F must have a

�xed point in U if the index of the pair (F; U) is not zero. In particular,

F : X ! X must have a �xed point whenever the pair (F; X) has a nonzero

index. This is the geometric content of the Lefschetz �xed point theorem,

the subject of Section 3.

Traditionally the Lefschetz number of a continuous function f : X ! X

is de�ned by the formula LH(f) = �1i=0 (�1)
itr (Hi(f ; Q)) (di�erent �elds

of coe�cients are possible). Those who know the relevant algebraic topology

will understand this formula or know where to �nd it explained. Those who

do not need only remember that LH(f) is an integer associated with the map

f:

The celebrated Lefschetz �xed point theorem (henceforth LFPT) asserts

that F(f) is nonempty whenever LH(f) 6= 0: Here we de�ne the Lefschetz

number L(f) to be the index of the pair (f; X); and we refer to LH(f) as

the homological Lefschetz number. We may then view the LFPT as having

two parts: (1) If L(f) 6= 0; then f has a �xed point; (2) LH(f) = L(f):

The �rst assertion contains all the geometric information in principle (since

the index axioms determine L(f)), and we prove it in great generality. In

a certain precise sense this is the most general \topological" �xed point

theorem possible.

The second assertion is a property of the index known as Normalization,

and the principle loss in our avoidance of homology is the inability to discuss
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it. While in principle Normalization yields no additional geometric infor-

mation, in many cases Normalization provides the only practical method of

computing Lefschetz numbers (cf. Proposition 3.5).

For contractible2 domains the LFPT reduces to Brouwer's �xed point

theorem. Until recently the paper of Hart and Kuhn (1975) discussed at the

end of x3 was, to my knowledge, the only case in which natural economic

modeling led to a �xed point space that was not contractible. However, Du�e

and Shafer's (1985) proof of generic equilibrium existence for economies with

incomplete markets and \real" �nancial assets seems to require methods that

go beyond Brouwer's theorem. (This is argued by Hirsch, Magill, and Mas-

Colell, (1987).) The relationship between these techniques and the LFPT is

described brie
y in x3, and we recommend Hirsch, Magill, and Mas-Colell

(1987) and Husseini, Lasry, and Magill (1987) to the interested reader.

1.4 The Theory of Essential Sets

As can be seen in Figure 2, there are di�erent types of �xed points.

[Insert Figure 2]

The point A is robust with respect to perturbations of f : for any neigh-

borhood U of A one can �nd a neighborhood W of Gr(f)3 such that if g

is continuous and its Gr(g) � W; then F(g)
T
U 6= ;: On the other hand

we can �nd continuous functions arbitrarily near f that have no �xed points

anywhere near B: We say that A is essential and B is inessential. These

notions were introduced by Fort (1950).

2A topological space X is contractible if there is a continuous contraction

c : X � [0; 1]! X with c(�; 0) = IdX and c(�; 1) a constant function.
3The graph of any function or correspondence F is denoted by Gr(F ):
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Kinoshita (1952) and O'Neill (1953) pointed out that this type of robust-

ness can be de�ned for compact sets K � F(f) : K is essential for f if,

for every neighborhood U of K; there is a neighborhood W of Gr(f) such

that every map g with Gr(g) �W has a �xed point in U: If all nearby func-

tions have �xed points then F(f) is essential (Lemma 4.2), but unless all

�xed points are isolated one cannot guarantee the existence of an essential

�xed point. For instance, the entire interval F(f) = [1=3; 2=3] is the only

essential set for f(x) = maxf1=3; minf2=3; xgg; x 2 [0; 1]; since for any

x� 2 [1=3; 2=3] we can �nd g arbitrarily close to f with F(g) = fx�g:

As KM point out, this means that the use of this sort of robustness to

de�ned game-theoretic solution concepts requires that the solution concept

be set-valued. In such a solution concept it seems natural to think of the

minimal essential sets as the analogues of singletons. In the settings we

study we show that, like singletons, minimal essential sets are connected.

For the special case of @-manifolds4 we show that, if F(F ) consists of �nitely

many connected components, then the minimal essential sets are precisely

the essential components. KM also point out that the set of Nash equilibria

of a game always consists of �nitely many connected components.

As we will see, the Continuity axiom for the index implies that K is

essential if �(f; U) 6= 0 for some neighborhood U of K with F(f)
T �U = K:

This raises the question of whether the notion of a connected essential set is a

signi�cantly weaker concept than the notion of a connected set of �xed points

with nonzero index. For manifolds the answer is no, as we show in Theorem

6. A version of this result is proved by O'Neill (1953), and it appears that this

4For the de�nition of a @-manifold (manifold with boundary) see Milnor (1965) or

Hirsch (1976). In this paper a @-manifold may have an empty boundary, and the term

`manifold' is reserved for boundaryless manifolds.
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result explains the neglect of essential sets in the subsequent mathematical

literature.

Finally, we discuss in detail how the theory of essential sets can be used to

prove existence theorems for the various concepts of stability introduced by

KM. The results here also allow existence theorems for many other concepts

derived using these techniques.

1.5 Originality and Organization

The possibility of passing from index theory for smooth functions to

the topological index is mentioned by Brown (1970), and this general style

of attack can be found in volume I of Zeidler's (1984) monumental work.

The method of passing from the index for functions to an index for convex

valued correspondences has parallels in the theory of the topological degree

(Hukuhara (1967), Cellina (1969), Cellina and Lasota (1969), Ma (1972)).

The application of this technique to contractible valued correspondences was

initiated in McLennan (1989a).

An interesting novelty is the expression of many of the results in terms of

the upper topology. To a certain extent this is simply a matter of terminology

- familiar facts are reexpressed in terms of the new topological language - but

our results strongly suggest that this topology is natural and useful for the

discussion of �xed points. In particular, Lemma 2.10 allows us to move from

the most special index to great generality with speed and ease.

Our results are more general than much of the literature insofar as we

de�ne the index and the notion of an essential set for admissible pairs (F; U)

in which F may not have a continuous or upper hemicontinuous extension

to all of X: Again, this additional generality is convenient for our purposes,

but it does not involve novel geometric insights.
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Of course the Lefschetz �xed point theorem and the index have extensive

literatures, and the main results below are not new. Our approach draws

on many sources, and the origins of some ideas are not completely clear to

me. In some cases the precise details of our formulations are new, but the

geometric ideas are well known, even if it is di�cult to attribute them to a

single author. Let me now apologize to those mathematicians whose work

has been unjustly slighted.

The organization of the body of the paper has been described in detail

above. Most of the more technical arguments have been placed in Appen-

dices A-E. For ease of reference we have strived to make these appendices

logically independent, but Appendix E depends at certain points on material

in Appendix A, and Appendix D uses results developed in Appendix C.

2 The Lefschetz Fixed Point Index

2.1 Mathematical Preliminaries

We will need a few standard concepts of mathematics that may be un-

known to economists, and in each instance we have attached an explanatory

footnote to the �rst occurrence of the term (e.g. footnotes 1 and 2 above.). In

addition two terminological points should be mentioned at the outset. First,

we use the word \map" as a synonym for \continuous function," as is now

standard in mathematics. For metric spaces X and Y we let C(X; Y ) be

the set of maps f : X ! Y: Second, we use the term \correspondence," as

is standard in economics, rather than any of the terms used in mathematics

(\multi-valued mapping," \multivalued function," \multivalued transforma-

tion," and \set valued map" can be found in the references) to indicate a

binary relation that assigns a non-empty subset of the range to each point
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in the domain.

We begin by de�ning a useful topology. For a metric space X letH(X) be

the set of compact subsets of X: The upper topology on H(X) is the topology

generated by the base of open sets of the form OU �fK 2 H(X)jK � Ug; U

open in X: A discussion of the properties of this topology can be found in

Klein and Thompson (1984). The upper topology coincides with the Scott

topology of the lattice of closed subsets of X when X is compact.

The topology of H(X) is weaker than the topology induced by the Haus-

dor� metric (e.g. Hildenbrand (1974, p. 16)) and clearly the upper topology

is not a Hausdor� topology. Nonetheless we shall argue (De�nition 2.1,

Lemma 2.2, Proposition 2.3, Axiom I4, especially Proposition 2.10, Proposi-

tion 2.21, and Proposition 4.3) that it is the natural topology for the theory

of �xed points of correspondences.

De�nition 2.1: Let X and Y be metric spaces with X compact. A compact

valued correspondence F : X ! Y is upper hemicontinuous (u.h.c.) if the

associated function F : X !H(Y ) is continuous. Let K(X; Y ) be the space

of u.h.c. compact valued correspondences F : X ! Y endowed with the

topology induced by the upper topology on graphs: a neighborhood base

at F is given by the sets of the form fG 2 K(X; Y ) j Gr(G) � Ug; U a

neighborhood of Gr(F ): (It is an easy exercise to prove the compactness of

the graph of an u.h.c. compact valued correspondence with compact domain.)

It is easily checked that this de�nition of upper hemicontinuity is equivalent

to the usual de�nition (e.g. Hildenbrand (1974, p. 21)).

We do not distinguish between a function x 7! f(x) and the associated

correspondence x 7! ff(x)g: In the most important case it is also unnecessary
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to distinguish between the relative topology of C(X; Y ) in K(X; Y ) and the

standard topology on C(X; Y ):

Lemma 2.2: The relative topology induced by the inclusion C(X; Y ) �

K(X; Y ) is the topology of uniform convergence.

Proof: Suppose f 2 A � C(X; Y ) where A is open in the topology of

uniform convergence. Then there is " > 0 such that A contains all g 2

C(X; Y ) with Gr(g) � f(x; y) j d(f(x); y) < "g; so A is open in the relative

upper topology.

Conversely, suppose that A is relatively open. Then there is W; a neigh-

borhood of the graph of f; such that fg 2 C(X; Y ) jGr(g) � Wg � A: We

claim that there is " > 0 such that f(x; y) j d(f(x); y) < "g � W ; if not then

one can construct a sequence (xn; yn) 2 (X�Y )�W with d(f(xn); yn)! 0:

Taking a subsequence, let xn ! x: Then (x; f(x)) 2 Gr(f) is a limit point

of (X � Y )�W; a contradiction.//

In general the relative topology of C(X; Y ) � K(X; Y ) is the strong C0

topology (Hirsch (1976, p. 35)), but we will not need this fact.

If X � Y then the �xed point set of a correspondence F : X ! Y is

F(F ) = fx 2 X jx 2 F (x)g: If F 2 K(X; Y ) then Gr(F ) is closed in

X � Y (Hildenbrand (1974, p. 24)), so F(F ) is closed in X: If X and Y are

compact and F n ! F in K(X; Y ); then fGr(F n)g is eventually inside any

neighborhood of Gr(F ); so fF(F n)g is eventually inside any neighborhood

of F(F ): This is precisely

Proposition 2.3: Let Y and X � Y be compact. Then F : K(X; Y ) !
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H(X) is continuous.

2.2 The Index Axioms

In considering the axiomatic description of an index below the reader may

wish to have the simplest example in mind. If f : [0; 1]! (0; 1) is C1 with

df

dt
(x) 6= 1 for all x 2 F(x); then the index of x 2 F(f) is 1 if df

dt
(x) < 1 and

�1 otherwise, and the index of an open set U � [0; 1] with no �xed points

in �U � U is the sum of the indices of the �xed points in U:

De�nition 2.4: Let X be a compact metric space. An admissible pair for

X is a pair (F; U) in which U � X is open, F 2 K( �U; X); and

F(F )
T
( �U � U) = ;:

We will discuss several indices, so we encompass them in a general frame-

work.

De�nition 2.5: An index base is a pair (S; P) with the following description:

(a) S is a class of compact metric spaces; (b) for each X 2 S; P(X) is a set

of admissible pairs (F; U) for X with the property that (F j �U 0; U
0) 2 P(X)

whenever (F; U) 2 P(X); U 0 � U is open, and (F j �U 0; U
0) is also admissible;

(c) P =
S
X2S P(X):

When no confusion is possible we write (F; U 0) rather than (F j �U 0; U
0) when

F 2 K( �U; X) and U 0 � U is open. If U � X 2 S with U open, let

P(X; U) = fF 2 K( �U; X) j (F; U) 2 P(X)g:

De�nition 2.6: A Lefschetz �xed point index (or simply an index) for (S; P)
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is a function � : P ! Z (the ring of integers) that satis�es the Index Axioms:

(I1) (Weak Normalization) If c : X ! fc 2 Xg is a constant function

with (c; X) 2 P(X); then �(c; X) = 1:

(I2) (Additivity) If U1; : : : ; Ur are disjoint open subsets of U and

F 2 P(X; U) has no �xed points in �U � (U1
S
: : :

S
Ur); then

�(F; U) = �i �(F; Ui):

(I3) (Homotopy) Suppose h : �U � [0; 1]! X is a homotopy such

that for all t; ht = h(�; t) has no �xed points in �U � U; and

h0; h1 2 P(X; U): Then �(h0; U) = �(h1; U):

(I4) (Commutativity) If f 2 C(X; Y ); g 2 C(Y; X);

(g � f; U) 2 P(X); and (f � g; g�1(U)) 2 P(Y );

then �(g � f; U) = �(f � g; g�1(U)):

(I5) (Continuity) The index is continuous in its �rst variable: for

each F 2 P(X; U); then there is a neighborhood A of F

in K( �U; X) such that �(G; U) = �(F; U) for all

G 2 P(X; U)
T
A:

(I6) (Multiplication) If (F; U) 2 P(X); (G; V ) 2 P(Y ) and

(F �G; U � V ) 2 P(X � Y ); then

�(F �G; U � V ) = �(F; U) � �(G; V ):

Remarks: (1) It is, perhaps, not immediately apparent that there is a con-
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nection between �xed points and the axioms for an index. Note, however,

that if F 2 P(X; U) has no �xed points in U; then Additivity implies that

�(F; U) = �(F; ;) = �(F; ;) + �(F; ;) = 0: In particular, if F 2 P(X; X)

and �(F; X) 6= 0; then F must have a �xed point. This result is discussed

at length in x3.

(2) If (F; U) 2 P; U 0 � U is open, and F has no �xed points in �U � U 0;

then Additivity implies that �(F; U 0) = �(F; U): This means that we may

think of the index as \really" being de�ned on pairs of the form (F; K) where

F 2 P(X; U) for some X and U and K � F(F ) is clopen5 in the relative

topology of F(F ): It is interesting to note that Additivity may be thought of

as expressing two properties of the index, one corresponding to the case r = 1

and the other corresponding to the case U1
S
: : :

S
Ur = U: These properties

are called \excision" and \decomposition of domain" respectively.

(3) Most authors (e.g. Brown (1971)) de�ne the index only on classes of

pairs (F; U) in which F is de�ned on all of X; adding an additional condition

called Localization which says that �(F; U) = �(G; U) whenever F j �U = Gj �U :

Localization is inherent in our formulation, and we also have the possibility

of de�ning the index on pairs (F; U) where F : �U ! X has no extension to

all of X in the relevant class of correspondences.

(4) In well behave settings Axioms (I3) and (I5) are equivalent: Continuity

implies the constancy of the index along any homotopy, while Homotopy

implies Continuity if the relevant class of correspondences is locally path

5Both closed and open.
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connected.6

(5) Our axiom system is not logically minimal in another respect. In all of our

theorems asserting the existence and uniqueness of an index, the uniqueness

clause remains valid without Multiplication, and in the literature Multiplica-

tion is typically treated as a property of the index rather than an axiom. We

have phrased the results below in such a way that the minimal set of axioms

determining each index can easily be traced.

(6) Roughly speaking, the theory of the Lefschetz index is equivalent to the

theory of the topological degree. The topological degree can be described by

a system of axioms similar to the index axioms; we present such an axiom

system and indicate the relationship at a low level of generality in Appendix

A. For a more extensive description of degree theory we recommend Lloyd

(1978). For a description of degree theory as a methodology for proving equi-

librium existence and characterization results in economics we recommend

Geanakoplos and Shafer (1989).

An index theorem is a result stating that some index base admits a unique

index. The remainder of the section is devoted to the discussion of results

of this type. We begin by establishing a very special result, after which we

prove that the special index has a series of unique extensions to more general

settings.

6A topological space is locally path connected if any neighborhood U of a point x

contains a neighborhood V such that any pair of points in V can be connected by a path

(continuous image of [0,1]) in U:
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2.3 The Index for Smooth Functions

Our �rst index should be familiar to many readers from its applications

in the theory of regular economies.

De�nition 2.7: A domain is any nonempty compact set X � Rm that is

the closure of its interior. Let S1 be the class of domains. For each domain

X let P1(X) be the set of admissible pairs (f; U) with f 2 C1( �U; intX)

and IdRn �Df(x) nonsingular for all x 2 F(f): Let P1 =
S
X2S

1

P1(X):

Proposition 2.8: There is a unique index �1 de�ned on P1: For each

domain X the restriction of �1 to P1(X) is uniquely determined by Weak

Normalization, Additivity, and Homotopy.

Proof: Appendix A.//

This index has the formula

�1(f; U) = �x2F(f) sgnjIdRn �Df(x)j:

2.4 Extension by Continuity

One of our few claims to novelty is Proposition 2.10 below which gives

conditions under which Continuity determines a unique extension of an index

de�ned on a restricted set of admissible pairs to an index de�ned on a larger

set of pairs. This result is the key step in the proofs of Proposition 2.12 and

Theorems 2 and 3, and it is an important example of the utility of the upper

topology.
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De�nition 2.9: A subbase of (S; P) is an index base (S; Q) with Q � P:

Proposition 2.10: Let (S; Q) be a subbase of (S; P); with the following

properties:

(a) For all U � X 2 S with U open, Q(X; U)
T
C( �U; X) is dense

in P(X; U):

(b) For every neighborhood A of F 2 P(X; U) there is a

neighborhood A0 � A of F with the property that every pair

of points in A0
T
C( �U; X) can be connected by a path

(i.e. a homotopy) in A
T
C( �U; X):

(c) Identifying c 2 X and the constant function x 7! c;

fc 2 X j (c; X) 2 Q(X)g is dense in X:

Then any index �Q : Q ! Z has a unique extension �P : P ! Z satisfying

(I5), and this extension is an index, i.e. it also satis�es (I1) - (I4) and (I6).

Proof: Appendix B.//

2.5 An Index Theorem for Domains and Continuous

Functions

Our �rst application of Proposition 2.10 is to extend the index above to

all continuous functions with image in the interior of the domain.

De�nition 2.11: Let S0 = S1: For each domain X let P0(X) be the set of
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admissible pairs (f; U) with f 2 C( �U; intX): Let P0 =
S
X2S0

P0(X):

Proposition 2.12: There is a unique index �0 de�ned on P0: For each

domain X the restriction of �0 to P0(X) is uniquely determined by Weak

Normalization, Additivity, and Homotopy.

Proof: We apply Proposition 2.10 with (S; P) = (S0; P0) and (S; Q) =

(S1; P1): By Hirsch (1976, Th. 2.6, p. 49) C1( �U; intX) is dense in

C( �U; intX); and Sard's theorem easily implies that P1(X; U) is dense in

C1( �U; intX); so condition (a) of Proposition 2.10 holds. Condition (b)

holds by virtue of the fact that for any f 2 C1( �U; intX); the image of

(1 � t)f + tg is contained in the interior of X for all g 2 C1( �U; intX) suf-

�ciently close to f: Recalling the de�nition of a domain, condition (c) holds

because fc 2 X j (c; X) 2 P1 (X)g = intX:

Proposition 2.10 now implies the existence of an index �0 that is uniquely

determined by �1 and Continuity, and Proposition 2.8 states that �1 is

uniquely determined byWeak Normalization, Additivity, and Homotopy. For

reasons alluded to in the veri�cation of (b), Continuity and Homotopy are

equivalent in this context.//

2.6 Euclidean Neighborhood Retracts

Up to this point the Commutativity axiom has not played a visible role,

but in our next extension it is the star of the show. We now de�ne a class

of spaces that is very well known in mathematics but may be unfamiliar to

economists. These spaces are ideal for the application of Commutativity.

De�nition 2.13: LetD be a metric space. A retraction ofD ontoX � D is a
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map r : D! D with r(D) = F(r) = X: Equivalently, a map r : D ! X � D

is a retraction if r � i = IdX where i : X ! D is the inclusion. A Euclidean

neighborhood retract (ENR) is (a space homeomorphic to) a subset X � Rm

for which there is a retraction r : U ! X of a neighborhood U � X:

Dold (1980, xIV.8) surveys the point-set topology of ENR's. In particular

Dold (1980, IV.8.5) is illuminating and useful:

Lemma 2.14: The property of being an ENR is intrinsic and does not

depend on the embedding: if Y � Rn is homeomorphic to an ENR X; then

Y is a retract of a neighborhood in Rn:

A smooth compact @-manifold is an ENR. The easy Whitney embedding

theorem implies that a compact @-manifold can be smoothly embedded in a

Euclidean space. (The proof of Hirsch (1976, Theorem 3.5, p. 24) applies

equally to @-manifolds.) A suitable retraction can now be constructed using

the collaring theorem (Hirsch (1976, Theorem 6.1, p. 113)) and the tubular

neighborhood theorem (Hirsch (1976, Theorem 6.3, p. 114)). That �nite

simplicial complexes are ENR's follows from Whitehead's regular neighbor-

hood theorem (e.g. Hudson (1969, Theorem 2.10, p. 55)). An economic

model that gave rise to a �nite dimensional �xed point space not in this class

would be very surprising indeed.

De�nition 2.15: Let SENR be the class of compact ENR's. For X 2 SENR

let PENR (X) be the set of admissible pairs (f; U) with f 2 C( �U; X); and

let PENR =
S
X2SENR

PENR (X):
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Proposition 2.16: There is a unique extension �ENR of �0 to PENR that

satis�es Commutativity, and this extension is an index.

Proof: Appendix B.//

Since compact @-manifolds are ENR's, among other things we have de-

�ned an index for admissible pairs (f; U) in which M � U is a smooth

compact @-manifold and f 2 C1( �U; M) has only regular �xed points. For

such pairs the index has the formula

�ENR (f; U) = �x2F(f) sgnjIdTMx
�Df(x) j:

In fact this follows from Additivity, which allows us to consider each �xed

point in isolation, Commutativity, which allows the imposition of a coordi-

nate system, and the formula for �1 in x2.4.

It is natural to wonder about the relationship between the index for pairs

(f; M); f 2 C1(M; M); and the generalization of degree theory to such

maps (Milnor (1965, x5) or Hirsch (1976, x5.1)). To see that the relation-

ship, if there is one, is not obvious, consider that only the mod 2 degree

(Milnor (1965, x4) or Guillemin and Pollack (1974, x2)) can be de�ned on an

unorientable M; but the index is always de�ned. The question of whether

IdTMx
�Df(x) is orientation preserving at a �xed point x is meaningful even

if M has no global orientation. At a more sophisticated level suppose that

f : M ! M where M is a compact orientable (boundaryless) n-manifold.

Then deg(f) = tr(Hn(f ; Q)) while �ENR(f; M) = �i(�1)
i tr(Hi(f ; Q)) (see

x3.1).
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2.7 Absolute Neighborhood Retracts

Proposition 2.16 is insu�ciently general for applications in mathematical

economics in two main respects. First, an ENR is necessarily a �nite di-

mensional space, but in some economic applications the �xed point space is

in�nite dimensional. Second, for many economic applications it is necessary

to extend index theory to correspondences. In this subsection we discuss the

extension of index theory to in�nite dimensional domains, and in the next

two subsections we consider correspondences.

De�nition 2.17: An absolute neighborhood retract for metric spaces (ANR)

is a metric space X with the property that i(X) is a neighborhood retract in

Y whenever i : X ! Y is an embedding of X in another metric space Y:

The theory of ANR's is very extensive and is surveyed by Borsuk (1967).

For us the most important property of ANR's is the following characterization

(Borsuk (1967, IV. 3.1)):

Lemma 2.18: A metric space X is an ANR if it is homeomorphic to a

retract of an open subset of a convex set in a locally convex linear space,

and an ANR is necessarily homeomorphic to a retract of an open subset of

a convex set in a normed linear space. (Thus every ENR is an ANR.)

This covers almost all spaces that have occurred as �xed point spaces in

economics. In particular, ANR's include the space of probability measures on

a compact space with the weak� topology and the unit ball, with the weak�

topology, in the dual of a Banach space, since these spaces are convex. In
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addition these spaces are compact.7

Remark: I do not know the answer to the following interesting question.

Let H(X) be the set of nonempty compact subsets of a compact metric space

X with the topology induced by the Hausdor� metric. Is H(X) an ANR?

What if X is an ANR, an ENR, or a @-manifold?

De�nition 2.19: Let SANR be the class of compact ANR's. For each X 2

SANR let PANR(X) be the set of admissible pairs (f; U) with U � X and

f 2 C( �U; X); and let PANR =
S
X2SANR

PANR (X):

The following is our �rst maximally general index.

Theorem 1: There is a unique extension �ANR : PANR ! Z of �ENR that

satis�es (I4), and this extension is an index.

The argument passing from Proposition 2.16 to Theorem 1 is long and tech-

nical. Since the main elements of it are given in Brown (1971, xV) (which

does not presuppose advanced techniques), it is omitted here. Roughly, the

idea is that ANR's can be approximated in an appropriate sense by �nite

simplicial complexes.

2.8 Contractible Valued Correspondences

Economic models naturally give rise to correspondences. This direction

of generalization is less important for pure mathematics, but it is discussed in

several papers. (E.g. Kakutani (1941), Eilenberg and Montgomery (1946),

7Cf. Dunford and Schwartz (1958, xV).
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O'Neill (1957b), Granas (1959a), (1959b), Fuller (1961), Browder (1968),

Mas-Colell (1974), McLennan (1989a).)

Ideally one would like a result asserting the existence and uniqueness of an

index for admissible pairs (F; U) in which U is an open subset of a compact

ANR X; F 2 K( �U; X); and F (x) is contractible for all x 2 �U:Whether such

a result is true appears to be an open question. In lieu of a �nal answer we

present some of the best available results.

The approach considered here is to use Proposition 2.10 to extend the

index of Theorem 1 to correspondences. (We cannot discuss the homological

method developed by Eilenberg and Montgomery (1946).) The success of this

method is a function of the available results concerning the approximation

of correspondences by maps. For contractible valued correspondences the

available results are restricted to polyhedra. (Recall, however, that every @-

manifold is triangulable - cf. footnote 1.) In this connection it is interesting to

note that Granas and Jaworowski (1959), who use algebraic methods to study

acyclic valued correspondences, give results that are restricted to Euclidean

domains.

De�nition 2.20: For metric spaces X; Y let Kctr(X; Y ) be the set of F 2

K (X; Y ) such that, for all x 2 X; F (x) is contractible.

Proposition 2.21: Suppose that J � Rm is a �nite simplicial complex

and Y is a compact ENR, C is a subcomplex of J; Y is a compact ENR;

and F 2 Kctr (J; Y ): Then for every neighborhood W of Gr(F ) there is

a neighborhood W 0 � W
T
(C � Y ) of Gr(F jC) such that every continuous

function f 0 : C ! Y with Gr(f 0) �W 0 has a continuous extension f : J ! Y

with Gr(f) � W:
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Proof: McLennan (1987a).//

It should be mentioned that the proof is a straightforward adaptation of

Mas-Colell's (1974) proof for the special case Y � Rn; F (x) � intY for all

x; and C = ;: In our terminology Mas-Colell's theorem has the following

simple expression:

Corollary: If J is a �nite simplicial complex and Y is a compact ENR, then

C(J; Y ) is dense in Kctr(J; Y ):

In McLennan (1989c) the following generalization is established: if X

and Y are ANR's with X compact, then C(X; Y ) is dense in Kctr(X; Y ):

Unfortunately the techniques developed there do not quite su�ce to establish

the theory of the index or the theory of essential sets at this level of generality.

De�nition 2.22: Let Sctr be the class of �nite simplicial complexes. For

each X 2 Sctr let Pctr (X) be the set of admissible pairs (F; U) with

F 2 Kctr ( �U; X): Let Pctr =
S
X2Sctr Pctr (X):

Theorem 2: There is a unique extension �ctr : Pctr ! Z of �ENR that

satis�es (I5), and this extension is an index.

Proof: Appendix D.//

2.9 Convex Valued Correspondences

Convex valued correspondences with convex domains arise naturally in

the two central models of economic theory, general economic equilibrium and
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Nash equilibrium. A �nite dimensional compact convex set is homeomorphic

to a simplex and so is covered by Theorem 2. We now work out the in�nite

dimensional case.

Suppose that X is a metric space and Y is a subset of a locally convex

space. We let Kcon (X; Y ) be the set of upper hemicontinuous F : X ! Y

whose values are compact and convex. As above, success in using Proposi-

tion 2.10 to extend the index is proportional to our ability to approximate

elements of Kcon (X; Y ) with maps.

De�nition 2.23: By a convex ANR we will henceforth mean a metriz-

able compact convex subset of locally convex topological vector space. (By

Lemma 2.18 a convex ANR is indeed an ANR.) Let Scon be the class of con-

vex ANR's. For each X 2 Scon let Pcon (X) be the set of admissible pairs

(F; U) with F 2 Kcon ( �U; X): Let Pcon =
S
X2Scon Pcon (X; Y ):

Proposition 2.24: If X is a compact metric space and Y is a convex ANR,

then C(X; Y ) is dense in Kcon (X; Y ):

Proof: Appendix C.//

Theorem 3: There is a unique extension �con : Pcon ! Z of the restriction

of �ANR to Pcon

T
PANR that satis�es (I5), and this extension is an index.

Proof Appendix C.//

It is not obvious that it is necessary that Y be convex here. Of course

allowing convex valued correspondences with nonconvex ranges has no ap-
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parent usefulness in economics, but to outline the apparent limits of our

methods we include a result in this direction.

Proposition 2.25: IfX is a compact metric space and Y is a compact ANR

embedded in a metrizable topological vector space, then C(X; Y ) is dense in

Kcon (X):

Proof: Appendix C.//

Of course Lemma 2.18 implies that an ANR embedded in a locally convex

space can be embedded in a normed space, but the embedding need not be

linear, so a correspondence that is convex valued in a given embedding may

be only contractible valued in the new embedding.

3 The Index and Existence of Fixed Points

3.1 The Lefschetz Fixed Point Theorem

The Lefschetz �xed point theorem (LFPT) is one of the most important

theorems of the twentieth century. It has Brouwer's �xed point theorem

and the theory of the Euler characteristic, as well as many other results, as

immediate corollaries. It is a triumph and guiding light of algebraic topology.

Index theory is a re�nement of it, and we now show how the geometric content

of the LFPT can be derived from index theory.

For the most part our arguments depend only on the index axioms and

apply equally to the settings of Theorems 1 - 3. In the remainder we there-

fore adopt the convention that X; P(X; X); and � may have any of the

descriptions given in the hypotheses of Theorems 1 - 3:
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(1) X 2 SANR; P(X; X) = PANR(X; X) and � = �ANR;

(2) X 2 Sctr; P(X; X) = Pctr(X; X); and � = �ctr;

(3) X 2 Scon; P(X; X) = Pcon(X; X); and � = �con:

We associate an integer with each allowed map or correspondence as

follows.

De�nition 3.1: The Lefschetz number of F 2 P(X; X) is L(F ) = �(F; X):

Theorem 4: If L(F ) 6= 0; then F has a �xed point.

Proof: This follows from Additivity - cf. Remark (1) above.//

Our de�nition of the Lefschetz number is not the standard one, so Theo-

rem 4 is not precisely the LFPT. The standard de�nition of the (homological)

Lefschetz number of a map f : X ! X is LH(f) = �i (�1)
i tr(Hi(f ; Q)); and

the customary statement of the LFPT is that LH(f) 6= 0 implies F(f) 6= ;:

This result follows from Theorem 4 and the following important homological

property of the index.

(I10) (Normalization)L(f) = LH(f) for all f 2 P(X; X)
\
C(X; X):

According to Brown (1971, p. 73), a relatively easy proof of Normalization

is given in the Ph.D. thesis of D. McCord (1970), and of course the LFPT is

treated in many books on algebraic topology, e.g. Dold (1980). Some authors

have worked to extend the de�nition of the homological Lefschetz number

to correspondences (Eilenberg and Montgomery (1946), O'Neill (1953), and

Granas (1959a, 1959b)), and in general the corresponding generalization of

Normalization holds.
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For any X one has the identity function and the constant maps. In each

case the LFPT has important consequences.

De�nition 3.2: The Euler characteristic of a compact ANR X is �(X) =

L(IdX):

Corollary 1: If �(X) 6= 0; then every map f : X ! X homotopic to IdX

has a �xed point.

Combining Weak Normalization and Homotopy yields:

Corollary 2: If f : X ! X is homotopic to a constant map, X a compact

ANR, then f has a �xed point.

Any map f : X ! X is homotopic to a constant map if X is contractible,

so we obtain a quite general �xed point theorem of the type originated by

Brouwer (1912).

Corollary 3: If X is a compact contractible ANR, then L(F ) = 1 for any

F 2 S(X; X); hence �(X) = 1; and any such F has a �xed point.

It is natural to ask whether there is a converse to the LFPT. That is, if

L(f) = 0 for a map f : X ! X; is there a map homotopic to f that has

no �xed points? There are counterexamples (e.g. Brown (1971, xII.B)) in

whichX is a simplicial complex, but for a \nice" class of simplicial complexes

that includes simplicial @-manifolds of dimension n � 3 the answer is yes (cf.

Brown, (1971, Th. VIII.E.1) - this result was �rst proved for di�erentiable
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manifolds by Hopf (1929).) For homotopy classes of maps on these spaces

the LFPT is the ultimate �xed point theorem, providing both necessary and

su�cient conditions for all elements of the homotopy class to have �xed

points.

3.2 Applications in General Equilibrium Theory

We now relate the ideas of x3.1 to the methods used to prove the existence

of general economic equilibrium.

De�nition 3.3: A smooth aggregate excess demand function is a C1 function

� : R`
++ ! R` that has the following properties:

(a) (Homogeneity of Degree Zero) �(�p) = �(p) for all

p 2 R`
++ and � > 0;

(b) (Walras' Law) p � �(p) = 0 for all p 2 R`
++;

(c) (Nonsatiation) If fpjg is a sequence in R
`
++ with

pj ! p 2 (R`
+ � f0g)�R`

++; then jj�(pj)jj ! 1:

(d) (Boundedness) There is z 2 R` such that �(p) > z for all p:

We refer the reader to Debreu (1972) for a derivation of these properties

of aggregate excess demand from assumptions concerning preferences and

endowments.

Homogeneity implies that we may regard � as a function de�ned on rays

out of the origin in R`
++; and in looking for equilibria we may restrict atten-

tion to any submanifold that intersects each such ray exactly once. Walras'

Law implies that if we take the price space to be

S`++ = fp >> 0 j jjpjj = 1g; the positive part of the unit sphere, then we may
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regard � as a vector �eld on S`++:

There are many technical details (cf. Mas-Colell (1985, x5.6)), but after

they have been dealt with nonsatiation implies that one can �nd a compact

(`�1)-dimensional @-manifoldM � S`�1++ and a vector �eld � 0 onM with the

following properties: (i) M is homeomorphic to D`�1 = fx 2 R`�1 j jjxjj �

1g; (ii) there is an open set U with �U � M � @M that contains all zeros of

�; � and � 0 agree on �U; and (1� t)�(p)+ t� 0(p) 6= 0 whenever p 2M � �U and

0 � t � 1; (iii) �(p) is inward-pointing at all points p 2 @M: The existence

of an equilibrium now follows if we can show that there is no nonvanishing

tangent vector �eld on M that is inward-pointing on @M:

We now digress in order to explain the relationship between the �xed

point index and the index of a zero of a vector �eld. We begin with the

Euclidean case.

De�nition 3.4: Let x be an isolated zero of a vector �eld � : U ! Rn where

U � Rn is open. The index indx(�) of � at x is the degree (cf. Appendix A)

of the map �" : S
n�1 ! Sn�1 given by �"(v) = �(x+ "v)=jj�(x+ "v)jj where

" is small enough that x + "Dn � U: (The invariance of the degree under

homotopy implies that the choice of " does not matter.)

Consider the special case where x is a regular zero of �; i.e. D�(x) is

nonsingular. Since �(y) = D�(x)(y�x)+o(jjy�xjj); there is a neighborhood

of x in which � is homotopic to the linear vector �eld y 7! D�(x)(y � x)

by a homotopy (speci�cally convex combination) whose only zero at each

time is x: Homotopy invariance of the degree implies that indx(�) equals

the index of its �rst order Taylor's approximation, and it also implies that
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indx(�) depends only on the path component of GL(n)8 that contains D�(x):

Concrete calculation then yields the formula indx(�) = sgnjD�(x)j: In order

to express indx(�) in terms of the Lefschetz index we introduce the following

notation: ifX is a metric space each of whose points has a neighborhood that

is a compact ANR, U � X is open, f 2 C(U; X); and x� is an isolated �xed

point of f; then let �(f ; x�) denote �ANR(f; V ) where V is a neighborhood

of x such that �V
S
f( �V ) is contained in a compact ANR and F(f j�V ) = x�:

(Additivity implies that the de�nition does not depend on the choice of V:)

Comparison of the formula above with the formula for the smooth �xed point

index (x2.4) yields

indx(�) = �(Id�V � �; x)

for su�ciently small neighborhoods V of x:

Now suppose that x is an isolated zero of a vector �eld � de�ned on a

compact manifold M: Imposing a coordinate system allows us to de�ne the

index indx(�); and it is of course a standard result that indx(�) is independent

of the coordinate system.

In order to make sense out of the equation above in a coordinate free

framework it is necessary to replace Id�V � � with the result of following the

vector �eld �� for a small period of time. Let � :M �R!M be the 
ow9

associated with �: We �nd that indx(�) = �(�t; x) for negative t close to 0.

Of course �t is homotopic to IdM for all t; and the formula for indx(�) yields

indx(��) = (�1)nindx(�); so summing over all the zeros of � yields the well

known result �(M) = ��(M) = 0 if n is odd.

Finally, suppose that M is a compact @-manifold. Now the 
ow will not

8GL(n) is the group of all nonsingular linear transformations from Rn to itself.
9That is, for each x; �(x; �) is the unique solution of the ordinary di�erential equation

@[�(x; t)]=@t = �(�(x; t)) with �(x; 0) = x: Standard results (e.g. Spivak (1979, x5))

show that the 
ow exists and is uniquely determined by this condition.
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typically be de�ned on all of M �R: However, one can show without great

di�culty that the 
ow is de�ned on M � (�1; 0] if � is outward pointing

on @M: Combining the information above, we �nd that we have sketched a

proof of the following famous result.

Poincare-Hopf Theorem: Let M be a compact @-manifold, and consider

a vector �eld � that has regular zeros and is outward pointing on @M: Then

the sum of the indices of � at its zeros is �(M) = L(�t); t � 0:

In the case of excess demand it is �� that is outward pointing on @M;

the boundary of the (`�1)-dimensional @-manifold satisfying (i) - (iii). Since

(i) implies that �(M) = 1; �� must have a zero, and if all zeros are regu-

lar then ��(p)=0 indp(��) = 1: For the excess demand vector �eld we have

��(p)=0 indp(�) = (�1)`+1; Dierker's (1972) result.

The Euler characteristic de�ned above is a special case of a more general

construct. If � = (E; M; �) is a smooth vector bundle10 with M a com-

pact manifold, then the Euler characteristic �(�) of � is the self-intersection

number11 of the zero section. What we referred to above as the Euler char-

acteristic ofM is, in this broader terminology, the Euler characteristic of the

tangent bundle of M:

In particular, if �(�) 6= 0 then every section of � has a zero. This re-

sult was used by Hirsch, Magill, and Mas-Colell (1987) to give an elegant

proof of Du�e and Shafer's (1985) theorem asserting the generic existence of

equilibria in economies with incomplete markets and \real" �nancial assets.

Husseini, Lasry, and Magill (1987) use cohomology to explore this methodol-

10Cf. Hirsch (1976, x4).
11Cf. Guillemin and Pollack (1974, x3).
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ogy in somewhat greater detail. Geanakoplos and Shafer (1987) give a general

description of the methodology underlying Du�e and Shafer's original proof,

which is based on degree theory.

I know of only one other instance in which a �xed point theorem for a

noncontractible domain has been applied in general equilibrium theory. Hart

and Kuhn (1975) use the following result to prove the general equilibrium

existence theorem without the assumption of free disposal. This is a good ex-

ample of a result in which Normalization provides the only practical method

of computing Lefschetz numbers even though in principle they should be

derivable from the index axioms alone.

Proposition 3.5: If f : Sn ! Sn is a map without a �xed point, then there

is a point p with f(�p) = �f(p):

Proof: This is implied by the following facts: (a) if f has no �xed points

then L(f) = 0; (b) if f(�p) 6= �f(p) for all p; then L(f) is odd. Of course

(a) is Theorem 4. Whittlesey (1963, Th. 2) uses homology to prove that the

Brouwer degree of f is even whenever f does not map antipodal points to

antipodal points, and this implies (b) since, by the de�nitions of LH(f) and

the Brouwer degree, LH(f) = 1 + (�1)ntr(Hn(f)) = 1 + (�1)ndeg(f)://

4 Robustness of Sets of Fixed Points

4.1 De�nition

The theory of essential sets of �xed points studies the robustness of �xed

points with respect to perturbations of the function or correspondence. As we

will see in x4.4, the Lefschetz index subsumes the theory of essential sets to a



38

very great extent, but the theory still has considerable independent interest

for economics since it provides the point of comparison with the work of KM.

The notion of an essential �xed point was �rst de�ned for functions by

Fort (1950). The following generalization is due to Kinoshita (1952) and

O'Neill (1953).

De�nition 4.1: A compact set K � F(F ) is essential for (F; U) 2 P(X)

if, for every neighborhood V of K; there is a neighborhood A � P(X; U) of

F such that F(G)
T
V 6= ; for all G 2 A: Let Ess(F ) � H(F(F )) be the set

of essential subsets of F(F ):

A theory of robustness with respect to perturbations must specify both

the class of functions to which the theory applies and the space of pertur-

bations with respect to which robustness is measured. It is natural to let

these be the same space, and in the exposition we shall do so, but for many

aspects of the theory this is not necessary. In the applications of interest

C( �U; X) is dense in P(X; U); so it makes no di�erence whether the space

of perturbations is C( �U; X) or some superset in P(X; U):

4.2 Essential Sets and the Half Hausdor� Topology

The following obvious fact is used repeatedly.

Lemma 4.2: If (F; U) 2 P(X) and K � L � F(F ) with K essential and L

compact, then L is essential. Thus F has essential sets if and only if F(F )

is essential.

We now present a �nal piece of evidence that the half Hausdor� topology
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is the \correct" topology for the �xed point theory of correspondences.

Proposition 4.3: For each X 2 S and each open U � X; the set valued

function Ess : P(X; U)!H(U) is lower semicontinuous.

Proof: This is a rather fancy way of saying that if K is essential for

F 2 P(X; U); then for every neighborhood U of K one can �nd a neigh-

borhood A � P(X; U) of F such that F(G)
T �U is essential for each G 2 A:

Suppose that Gn ! F with, say, Gr(Gn) � B(Gr(F ; "n)) for a sequence

f"ng with "n ! 0; and each F(Gn)
T �U is inessential for Gn: Then for

any sequence �n ! 0 we can �nd a correspondence Hn 2 P(X; U) with

Gr(Hn) � B(Gr(Gn; �n)) that has no �xed points in �U: But then Gr(Hn) �

B(Gr(F ; �n + "n)) and �n + "n ! 0; a contradiction of the assumption that

K is essential for F.//

This result is used by Allen (1985) to prove the existence, for a residual

set of excess demands, of a weakly continuous global random selection from

the Walrasian equilibrium correspondence. That is, for excess demands in

a residual set there is a weakly continuous function from endowments to

probability distributions on the set of equilibria. Green (1986) establishes

a similar result for the Nash equilibrium correspondence using the Leray-

Schauder degree. The relationship between the Leray-Schauder degree and

the Lefschetz index generalizes the relationship displayed in Appendix A.

4.3 Minimal Essential Sets

Usually one is not interested in all essential sets. If one hopes to talk of a

single \essential equilibrium" one apparently must mean a minimal essential
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set. In the simplest case when F(F ) is �nite, each �xed point is essential

or inessential by itself, and an essential set is one that contains an essential

�xed point. In general, if every essential set contains a minimal essential set,

then an essential set is precisely a compact set of �xed points that contains

a minimal essential set. In this subsection we show that every essential

set contains a minimal essential sets, and with certain assumptions minimal

essential sets, like singletons, are connected.

Lemma 4.4: If X 2 S; (F; U) 2 P(X); and fKjg is a descending (Kj �

Kj+1) sequence of essential sets for (F; U); then K =
T
j Kj is essential.

Proof: First note that K is nonempty and compact since each Kj has these

properties (cf. Kelley (1955, p. 136)). Let U be a neighborhood of K: Clearly

Kj � U for large j; and since U is a neighborhood of Kj and Kj is essential,

all correspondences su�ciently close to F have �xed points in U://

Proposition 4.5: Every essential set contains a minimal essential set.

Proof: Let fB(xj; rj)gr=1;2;::: be an enumeration of the set of open balls

of rational radii around some countable dense subset of X: Let K0 be an

essential set, and de�ne Kj inductively by letting Kj = Kj�1 �B(xj; rj) if

Kj�1 � B(xj; rj) is essential and letting Kj = Kj�1 otherwise. Then each

Kj is essential, so K =
T
j Kj is essential by Lemma 4.4.

If K is not minimal then K � B(xj; rj) 6= K is essential for some j;

but then Kj�1 � B(xj; rj) is essential and K � Kj = Kj�1 � B(xj; rj); a

contradiction.//
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Theorem 5 is to be understood as referring equally to the three settings

given by our interpretation of the symbols X;P(X); and �: This result is

applied in Gale (1987a) and Gale (1987b).

Theorem 5: Minimal essential sets of pairs in P(X) are connected.

Proof: Appendix D.//

4.4 Essential Sets and the Index

In view of the Continuity axiom it is not surprising that the index and

essential sets are closely related. We now show that if M is a compact @-

manifold, (F ; U) 2 PENR(M) or (F; U) 2 Pcon (M) (where M is convex),

and K = F(F ) is connected, then K is essential if and only if �(F; U) 6= 0:

This result is basically due to O'Neill (1953). It appears to account for the

relative neglect of essential sets in subsequent literature.

Proposition 4.6: If (F; U) 2 P(X) and �(F; U) 6= 0; then F(F ) is essen-

tial.

Proof: A su�ciently small neighborhood A of F has the property that no

G 2 A has any �xed points in �U � U; since, for instance, we could let A be

the set of correspondences in S(X; X) whose graphs are contained in some

neighborhood of the graph of F that does not intersect f(x; x) jx 2 �U �Ug:

The Continuity axiom implies that we can �nd a smaller neighborhood A0

on which �(G; U) = �(F; U) 6= 0 is constant. Of course this implies that all

G 2 A0 have �xed points in U://
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Proposition 4.6 has a converse for smooth manifolds, and in this setting

the possibilities for F(g) when g is near F can be described in detail.

Proposition 4.7: Let M be a smooth compact n-dimensional @-manifold,

n � 2: Suppose either that (F; U) 2 PENR (M) (so that F is a function)

or that M is convex and (F; U) 2 Pcon(M): Suppose that F(F ) � intM is

connected. Let x1; : : : ; xk be distinct points in F(F ); and let r1; : : : ; rk 2

f�1; 1g be integers with �i ri = �0(F; U): Then for every � > 0 there is

g 2 C1 ( �U; M) with Gr(g) � B(Gr(F ); �); F(g) = fx1; : : : ; xkg; and

�(g; xi) = lim"!o �(g; B(xi; ")) = ri (i = 1; : : : ; k):

Proof: Appendix E.//

Remarks: (1) With additional work we could remove the restriction ri 2

f�1; 1g: I suspect that it is also possible to remove the restriction F(F ) �

intM and allow (F; U) 2 Pctr (M); but I have been unable to do so.

(2) In a technical sense Proposition 4.7 holds for the case n = 0; but it is not

an interesting result. The case n = 1 is special since, roughly, indices of the

�xed points must be �1; 0; or 1; and the nonzero indices must alternate, but

at least it is still the case that if a connected set of �xed points is clopen in

F(F ) and has index zero, it is inessential.

In view of the intended applications to game theory it is fortunate that

the following result does not require F(F ) � intM:

Theorem 6: Let C be a convex compact subset of a Euclidean space,
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and suppose that (F; U) 2 Pcon(C) with F(F ) connected. If �(F; U) = 0

then F(F ) is inessential, and F(F ) is the unique minimal essential set when

�(F; U) 6= 0:

Proof: Appendix F.//

We also have an analogous result for functions on @-manifolds.

Theorem 7: Let M be a smooth compact n-dimensional @-manifold, and

suppose that (f; U) 2 PENR(M) with F(f) connected. If �(f; U) = 0

then F(f) is inessential, and F(f) is the unique minimal essential set when

�(f; U) 6= 0:

Proof: Appendix F.//

4.5 Applications to Game Theory

Finally we describe the niche in this theory occupied by the solution con-

cepts of KM. For the most part their concepts �t into the following abstract

framework.

De�nition 4.8: Fix (F; U) 2 P(X): Let (A; �) be a pointed space12, and

let Q : (A; �)! (P(X; U); F ) be a pointed map. A compact set K � F(F )

is Q-stable if, for every neighborhood V � U of K; there is a neighborhood

W of � such that F(Q(a))
T
V 6= ; for all a 2 W:

12A pointed space is a pair (X; x0) where X is a topological space and x0 is a distin-

guished point in x: A pointed map between pointed spaces (X; x0) and (Y; y0) is a map

f : X ! Y with f(x0) = y0:
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We note some elementary properties of Q-stable sets.

Lemma 4.9: (1) An essential set is necessarily Q-stable. (2) If Q-stable sets

exist then minimal Q-stable sets exist.

Proof: (1) Suppose that K is essential for F; and let V � U be a neigh-

borhood of K: Then there is a neighborhood B � P(X; U) of F such that

F(G)
T
V 6= ; for allG 2 B; and Q�1(B) is an open neighborhood of a0 since

Q is continuous. (2) With suitable modi�cations the proof of Proposition 4.5

implies the desired result.//

Our notation for normal form games is standard. The set of players or

agents is I = f1; : : : ; ng: For each i; Si is a nonempty �nite set of pure strate-

gies, and S =
Q
i Si is the set of pure strategy vectors. The utility function or

payo� is u =
Q
i ui : S ! RI : A mixed strategy for i is a probability measure

�i on Si; let �(Si) be the set of mixed strategies for i: The set of mixed

strategy vectors is � =
Q
i �(Si): We extend u to � by taking expectations

with respect to the product measure:

u(�) =
R
S u d(�1 � : : :� �n):

The best response correspondence BR =
Q
i BRi : �! � is de�ned by

BRi(�) = argmax�i2�(Si) ui(� j �i)

where � j�i is the mixed strategy vector obtained by replacing the i-component

of � with �i: Of course it is easy to show that BR 2 Kcon(�; �): By de�nition

F(BR) is the set of Nash equilibria. It is useful to know that it has a simple

structure.
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Lemma 4.10: F(BR) consists of �nitely many connected components.

Proof: The conditions de�ning Nash equilibria are polynomial equations

and weak inequalities in u and �; so F(BR) is a semialgebraic variety13.

A theorem of Hironaka (1975) states that a semialgebraic variety can be

triangulated, and since F(BR) is compact, the triangulation must be �nite

(cf. footnote 1). The claim now follows easily.//

The de�nitions below relate the solution concepts of KM to the ideas of

this paper. In the case of the �rst concept what we present is a variant of

KM's hyperstability that avoids the notion of equivalence between games.

De�nition 4.11: Let AH = RS�I be the space of possible payo�s (with the

usual topology). The pointed map

QH : (AH; u)! (Kcon(�; �); BR)

is de�ned by QH(u
0) = BR(u0) where BR(u0) is the best response correspon-

dence for the payo� u0: A compact set K � F(BR) is semihyperstable if it is

QH-stable and minimal with respect to this property.

De�nition 4.12: Let AF be the space whose elements are

� = (�(S1); : : : ; �(Sn)) and all vectors P = (P1; : : : ; Pn) in which each Pi is

a nonempty convex polyhedron in the interior of �(Si): Endow AF with the

topology induced by the Hausdor� metric (e.g. Hildenbrand (1974, p. 16)).

De�ne the pointed map

QF : (AF ; �)! (Kcon(�; �); BR)

13A semialgebraic variety is the solution set of a �nite system of polynomial equations

and inequalities.
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by setting QF (P ) = BRP where BRP =
Q
i BRPi : �! � is de�ned by

BRPi(�) = argmax�i"Pi ui(� j �i):

A compact set K � F(BR) is fully stable if it is QF -stable and minimal with

respect to this property.

A tremble is a vector " = ("i) of functions "i : Si ! (0; 1] with the

property that �si " Si "i(si) � 1: A tremble induces a vector of polyhedra

P (") = (P1("); : : : ; Pn(")) where

Pi(") = fsi 2 �(Si) j�i(si) � "i(si) for all si 2 Sig:

De�nition 4.13: Let AS be the subspace of AF consisting of � and the

vectors of polyhedra induced by trembles (with the subspace topology). Let

QS be the restriction of QF to AS: A compact set K � F(BR) is stable if it

is QS-stable and minimal with respect to this property.

Remarks: (1) Of course Lemma 4.9 implies existence results for these con-

cepts.

(2) An example due to Gul (KM, p. 1027-8) shows that stable sets need not

be connected. Variants of these concepts can be de�ned by requiring sets

that are minimal with respect to the property of being both connected and

Q-stable.

It is evident that, in addition to the concepts introduced by KM, many

other solution concepts can be de�ned using Q-stability. Moreover, the no-

tions of minimal essential set (or essential component), component of positive
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index, and component of odd index, all generate solution concepts for which

there are existence results. Mertens (1988) explains in detail how cohomol-

ogy can be used to de�ne subtle variants of these concepts, and Hillas (1989)

has de�ned yet another notion of stability with many attractive properties.

We do not wish to enter into a discussion of the relative philosophical merits

of the various possibilities. Instead we simply note that essential sets and

the index are likely to play an important role in the mathematical analysis

of any solution concept of this type.

At the level of connected components the notion of an essential set is

more restrictive that Q-stability: an essential set is Q-stable for any Q: This

is particularly important in connection with Kreps and Wilson's (1982, p.

881) result that for generic extensive form payo�s the set of Nash equilibrium

paths14 of an extensive game is �nite. The map from equilibria to paths is

continuous, so the preimage of an isolated path is a union of components of

the set of equilibria. Thus (in the generic case) essential sets and the index

provide maximally restrictive re�nements for paths.

McLennan (1987b) shows that the set of sequential equilibria (Kreps and

Wilson (1982)) can be represented as the set of �xed points of a contractible

valued correspondence de�ned on a space homeomorphic to a disk. Thus the

index, essential sets, and the Q-stability can be used to de�ne re�nements

of the sequential equilibrium concept. Our inability to extend Theorem 6

to contractible valued correspondences is particularly unfortunate from this

point of view.

14The path of a mixed strategy vector of the normal form (or the agent normal form)

of an extensive form game is the induced probability distribution on terminal nodes. See

Kreps and Wilson (1982).
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4.6 Historical Remarks

Lefschetz announced his result in 1923 and published a long paper on the

subject in 1926, but he did not succeed in showing that the LFPT held for

all �nite simplicial complexes. This was �rst accomplished by Hopf (1928),

and the basis of the argument was a fact of homological algebra known as the

Hopf trace theorem that implies Normalization for simplicial maps15. This

technical result has been a basic element of virtually all treatments of the

subject since then.

The possibility of localizing the Lefschetz number, thereby de�ning an

index, was pointed out by Hopf (1929) and developed by Leray (1945) and

Browder (1948). The �rst axiomatic characterization of the index was given

by O'Neill (1953). There are several di�erences between his axioms and the

ones given in x2.

First, neither Continuity nor Multiplication appear in O'Neill's axiom

system. As we mentioned in the Remarks following De�nition 2.6, Conti-

nuity is implied by Homotopy in most settings and Multiplication is usually

regarded as a property of the index rather than an axiom.

Second, his index is de�ned only on pairs (f; U) with f de�ned on all of

X; so Localization (Remark (3)) was one of O'Neill's axioms. In this respect

the domain of his index is smaller than the classes of pairs we consider.

Third, O'Neill's axiom system has Normalization in place of Weak Nor-

malization. As late as 1970 one can �nd a well informed author (Faddell

(1970, p. 11)) under the impression that the presence of Normalization in

the axiom system made the index inherently homological.

15Roughly a map f : X ! Y between simplicial complexes is simplicial if there is a

triangulation of X � Y compatible with the given triangulations of X and Y in which

Gr(f) is a subcomplex (union of simplices). See Hudson (1969, xI) for details.
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At about that time Brown (1970) showed that the uniqueness of the index

could be obtained by elementary methods from an axiom system with Weak

Normalization in place of Normalization. His methods are similar to those

employed in x2, and he remarked that they could be used to construct an

index, thereby proving existence as well, but he dismisses the possibility as of

little use in view of Dold's (1965) elegant homological de�nition. Of course

we �nd the possibility of developing the geometric content of index theory

by purely geometric methods quite interesting in itself, both conceptually

and historically, even if the principle practical bene�t is to circumvent a

pedagogical problem peculiar to economics.

Brown (1971) surveys the theory of the Lefschetz index and related work.

This book is the source of many of our historical remarks. A sample of more

recent work can be found in Faddell and Fournier (1981).
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Appendix A: Smooth Index Theory

The purpose of this appendix is to prove Proposition 2.8. In order to

highlight the relationship between the index and the degree we begin with a

parallel treatment of degree theory.

De�nition B.1: Let X � Rm be a domain. A regular pair for X is a

pair (f; U) in which U � X is open and f : �U ! Rm is a C1 map with

f�1(0)
T
( �U � U) = ; that has 0 as a regular value. Let G1 (X) be the set

of regular pairs for X:

Proposition B.2: There is a unique function deg: G1 (X) ! Z with the

following properties:

(D1) deg (�y + IdX ; X) = 1 if y 2 intX:

(D2) If (f; U) 2 G1(X) and U1; : : : ; Ur are disjoint open

subsets of U with f�1(0) � U1
S
: : :

S
Ur; then

deg (f; U) = �i deg(f j �Ui
; Ui):

(D3) If U � X is open, h; �U � [0; 1]! Rm is a (not necessarily

smooth) homotopy with h�1(0) � U � [0; 1]; and

(h0; U); (h1; U) 2 G1(X); then deg (h0; U) = deg(h1; U):

Proof: Fix (f; U) 2 G1(X): Since 0 is a regular value of f; f�1(0) is discrete
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(by the inverse function theorem) and thus �nite, so we may de�ne

deg(f; U) =
X

x2f�1(0)

sgn jDf(x) j:

This formula immediately implies (D1) and (D2).

If the hypotheses of (D3) are satis�ed then, using simple but tedious

technical constructions, one can �nd a compact @-manifold W � �U � [0; 1]

that contains h�1(0) in its interior relative to �U � [0; 1]: The conclusion of

(D3) now follows from Hirsch (1976, Lemma 1.2, p. 123).

We now prove uniqueness. By (D2), the degree is completely determined

by its behavior on individual zeros. Using (D3) one can show, �rst, that

the degree of a zero is determined by the derivative of the function at the

zero. Thus the degree is determined by its values on GL(m); the set of

nonsingular linear transformations from Rm to itself. Second, (D3) implies

that the degree is constant on the path components of GL(m): Using any

of a variety of techniques (e.g. the Gram-Schmidt process) one can show

that there are two components. Condition (D1) determines the degree on

one component, and any example of a homotopy between a function with

no zeros and a function with two zeros show that the degree of a linear

transformation in the other component must be -1.//

Clearly (D3) implies that the degree is continuous in the sense of the

Continuity axiom. The degree is also multiplicative:

Lemma B.3: If (f; U) 2 G1(X) and (g; V ) 2 G1(Y ); then

(f � g; U �V ) 2 G1(X �Y ) and deg(f � g; U �V ) = deg(f; U) �deg(g; V ):

Proof: This follows from (D2) and the formula used to de�ne the degree at
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the beginning of the proof above.//

The argument below translates these results into the language of index

theory.

Proof of Proposition 2.8: If (f; U) 2 P1(X) then (Id �U�f; U) 2 G1(X);

so we may de�ne

�1(f; U) = deg(Id �U � f; U):

Obviously Weak Normalization, Additivity, and Homotopy follow from this

formula and (D1) - (D3). Moreover, the argument used to prove the unique-

ness of the degree clearly works equally well to show that these three proper-

ties determine �1 uniquely. As we pointed out above, in this context Con-

tinuity is implied by Homotopy. Clearly Multiplication follows from Lemma

B.3. Finally, Commutativity is obtained by combining the formula for the

index with the following fact of linear algebra. This result can be found in

Jacobson (1953, pp. 103 - 106), but we present a proof anyway since the

matter is not widely understood and our proof is shorter and, perhaps, more

elegant than Jacobson's.

Lemma B.4: Suppose K 2 L(V; W ) and L 2 L(W; V ) where V and W

are vector spaces over an arbitrary �eld of dimension m and n respectively,

m � n: Then the characteristic polynomials �KL and �LK of KL and LK

are related by the equation �KL(�) = �n�m �LK (�): In particular,

�LK(1) = j IdV � LK j = j IdW �KL j = �KL (1):

Proof: It is possible to represent V as a direct sum V = V1 + V2 + V3 + V4

where V1 = imL
T
kerK; V1+V2 = imL; and V1+V3 = kerK: Similarly, let
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W =W1 +W2 +W3 +W4 where W1 = imK
T
kerL; W1 +W2 = imK; and

W1 +W3 = kerL: With suitably chosen bases the matrices of K and L have

the forms

2
6664

0 K12 0 K14

0 K22 0 K24

0 0 0 0

0 0 0 0

3
7775

2
6664

0 L12 0 L14
0 L22 0 L24
0 0 0 0

0 0 0 0

3
7775

A little computation shows that �KL has the formula

�KL(�) =

���������

�I �K12L22 0 �K12L24
0 �I �K22L22 0 �K22L24
0 0 �I 0

0 0 0 �I

���������

Consider a permutation of � of f1; : : : ; ng: If the term corresponding to � in

the standard expansion of this determinant is nonzero, then �(i) = i for all i

corresponding to the �rst block of columns and the last two blocks of rows.

This reduces the proof to the special case V2 = V and W2 = W; i.e. K and

L are isomorphisms. But now the claim follows from the following simple

computation

j�IdV � LK j = jL�1 j � j�IdV � LK j � jL j =

jL�1(�IdV � LK)L j = j�IdW �KL j:==
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Appendix B: Extension Arguments

This appendix contains two arguments that have a common outline.

In each case the idea is to use some property of the index to de�ne an

extension to a larger set of admissible pairs, show that the de�nition of the

extension is unambiguous, and verify that the new index satis�es the other

index axioms. It is not necessary to absorb the �rst proof before reading the

second.

Proof of Proposition 2.10: Consider X 2 S; an open U � X; and F 2

P(X; U): Then

A = fG 2 K( �U; X) jGr(G) � �U �X � ( �U � U)� ( �U � U)g

is a neighborhood of F in K( �U; X); and (b) guarantees the existence of

a smaller neighborhood B with the property that every pair of points in

B
T
C( �U; X) is connected by a path in A

T
C( �U; X):A path in C( �U; X) is a

homotopy of its endpoints, so (I3) implies that �Q is constant onB
T
C( �U; X)

T
Q(X; U)

with, say, constant value �: By (a) the set

C( �U; X)
T
Q(X; U) has F as a limit point, so a continuous extension �P of

�Q must have �P(F; U) = �: The value � is assigned to allG 2 B
T
Q(X; U);

so the extension �P de�ned in this way is in fact continuous.

Weak Normalization for �P follows fromWeak Normalization for �Q and

Continuity since fc 2 X j (c; X) 2 Q(X)g is dense in X by (c).

Again, a homotopy is precisely a continuous path in the space of contin-

uous functions, so Homotopy for �P follows from (I5).

Suppose that F 2 P(X; U); U1 ; : : : ; Ur are disjoint open subsets of U;

and F has no �xed points in C = �U � (U1
S
: : :

S
Ur): For each i we can



55

�nd a neighborhood Bi of F j �Ui
in which �P(�; Ui) : Bi

T
P(X; Ui) ! Z is

constant, and in general the function G 7! GjD2
from K(D1; X) to K(D2; X)

is continuous whenever D2 � D1 (exercise), so there is a neighborhood B of

F such that Gj �Ui 2 Bi for all G 2 B and all i: Replacing B with

B
\
fG 2 K( �U; X) jGr(G) � (X �X)� (C �C)g;

if necessary, we may assume that no G 2 B has any �xed points in C;

and our argument above shows that we may replace B by a smaller neigh-

borhood in which �P is constant. Assumption (a) implies the existence of

f 2 B
T
Q(X; U)

T
C( �U; X): Additivity for �Q and the constancy of �P on

the sets B and Bi now yield the computation

�P(F; U) = �Q(f; U) = �i �Q(f; Ui) = �i �P(F; Ui):

Thus �P satis�es Additivity.

It remains only to verify Commutativity and Multiplication (assuming

that �Q satis�es (I6)). As with Additivity, the idea in each case is to �nd

suitable approximations, after which the desired properties follow from simple

computations. For Commutativity the computation is

�P(g � f; U) = �Q(g
0 � f 0; U) = �Q(f

0 � g0; g0�1(U))

= �Q(f
0 � g0; V ) = �P(f � g; V ) = �P(f � g; g

�1(U));

where V is open with F(f � g)
T
g�1(U) � V and �V � g�1(U); and f 0 and g0

are close enough to f and g to guarantee that F(f 0 � g0)
T
g0�1(U) � V and

�V � g0�1(U): For Multiplication the computation is:

�P(F �G; U � V ) = �Q(f � g; U � V )

= �Q(f; U) ��Q(g; V ) = �P(F; U) � �P(G; V ):
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Since the proofs that suitable approximations exist are similar to the one

given above in connection with Additivity, the details are left to the reader.

(In the case of Commutativity one should begin by showing that composition

is a continuous function from C(X; Y )�C(Y; Z) to C(X; Z) if X; Y and Z

are compact metric spaces.)//

Proof of Proposition 2.16: Fix X 2 SENR:We �x an embeddingX � Rm

and a retraction r : D ! X where D is a compact domain and int D is a

neighborhood of X: (Clearly it is always possible to obtain this situation.)

Let i : X ! D be the corresponding inclusion.

Suppose (f; U) 2 PENR (X): Then (i � f � r; r�1(U)) 2 P0(D): Any

extension �ENR of �0 satisfying Commutativity must have

�ENR (f; U) = �0(i � f � r; r
�1(U));

so the extension is unique if it exists. Suppose s : E ! X is another

retraction of a neighboring domain onto (a homeomorphic image of) X with

corresponding inclusion j : X ! E: Then the Commutativity property of �0

implies that

�0(i � f � r; r
�1(U)) = �0(i � s � j � f � r; r

�1(U)) (since s � j = IdX)

= �0(j � f � r � i � s; (i � s)
�1(r�1(U)))

(by Commutativity)

= �0(j � f � s; s
�1(U)):

Thus Commutativity de�nes the extension �ENR unambiguously.

It remains only to show that �ENR satis�es the index axioms.

If c : X ! X is a constant function then i � c � r is constant, so Weak

Normalization for �0 implies Weak Normalization for �ENR:
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If U1 ; : : : ; Uk are pairwise disjoint open subsets of an open set U � X;

then r�1(U1) ; : : : ; r
�1(Uk) are pairwise disjoint open subsets of r�1(U): If

f : X ! X has no �xed points in �U �
Sk
j=1 Uj ; then i � f � r has no

�xed points in c`(r�1(U)) �
Sk
j=1 r�1(Uj): Thus Additivity for �0 implies

Additivity for �ENR:

If h : �U � [0; 1]! X is a homotopy such that F(ht)
T
( �U �U) = ; for all

t; then (t; x) 7! i(h(t; r(x))) is a homotopy of i � h0 � r and i � h1 � r such

that F(i � ht � r)
T
( �U � U) = ; for all t: Thus Homotopy for �0 implies

Homotopy for �ENR:

It is easy to show that the map f 7! i � f � r from C( �U; X) to

C(c`(r�1(U)); D) is continuous, so Continuity for �0 implies Continuity for

�ENR:

Let r : D ! X; i : X ! D; s : E ! Y; and j : Y ! E be as above.

If f : X ! Y and g : Y ! X are continuous and U � X is open with

F(g � f)
T
( �U � U) = ;; then

�ENR (g � f; U) = �0(i � g � f � r; r
�1(U))

= �0(i � g � s � j � f � r; r
�1(U)) (since s � j = IdY )

= �0(j � f � r � i � g � s; (i � g � s)
�1(r�1(U)))

(by Commutativity)

= �0(j � f � g � s; s
�1(g�1(U))) (since r � i = IdX)

= �ENR (f � g; g
�1(U)):

This establishes Commutativity for �ENR:

In addition D � E is a compact domain and a neighborhood of X � Y;

and r � s : D � E ! X � Y is a retraction. Multiplication for �0 implies

Multiplication for �ENR by the following computation:
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�ENR (f � g; U � V ) = �0((i� j) � (f � g) � (r � s); (r � s)�1(U � V ))

= �0((i � f � r)� (j � g � s); r�1(U)� s�1(V ))

= �0(i � f � r; r
�1(U)) ��0(j � g � s; s

�1(V ))

= �ENR (f; U) ��ENR (g; V ):

The proof of Proposition 2.16 is complete.//

Appendix C: Approximations of Convex Valued Correspondences

Our �rst goal is the proof of Proposition 2.24, after which the proof of

Theorem 3 is immediate and Proposition 2.25 is a straightforward extension.

Finally we will develop some approximations results required in the proof of

Theorem 5.

We �x a compact metric space X; a convex ANR Y; and F 2 Kcon (X; Y ):

We begin by showing that every neighborhood of Gr(F ) contains an open

neighborhood that is the graph of a convex valued correspondence.

Lemma C.1: Suppose W � X � Y is a neighborhood of Gr(F ): Then for

each x one can �nd open sets Ux and Vx with fxg�F (x) � Ux�Vx � W; Vx

convex, and Gr(F j �Ux
) � �Ux � Vx:

Proof: Fix x: One de�nition of the product topology implies that for each

y 2 F (x) there are open sets Uy and Vy � Y with (x; y) 2 Uy � Vy � W:

The local convexity of the space containing Y implies that there is a convex

neighborhood of the origin By with (y + By)
T
Y � Vy: Choose y1; : : : ; yr
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such that fyj + (1=2)Byjg is an open cover of F (x); let Ux =
T
j Uyj ; and let

Vx = (F (x) + (1=2)
T
j Byj)

T
Y: If (x0; y0) 2 Ux � Vx then there is y 2 F (x)

such that y0� y 2 (1=2)
T
j Byj ; and there is j such that y 2 fyjg+(1=2)Byj ;

so y0 2 fyjg+Byj ; and (x0; y0) 2 Uy � Vy �W:

The upper hemicontinuity of F states that fx0 2 Ux jF (x
0) � Vxg is an

open neighborhood of x; so Ux can be replaced by an open neighborhood of

x whose closure is contained in this set.//

Lemma C.2: Every neighborhood W � X � Y of Gr(F ) contains an open

neighborhood W 0 with W 0(x) = fy j (x; y) 2 V g convex for all x:

Proof: For each x let Ux and Vx be as in Lemma C.1. Choose x1; : : : ; xr

such that fUxj � Vxjg is an open cover of Gr(F ): It is easily veri�ed that

W 0 =
S
x2X (fxg �

T
x2�Uj

Vxj ) has the desired properties.//

Convex combinations of convex valued correspondences can be de�ned

naturally, and in fact we can generalize this operation. ForG1; G2 2 Kcon(X; Y )

and a map � : X ! [0; 1] we let

[(1� �)G1 + �G2](x) = f(1 � �(x))y1 + �(x)y2 j y1 2 G1(x); y2 2 G2(x)g:

The proof that (1 � �)G1 + �G2 is upper hemicontinuous is left as an exer-

cise, and it is clearly convex valued, so (1 � �)G1 + �G2 2 Kcon (X; Y ): By

convexity of a set in Kcon (X; Y ) we will always mean that the set is convex

in the strong sense of being closed with respect to these generalized convex

combinations.

Now suppose that W 0 is as in Lemma C.2, that is, W 0 � Gr(F ) is open
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and each W 0(x) is convex. If Gr(G1); Gr(G2) � W 0 then

Gr((1 � �)G1 + �G2) �W 0; obviously, so Lemma C.2 implies:

Lemma C.3: Every neighborhood of F in Kcon (X; Y ) contains a convex

neighborhood.

The proof that C(X; Y ) is dense in Kcon(X; Y ) employs a technical con-

struction.

De�nition C.4: A con�guration is a �nite collection of quadruples

f(Uj; 'j ; xj; yj)gj=1;:::;r satisfying the following description: (a) fUjg is an

open cover of X; (b) f'j : X ! [0; 1]g is a partition of unity16 subordinate

to fUjg; (c) for each j; xj 2 Uj and yj 2 Y: We call �j 'jyj : X ! Y the

function generated by the con�guration.

Lemma C.5: For every neighborhood W of Gr(F ) there is a smaller neigh-

borhood W 0 and 
 > 0 such that Gr(�j 'jyj) � W for all con�gurations

f(Uj; 'j ; xj; yj)g with diam Uj < 
 and (xj; yj) 2 W
0 for all j:

Proof: Since X and Y are metric spaces there is a descending sequence

W 1 � W 2 � : : : of neighborhoods of Gr(F ) such that for any neighborhood

W of Gr(F ); W n � W for su�ciently large n. If the claim is false then there

is a neighborhood W of Gr(F ) for which we can �nd:

16If fU�g is an open cover of a topological space X; a partition of unity subordinate to

fU�g is a collection of maps f�� : X ! [0; 1]g such that supp �� � c`(��1� ((0; 1])) � U�
and ���� = 1: See Kelley (1955, p. 171) and Hirsch (1976, x2.2) for theorems guaranteeing

the existence of partitions of unity.
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(a) a sequence f
n > 0g converging to 0;

(b) for each n a con�guration f(Un
j ; '

n
j ; x

n
j ; y

n
j )gj=1;:::;Jn

with diam Un
j < 
n and (xnj ; y

n
j ) 2 W

n;

(c) a sequence fxn 2 Xg with (xn; yn) =2 W where

yn = �j '
n
j (x

n)ynj :

Taking subsequences, let x = limxn and let y = limyn:

Let Ux and Vx be as in Lemma C.1, that is, Vx is a convex neighborhood

of F (x) and Gr(F j �Ux
) � �Ux�Vx � W: Note that ( �Ux�Vx)

S
((X� �Ux)�Y )

is a neighborhood of Gr(F ); so for large n it must be the case that ynj 2 Vx

whenever 'nj (x
n) > 0: This means that yn 2 Vx and (xn; yn) 2 Ux�Vx � W;

a contradiction.//

Proof of Proposition 2.24: In view of Lemma C.5 it is only necessary to

show that con�gurations with the indicated properties exist. The proof of

this fact is an easy exercise in view of the theorem guaranteeing the existence

of partitions of unity.//

Proof of Theorem 3: We apply Proposition 2.10 with (S; Q) =

(Scon; Pcon
T
PANR) and (S; P) = (Scon; Pcon): Conditions (a) and (b) of

Proposition 2.10 follows from Proposition 2.24 and Lemma C.3 respectively.

Condition (c) is obvious.//

Proof of Proposition 2.25: Recall that the space of equivalence classes of

Cauchy sequences in a normed linear space, where the equivalence relation
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is \is eventually arbitrarily close to," is a Banach space. Thus no generality

is lost in assuming that Y is embedded in a Banach space. A theorem of

Mazur (Dunford and Schwartz (1958, p. 416)) states that co(Y ); the closed

convex hull of Y , is compact whenever Y is a compact subset of a Banach

space. Lemma 2.18 now implies that co(Y ) is a convex ANR.

Since Y is an ANR, it is a retract of a neighborhood in the normed space

containing Y: Let U be the intersection of this neighborhood with co(Y ); and

let r : U ! Y be the restriction of the retraction to U:

Note that the operator r � : C(X; U)! C(X; Y ); f 7! r � f; is continu-

ous, and in fact it is easily seen to be a retraction. Concretely, if W is open

in X � Y; then (IdX � r)�1(W ) is open in X � U:

Now �x F 2 Kcon(X; Y ) and a neighborhood W of Gr(F ) in X � Y: It

su�ces to prove the existence of f 2 C(X; U) with

Gr(f) � (IdX�r)
�1(W ): But Kcon(X; Y ) � Kcon(X; co(Y )) and Proposition

2.24 implies that C(X; co(Y )) is dense in Kcon(X; co(Y )): Of course C(X; U)

is open in C(X; co(Y )) since X � U is open in X � co(Y ); and X � U is a

neighborhood of Gr(F ); so C(X; U) is dense at F: This completes the proof

of Proposition 2.25.//

In Appendix D we need the technical results below which discuss extend-

ing, in an approximate sense, a pregiven approximation on a compact subset

of the domain.

De�nition C.6: Suppose D � U � X with X a compact metric space, U

open, and D compact. Suppose Y is a convex ANR. Let f : D ! Y be

a map and W � X � Y an open set containing Gr(f): We say that f is

approximately extendable to �U in W if for every neighborhood W 00 of Gr(f)
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there is a map f 0 : �U ! Y with Gr(f 0) � W and Gr(f 0jD) � W 00: (See

Figure 3)

[Insert Figure 3]

De�nition C.7: Suppose D � X with X a compact metric space and D

compact. Suppose that Y is another metric space. Finally, suppose that for

each open U � X we are given J ( �U; Y ) � K( �U; Y ): We say that D admits

approximate extensions of approximations of correspondences in J (X; Y )

(or, more precisely, fJ ( �U; Y )(U � X) is openg) if for every open U with

D � U � X; every F 2 J ( �U; Y ); and every neighborhood W of Gr(F )

there is a neighborhood W 0 of Gr(F jD) such that every map f : D ! X

with Gr(f) � W 0 is approximately extendable to �U in W:

Proposition C.8: Suppose D � X with X a compact metric space and

D compact. Suppose Y is a convex ANR. Then D admits approximate

extensions of approximations of correspondences in Kcon(X; Y ):

Proof: We �x an open neighborhood U of D;F 2 Kcon( �U; Y ); and a neigh-

borhood W � U � Y of Gr(F ): We must show that there is a neighborhood

W 0 of Gr(F jD) such that every map f : D! Y with Gr(f) �W 0 is approx-

imately extendable to �U in W: Replacing W with a smaller neighborhood

only makes this more di�cult, so Lemma C.2 allows us to assume that W (x)

is convex for all x:

With this assumption we claim that every map f : D! Y with Gr(f) �

W is approximately extendable to �U inW: Fix such an f and a neighborhood

W 00 �W of Gr(f):
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Fix a sequence f
n > 0g converging to 0. For each n the theorem guaran-

teeing the existence of a partition of unity allows us to choose a con�guration

f(Un
j ; '

n
j ; x

n
j ; y

n
j )gj=1; :::;Jn with the following properties:

(a) diam(Un
j ) < 
n;

(b) there is In such that Un
j

T
D 6= ; if and only if j � In;

(c) xnj 2 D and ynj = f(xnj ); j = 1; : : : ; In;

(d) ynj 2 F (x
n
j ); j = In + 1; : : : ; Jn:

Let fn be the function generated by f(Un
j ; '

n
j ; x

n
j ; y

n
j )gj=1;:::;Jn: Lemma C.5

implies that Gr(fnjD) is eventually inside W
00: Let G 2 Kcon( �U; Y ) be given

be G(X) = co(F (x)
S
ff(x)g); x 2 D; and G(x) = F (x); x =2 D: Since each

W (x) is convex, Gr(G) � W; and applying Lemma C.5 to G now shows that

Gr(fn) is eventually insideW: This shows that f is approximately extendable

to �U in W; so the proof is complete.//

Proposition C.9: Suppose D � X with X a compact metric space and D

compact. Suppose Y is a compact ANR embedded in a normed space. Then

D admits approximate extensions of approximations of correspondences in

Kcon(X; Y ):

Proof: We sketch a proof using the ideas developed above. Recall from the

proof of Proposition 2.25 that no generality is lost in assuming that Y is

embedded in a Banach space, and this implies that co(Y ) is a convex ANR.

Proposition C.8 implies that D admits approximate extensions of approxima-

tions of correspondences in Kcon(X; co(Y )): For F 2 Kcon(X; co(Y )) the con-

crete meaning of this is roughly that approximations of F jD in C(D; co(Y ))
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have approximate extensions in C(X; co(Y )) that approximate F: The argu-

ment by retraction used in the proof of Proposition 2.25 can now be used to

show that approximations of F jD in C(D; Y ) have approximate extensions

in C(X; Y ) that approximate F; and this is the desired result.//

An arbitrary ANR Y can be embedded in a normed space, but the em-

bedding e�ects which correspondences are in Kcon(X; Y ): But of course the

choice of embedding has no e�ect on the set C(X; Y ) or its topology, so

Proposition C.9 has the following important corollary.

Proposition C.10: Suppose D � X with X a compact metric space and

D compact. Suppose Y is a compact ANR. Then D admits approximate

extensions of approximations of maps in C(X; Y ):

Appendix D: Proof of Theorem 5

The gist of the argument establishing that minimal essential sets are

connected is as follows. Suppose F 2 P(X; U); and let K be a minimal

essential set for F: If K is not connected then it is possible to write K =

K1
S
K2 where K1 and K2 are compact, nonempty, and disjoint. Since K is

minimal, both K1 and K2 are inessential, so there are disjoint neighborhoods

U1 � K1 and U2 � K2 and arbitrarily close approximations f1; f2 2 C( �U; X)

of F such that fi has no �xed points in �Ui; i = 1; 2: Let f : K ! X be given

by f1 on �U1 and f2 on �U2: If f (or some nearby function) necessarily has an

extension to all of X; then we have contradicted the assumption that K is

essential.
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The delicate step is showing the existence of the desired extension f: It

is here that the re�ned approximation properties introduced in Appendix C

come into play.

De�nition D.1: Suppose D � X with X a compact metric space and D

compact. Suppose Y is a convex ANR. Suppose that for each open U � X we

are given J ( �U; Y ) � K( �U; Y ): We say that the system of correspondences

fJ ( �U; Y )g has the approximation extension property17 (AEP) if, whenever

K � U � X with K compact and U open, there is a compact D with

K � D � U that admits approximate extensions of approximations of cor-

respondences in J (X; Y ):

We now give a precise formulation of the argument above in which the

AEP is used to give the necessary extension.

Proposition D.2: Suppose that for all U; P(X; U) � J ( �U; X); where

fJ ( �U; X)g is a system of correspondences that has the AEP. Then minimal

essential sets of elements of P(X) are connected.

Proof: Fix X 2 S and (F; U) 2 P(X); and let K be a minimal essential

set for F: Suppose that K = K1
S
K2 where K1 and K2 are nonempty,

compact, and disjoint. Since K is minimal, neither K1 nor K2 is essential.

For i = 1; 2 let Ui be a neighborhood of Ki such that one can �nd elements of

P(X; U) arbitrarily close to F that have no �xed points in Ui:Without loss of

generality we may assume that U1 and U2 are disjoint. Let U0 = U1
S
U2: For

17Aside from the fact that they both deal with extension problems, there is no close

relationship between the AEP and the similarly titled homotopy extension property (e.g.

Dugundji (1966)).
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i = 1; 2 let Vi be a neighborhood of Ki with �Vi � Ui: Let V0 = V1
S
V2: Since

fJ ( �U; X)g has the AEP, there is a compact set D with V0 � D � U0 that

admits approximate extensions of approximations. Let Di = D
T
Ui; i =

1; 2: Fix an open neighborhood W of Gr(F ): Choose fi 2 C( �U; X) with

Gr(fi) � W and F(fi)
T
Ui = ;; i = 1; 2: Let f : D ! X be given by fi

on Di: Then f has no �xed points, there are maps arbitrarily close to f that

extend to X in W; and if such a map is su�ciently close it cannot have any

�xed points in D: This contradicts the assumption that K is essential.//

The assertion of Theorem 5 follows in our three interpretations from the

following three results.

Proposition D.3: If X is a compact ANR, then fC( �U; X)g has the AEP.

Proof: This follows from Proposition C.10.//

Proposition D.4: If X is a �nite simplicial complex, then fKctr( �U; X)g

has the AEP.

Proof: Suppose that K � U � X with K compact and U open. Using

barycentric subdivision (e.g. Border (1985, p. 21)) one can construct a

subcomplex D (of a subdivision of X) with K � D � U; so it su�ces to

show that any subcomplex D admits approximate extensions of approxima-

tions of correspondences in Kctr(D; X): In fact the conclusion of Proposition

2.21 (roughly \D admits exact extensions of approximations") is somewhat

stronger than this.//
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Proposition D.5: If X is a convex ANR, then fKcon( �U; X)g has the AEP.

Proof: This follows from Proposition C.8.//

Appendix E: The Proof of Proposition 4.7

In short the proof of Proposition 4.7 is a matter of proving the exis-

tence of a nicely behaved approximation of F and then modifying it to have

the right �xed points with the right indices. We now \prepare" M by adding

useful geometric structure.

Our argument is explicitly geometric: we impose a Riemannian metric18

and exploit the properties of geodesics. By the easy Whitney embedding

theorem we may assume that M is embedded in R` for some su�ciently

large `: (With small changes the proof of Hirsch (1976, Th. 3.4, p. 23)

applies to @-manifolds.) The tangent manifold TM of M is now a concrete

subset of M � R`; and it inherits a Riemannian metric from the standard

inner product on R`:

We will always assume that M is connected. For each pair of points

x; y 2M there is now at least one shortest path from x to y inM ; let d(x; y)

be the length of such a path. Obviously d : M �M ! R+ is a metric. We

also let d denote the induced metric on C(K; M) for any compact space

K : d(f; g) = max d(f(z); g(z)):

We now give a casual description of the exponential map of di�erential

geometry. Everything we have to say is geometrically intuitive and can be

18Let TM2 be the vector bundle over M whose �bre at each x is TMx � TMx: A

Riemannian metric is a smooth function < �; � >: TM2
! R+ whose restriction to each

�bre is an inner product. See Spivak (1979, x9).
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derived rigorously from the results in Spivak (1979, x9) without great di�-

culty. In the �rst part of the discussion we will assume that @M = ; in order

to avoid complications.

With this assumption we may de�ne a geodesic to be a curve 
 : [a; b]!

M of constant speed jj
0(t)jj such that if a � s < t � b with t� s su�ciently

small, then the image of 
j[s; t] is a shortest path from 
(s) to 
(t): The theory

of the Euler equation allows geodesics to be characterized as the solution of

ordinary di�erential equations. Since M is boundaryless and compact, the

standard results concerning such equations allow one to show that for each

x 2 M and v 2 TMx; there is a unique geodesic 
x;v : R ! M with


x;v(0) = x and 
0x;v(0) = v; and that 
x;v(t) is a smooth function of (x; v; t):

We de�ne the exponential map exp : TM !M by setting exp(x; v) = 
x;v(1);

and we let expx denote the restriction of exp to TMx : expx(v) = exp(x; v):

The conditions de�ning expx imply that D(expx)(0) = IdTMx
; so each

expx is a di�eomorphism in a neighborhood of 0 2 TMx: (Here and below this

equation is to be understood in terms of the natural identi�cation T (TMx)0 =

TMx:) In fact we need a stronger result.

Proposition E.1: There is � > 0 such that for each x 2 M; the restriction

of expx to fv 2 TMx j jjvjj < �g is a di�eomorphism.

Proof: Consider the mapH : TM !M�M given byH(x; v) = (x; exp(x; v)):

Identifying T (TM)(x;0) with TMx � TMx in the natural way, the matrix of

DH(x; 0) consists of four n � n blocks where three blocks are IdTMx
and

the fourth is 0, so DH(x; 0) is nonsingular. Thus H is di�eomorphism in a

neighborhood of (x; 0) by the inverse function theorem. The desired result

now follows from the compactness of M://
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The situation is obviously much more complicated when @M 6= ;; but for

our purposes the following properties of the exponential map are su�cient.

Proposition E.2: Suppose K � intM is compact. Then for � > 0 su�-

ciently small there is a unique map exp : f(x; v) 2 TM jx 2 K and

jjvjj < �g !M that has the following properties:

(a) For all x 2M; expx(0) = x and D(expx)(0) = IdTMx
:

(b) For all (x; v) 2 TM; the curve 
x;v(t) = exp(x; tv);

�=kvk < t < �=kvk; is a geodesic.

Moreover, for each x 2 K the restriction expx : fv 2 TMxj jjvjj < �g ! M

is a di�eomorphism onto its image.

Consider x 2 K and v 2 TMx with jjvjj < �: Since the speed jj
0x;v(t)jj of


x;v is constant with value jjvjj; this is also the length of the path traced by


x;v between time 0 and time 1. Any shortest path between x and exp(x; v)

can be parametrized as a geodesic, and if there were a shorter path we would

have exp(x; v) = exp(x; w) for some w with jjwjj < �; a contradiction of

Proposition E.2. This argument proves the equation

d(x; exp(x; v)) = jjvjj (x 2 K; jjvjj < �):

These results allow one to de�ne a bijection between smooth functions

g : K ! M with d(g; IdK) < � and smooth tangent vector �elds � : K !

TM; �(x) 2 TMx; with max jj�(x)jj < �: Speci�cally, let the vector �eld

�K(g) and the function 	K(�) be de�ned by the equations

�K(g)(x) = �exp�1x (g(x)) and 	K(�)(x) = expx(��(x)):
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The signs are required here in order to equate the two indices.

Lemma E.3: Suppose x 2 intK in a regular zero of �: Then

�ENR (	K(�); x) = indx(�):

Proof: With the natural identi�cation T (TM)(x;0) = TMx � TMx we can

decompose D(exp)(x; 0) into its \partials," but of course Proposition E.2

implies that these partials are both IdTMx
: Applying the chain rule to the

formula 	K(�)(x
0) = exp(x0; ��(x0)) now yields

D(	K(�))(x) = IdTMx
�D�(x) or D�(x) = IdTMx

�D(	K(�))(x):

In the second equation the determinant of the left hand side is indx(�); as

we saw in x3.2, while the determinant of the right hand side is

�ENR (	K(�); x)://

With these generalities out of the way we proceed to the central step of

the proof. The statement of the following result summarizes the remaining

work in this appendix. Conclusions (1) and (2) are the geometric operations

of addition and erasure of pairs of �xed points of opposite indices used to

bring about the properties asserted in Proposition 4.7. The \geometric" part

of the argument is the proof that (A) implies (1) and (2). The \topological"

part of the argument is to show that the hypotheses of Proposition 4.7 imply

the existence, for any � > 0; of g : �U ! M with Gr(g) � B(Gr(F ); �) and

a connected neighborhood V of F(F ); such that (gj�V ; V ) is as in (A).

Proposition E.4: Let U � M be open with �U � intM: Then there exists

� > 0 such that (A) implies (1) and (2).
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(A) (g; V ) 2 P1(M); where V � U is connected and d(g; Id�V ) < �:

(1) For any points x+; x� 2 V �F(g) there is a smooth g0 : �V !M

with d(g0; Id �V ) � � that agrees with g in a neighborhood of

( �V � V )
S
F(g) and has F(g0) = F(g)

S
fx+; x�g where

x+ and x� are regular �xed points with �(g0; x+) = 1

and �(g0; x�) = �1:

(2) For any �xed points x+; x� 2 F(g) with �(g; x+) = 1 and

�(g; x�) = �1 there is a smooth g0 : �V !M with

d(g0; Id�V ) � � that agrees with g in a neighborhood of

( �V � V )
S
F(g)� fx+; x�g and has F(g0) = F(g)� fx+; x�g:

For the time being our goal is the proof of Proposition E.4. The following

result states the geometric basis of our argument.

Proposition E.5: LetM be a connected oriented compact n-dimensional @-

manifold. Then a map � : @M ! Sn�1 has a continuous extensionM ! Sn�1

if and only if deg � = 0:

Proof: This is Hirsch (1976, Th. 1.8, pp. 126).//

Remark: Our treatment of degree theory in Appendix A is inadequate for

this result in the following respects. One must de�ne the degree of a smooth

map f : M ! N over a regular value y 2 N; where M and N are compact

oriented manifolds, and show that the degree so de�ned is independent of

y: This de�nition of deg(f) must then be extended to continuous functions
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f : M ! N by approximation. Of course these tasks are conceptually

straightforward; for further detail we recommendMilnor (1965, x5) and Lloyd

(1978).

The speci�c applications of Proposition E.5 are the following two lemmas

which will allow us to add and delete pairs of �xed points in a concrete

geometric setting as per (1) and (2).

Lemma E.6: Suppose � : Dn ! Rn � f0g is a nonvanishing vector �eld on

the unit disk in Rn: Let y+ and y� be points in int Dn = Dn � Sn�1: Then

there is a vector �eld � 0 : Dn ! Rn that agrees with � on Sn�1 and whose

only two zeros are y+ and y�; both of which are regular, with indy+(�
0) = 1

and indy�(�
0) = �1:

Proof: Let � : Sn�1 ! Sn�1 be the normalization of � on Sn�1 : �(y) =

�(y)=jj�(y)jj: Proposition E.5 implies that deg(�) = 0: Let D+ and D� be

disjoint closed disks in Dn � Sn�1 centered at y+ and y� respectively. Let

S+ = @D+ and let S� = @D�: Let L+; L� 2 L(Rn; Rn) be nonsingular

linear transformations with ind0(L
+) = 1 and ind0(L

�) = �1: We start

the construction of � 0 by setting � 0(y) = L+(y � y+) for y 2 D+; � 0(y) =

L�(y � y�) for y 2 D�; and � 0(y) = �(y) for y 2 Sn�1:

Let �0 : Sn�1
S
S+

S
S� ! Sn�1 be the extension of � obtained by nor-

malizing � 0 on S+
S
S�: The de�nition of the index of a zero of a vector �eld

implies that deg(�0 jS+) = 1; where S+ has the orientation induced by regard-

ing S+ as the boundary of D+: The inclusion S+ � @(Dn�intD+�intD�) =

Sn�1
S
S+

S
S� induces the opposite orientation, but in any event it is clear

that with this induced orientation we have deg(�0) = 0; so Proposition E.5
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implies the existence of an extension �00 : Dn�intD+�intD� ! Sn�1: Using

obvious methods one can combine � 0 and �00 to obtain the desired extension

of � 0://

Lemma E.7: Suppose � : Dn ! Rn is a vector �eld whose only zeros are

y+; y� 2 intDn; both of which are regular, with indy+(�) = 1 and indy�(�) =

�1: Then there is a nonvanishing vector �eld � 0 : Dn ! Rn�f0g that agrees

with � on Sn�1:

The proof is similar to the proof of Lemma E.6 and is omitted.

Proof of Proposition E.4: Fix an open set U with �U � intM; and let �

be as in Proposition E.2 for �U: We wish to show that (A) implies (1), so �x

(g; V ) 2 P1(M) with V � U connected and d(g; Id�V ) < �:

Fix x+; x� 2 V �F(g): Since V is open and connected, and since g has

only regular �xed points, F(g) is �nite and V � F(g) must also be path

connected. (This is the only place where we use the assumption n � 2:)

Combining the existence of a smooth path between x+ and x� with the

tubular neighborhood theorem (Hirsch (1976, Th. 6.3, p. 114)) quickly

yields the existence of a (di�eomorphic image of) a disk in V � F(g) that

contains x+ and x�: Let � : Dn ! V and � : �(Dn) ! Dn be inverse

di�eomorphisms, and let �� and �� be the induced transformations of vector

�elds: ��(�)(x) = D�(�(x))�(�(x)); and similarly for �: Of course �� and

�� are inverse transformations.

Consider the vector �eld ��(� �U(g)) : D
n ! Rn � f0g: Lemma E.6 guar-

antees the existence of a vector �eld � : Dn ! Rn that agrees with ��(� �U (g))

on a neighborhood of Sn�1 and whose two zeros �(x+) and �(x�) are regular
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with indx+(�) = 1 and indx�(�) = �1: Since smooth functions are dense

in the space of continuous functions we may assume that � is smooth, and

obvious constructions allow us to assume that � agrees with ��(� �U(g)) in a

neighborhood of Sn�1:

The obvious temptation is to de�ne g0 by replacing the restriction of

g to �(Dn) with 	 �U(��(�)): The problem is that max jj��(�)(x)jj > � is

possible. To circumvent this di�culty we instead consider 	 �U (s���(�)) where

s : �(Dn) ! (0; 1] is a smooth function that is constant with value 1 in a

neighborhood of Sn�1 and is constant with value less that �=max jj��(�(x))jj

outside the neighborhood of Sn�1 on which � and ��(� �U (g)) agree.

De�ne g0 : �V !M by replacing g on �(Dn) with 	 �U(s � ��(�)): There is

a neighborhood of @�(Dn) = �(Sn�1) on which � agrees with ��(� �U(g)) and

s is identically 1, and this implies that ��(�) = � �U (g) and 	 �U(s ���(�)) = g:

In particular g0 is smooth.

Of course we have been careful to set things up so that

�ENR (g
0; x+) = �ENR (	 �U(s � ��(�)); x

+) = indx+(s � ��(�))

= sgn jD(s � ��(�))(x
+) j = sgn jD(��(�))(x

+) j

= sgn jD�(�(x+)) j = ind�(x+)(�) = 1:

Here the second equality is from Lemma E.3, the fourth equality is due

to the fact that s is a positive constant in a neighborhood of x+; and the

�fth equality follows from noting that in the coordinate system given by

� and �; D(��(�))(x
+) and D�(�(x+)) have the same matrix. Similarly

�ENR (g
0; x�) = �1: This completes the proof that (A) implies (1).

The proof that (A) implies (2) is quite similar, naturally, applying Lemma

E.7 instead of Lemma E.6, so we regard the proof of Proposition E.4 as

complete.//
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We now turn to the two results showing that in the two cases considered

by Proposition 4.7 we can �nd g 2 C1( �U; M) arbitrarily near F such that

(gj�V ; V ) is as in (A) of Proposition E.4 for some connected neighborhood V

of F(F ): These results conclude the proof of Proposition 4.7.

Proposition E.8: Suppose (f; U) 2 PENR (M) and F(f) is connected. For

any positive numbers � and � one can �nd V; a connected neighborhood

of F(f); and a smooth function g : �U ! M; all of whose �xed points are

regular, with F(g) � V; d(gj�V ; Id�V ) � �; and Gr(g) � B(Gr(f); �):

Proof: Let V be the component of the open set fx j d(x; f(x)) � �=2g

that contains F(f): By Hirsch (1976, Th. 2.1, p. 74) there is a smooth

function g : �U ! M all of whose �xed points are regular with d(g; f) < �

and Gr(g) � B(Gr(f); �): By choosing g su�ciently close to f we can force

F(g) � V://

Proposition E.9: Suppose M is convex, (F; U) 2 Pcon (M); and F(F ) is

connected. Then for any positive numbers � and � one can �nd V; a connected

neighborhood of F(F ); and a smooth function g : �U !M; all of whose �xed

points are regular, with F(g) � V; d(g; Id�V ) � �; and Gr(g) � B(Gr(F ); �):

Proof: For k = 1; 2; : : : let sk : �U ! [0; 1] be a smooth function with sk(x) =

0 for all x 2 �U �B(F(F ); 1=k) and sk(x) = 1 for all x in a neighborhood

of F(F ): De�ne Fk 2 Kcon ( �U; M) by Fk(x) = (1 � sk(x))F (x) + sk(x)fxg:

If it is not the case that Fk ! F; then there is " > 0 and a sequence

(xk; yk) 2 Gr(Fk)�B(Gr(F ); "); but it is easy to show that any limit point

of f(xk; yk)g is in Gr(F ): Thus Gr(Fk) � B(Gr(F ); �=2) for large k:
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Fixing such a k; choose " > 0 such that d("F (x) + (1 � ")fxg; x) < �=2

for all x 2 �U; and let V be the connected component of s�1k ((1 � "; 1])

that contains F(F ): Proposition 2.24 allows Fk to be approximated with

arbitrary accuracy, and standard results (e.g. Hirsch (1976, Th. 2.1, p. 74)

allow us to choose approximations that are smooth and have only regular

�xed points. Su�ciently close approximations of this sort clearly have the

desired properties.//

Appendix F: The Proofs of Theorems 6 and 7

The arguments given below are logically independent but entirely parllel.

To obtain a �rm understanding of either proof one should read both.

Proof of Theorem 6: Without loss of generality we may assume that

C � Rn with 0 2 intC: Fix � > 0 and x� 2 F(F ): (If F(F ) = ; then

the proof is trivial.) If �(F; U) = 0 then our goal is to construct a map

f : �U ! C with Gr(f) � B(Gr(F ); �) and F(f) = ;: If �(F; U) 6= 0 then

F(F ) is essential, and in order to show that no proper compact subset is

essential we construct a map f : �U ! C with Gr(f) � B(Gr(F ); �) all of

whose �xed points are in the �-ball around x�:

Let V be an open subset of @C with �V � U and F(F )
T
@C � V: For

su�ciently small " > 0 we have

f�xjx 2 �V and 1 � " < � � 1g � U and

F(F )
\
f�xjx 2 �V and 1� " � � � 1g � f�xjx 2 V and 1� " � � � 1g:

Fixing such an "; it is clearly possible to construct U1; U2; open subsets of

C; with the following properties: �x0 2 U1 for all � 2 (1 � "; 1] whenever
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0 6= x 2 U1; x
0 is the point in @C on the ray from 0 through x; and kxk >

(1 � ")kx0k; �U1
T
( �U � U) = ;; U1

S
U2 = U ; F(F )

T �U2 = ;: Replacing �

with a smaller number, we may assume that B(F(F ); �)
T �U2 = ;:

Since U1
S
U2 = U and �U1

T
( �U�U) = ;; any point in �U�U must be in the

interior, relative to �U; of �U2: Thus U1 and the interior of �U2 relative to �U con-

stitute an open cover of �U; so the theorem guaranteeing a partition of unity

implies the existence of a map � : �U ! [0; 1] with �(x) = 0 for all x 2 �U�U1

and �(x) = 1 for all x 2 �U � U2: Fix � 2 (0; �) small enough that F(f) = ;

whenever f : �U2 ! C is a map with Gr(f) � B(Gr(F ); �): Fix 
 2 (0; �)

small enough that the graph of the map x 7! �(x)f1(x) + (1 � �(x))f2(x) is

contained in B(Gr(F ); �) whenever f1 : �U1 ! C and f2 : �U2 ! C are maps

with Gr(f1); Gr(f2) � B(Gr(F ); 
): (The existence of such a 
 can easily be

established by supposing that no such 
 exists, taking appropriate sequences,

using compactness to extract convergent subsequences, and deriving a con-

tradiction.) Proposition 2.25 implies the existence of a map f2 : �U2 ! C with

Gr(f2) � B(Gr(F ); 
): If �(F; U) = 0 it now su�ces to construct a map

f1 : �U1 ! C withGr(f1) � B(Gr(F ); 
) and F(f1) = ;; while if �(F; U) 6= 0

it su�ces to construct a map f1 : �U1 ! C with Gr(f1) � B(Gr(F ); 
) all of

whose �xed points are in the 
-ball around x�:

Let C 0 be C together with the set of x 2 Rn � C such that if x0 is the

point in @C on the ray from 0 through x; then kx � x0k < 
=3: We now

construct a smooth compact convex @-manifold M with C � int M and

M � C 0: Let � > 0 be small enough that x 2 C 0 whenever d(x; C) � �;

where d(x; C) = minx02C kx � x0k: Let q : Rn ! [0; 1] be the map q(x) =

minf0; 1 � d(x; C)=�g: Observe that q is concave on fxjd(x; C) � �g since

C is convex. Let ' : Rn ! R+ be a C1 function with support contained

in B(0; �=4) and
R
Rn '(z) dz = 1 (cf. Hirsch (1976, x2.2)). De�ne the



79

convolution q' : R
n ! [0; 1] by

q'(x) =
Z n

R

q(x� z)'(z) dz =
Z
Rn

q(z)'(x� z) dz:

Di�erentiation under the integral sign shows that q' is C
1: Since q is concave

on fxjd(x; C) � �g; q' is concave on fxjd(x; C) � 3
4
�g: If q'(x) >

1
2
�

then d(x; C) < 3
4
�; so that x 2 C 0; and if q'(x) <

3
4
� then x 62 C: Sard's

theorem implies the existence of a regular value c 2 (1
2
�; 3

4
�) of q': Let

M = q�1' ([c; 1]): Then M is convex, and regularity and the implicit function

theorem implies that @M is a smooth manifold, soM is a smooth @-manifold.

Let r :M ! C be the retraction given by letting r(x) = x if x 2 C and

letting r(x) be the point in @C on the ray from 0 through x if x 2 M � C:

Let i : C ! M be the inclusion. Note that our construction of U1 implies

that r�1( �U1) is the closure of r
�1(U1): Proposition 2.25 implies the existence

of maps f : �U1 ! C with graphs arbitrarily close to the graph of F; and by

making the graph of f close to the graph of F we can insure that the graph

of f �r : r�1( �U1)! C is arbitrarily close to the graph of F �r : r�1( �U1)! C:

For such an f the index axioms yield

�(F; U) = �(F; U1) = �(f; U1) = �(r � i � f; U1)

= �(i � f � r; r�1(U1)) = �(i � F � r; r�1(U1)):

Now assume that n � 2: (The case n = 1 is elementary and left to the

reader.) If �(F; U) = 0 then Proposition 4.7 implies the existence of a map

g : r�1( �U1) ! M with Gr(g) � B(Gr(F � rjr�1( �U1)); 
=4) and F(g) = ;: If

�(F; U) 6= ; there is a minor technicality insofar as it may be the case that

�(F; U) 62 f�1; 0; 1g even though F(F ) = fx�g is a singleton. In this case

we can modify F without disturbing our hypotheses by replacing F (x) with



80

the convex hull of fxg
S
F (x) for all x in a small convex closed neighborhood

of x�: Combining this trick with Proposition 4.7, if �(F; U) 6= 0 there is a

map g : r�1( �U1) ! M with Gr(g) � B(Gr(F � rjr�1( �U1)); 
=4) all of whose

�xed points are in the 3
4

-ball around x�:

Let h : M ! C be de�ned as follows: if x 2 @C; then h(ax) = ax for

all a 2 [0; 1 � "]; and h maps the line segment between (1 � ")x and the

point in @M on the ray from 0 through x linearly onto the line segment

between (1 � ")x and x: Clearly h is a homeomorphism. The construction

of M implies that kh(x)� xk < 
=4 for all x 2 M: The construction of U1

implies that h(r�1( �U1)) = �U1:We may therefore let f1 = h�g�h�1 : �U1 ! C:

Clearly F(f1) = h(F(g)); so the �xed points of f1 (in the case where there

are any) are contained in the 
-ball around x�: If (x; y) � Gr(f1) then

(h�1(x); h�1(y)) 2 Gr(g); and there is a point (x0; y0) 2 Gr(F � rjr�1( �U1)) in

the 
=4 ball around (x0; y0); and of course (r(x0); y0) 2 Gr(F ): We now have

kx� r(x0)k � kx� h�1(x)k+ kh�1(x)� x0k

+kx0 � r(x0)k � 1
2

 + kh�1(x)� x0k

and

ky � y0k � ky � h�1(y)k+ kh�1(y)� y0k � 
=4 + kh�1(y)� y0k:

Since kh�1(x) � x0k + kh�1(y) � y0k < 
=4; we have shown that Gr(f1) �

B(Gr(F ); 
): This completes the proof.==

Proof of Theorem 7: Fix � > 0 and x� 2 F(f): (If F(f) = ; then the proof

is trivial.) If �(f; U) = 0 then our goal is to construct a map f 0 : �U ! C

with Gr(f 0) � B(Gr(f); �) and F(f 0) = ;: If �(F; U) 6= 0 then F(f) is

essential, and in order to show that no proper compact subset is essential we
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construct a map f 0 : �U ! M with Gr(f 0) � B(Gr(f); �) all of whose �xed

points are in the �-ball around x�:

The collaring theorem (Hirsch (1976, Th. 6.1, p. 113) states that there

is a smooth map  : @M � [0; 1) ! M with  (x; 0) = x for all x 2 @M

that is a di�eomorphism between @M � [0; 1) and a neighborhood of @M

in M: Let V be an open subset of @M with �V � U and F(f)
T
@M � V:

For su�ciently small " > 0 we have  ( �V � [0; ")) � U and F(f)
T
 ( �V �

[0; "]) �  (V � [0; "]): Fix such an ": Let U 0 be an open subset of U with

F(f)
S
 ( �V � [0; "]) � U 0: Let

U1 =  (V � [0; "]) [ (U 0 \ (M �  (@M � [0; "]))):

Clearly U1 is open:  (V � [0; ")) is open,  (@M � [0; "]) is closed so that

U 0
T
(M �  (@M � [0; "])) is open, and if x 2 V and � is small enough that

B( (x; "); �) � U 0 and B( (x; "); �)
T
 (@M� [0; "]) �  (V � [0; "]); then

B( (x; "); �) � U1: Let U2 be an open subset of U with U1
S
U2 = U and

�U2
T
F(f) = ;: The key properties of U1 and U2 guaranteed by this construc-

tion are as follows:  (fxg� [0; ")) � U1 whenever  (fxg� [0; "))
T
U1 6= ;;

�U1
T
( �U � U) = ;; U1

S
U2 = U ; F(f)

T �U2 = ;:

Let a triangulation of M be given (recall footnote 1). After su�ciently

�ne subdivision (e.g. Dold (1980, pp. 40-41)) one can �nd subcomplexes K

and L such that U1 � U2 � intK; M � U1 � intL; and K
T
L = ;: Denote

K � intK and L� intL by @K and @L respectively. Then @K and @L are

also subcomplexes: if, for instance, x 2 @K and � is the simplex containing

x in its interior, then there is an open simplex � not in K whose closure

contains x; and the de�nition of a simplicial complex implies that the closure

of � contains �; so � � @K: Let J = M � (int K
S
int L): Then J is the

closure of M � (K
S
L); hence the closure of a union of (open) simplices, so
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it too is a subcomplex, and of course @K and @L are subcomplexes of J: Note

that F(f)
T
J = ; since F(f) � U1�U2 � intK: Without loss of generality

we may assume that � is small enough that F(f 00) = ; whenever f 00 : J !M

is a map with Gr(f 00) � B(Gr(f jJ ); �):

Proposition 2.21 implies the existence of a number �1 > 0 small enough

that if f1 : @K
S
@L ! M with Gr(f1) � B(Gr(f j@K

S
@L); �1); then there

is f2 : J ! M with Gr(f2) � B(Gr(f jJ ); �) and f2j@K
S

@L = f1: An easy

compactness argument implies that there is some 
 > 0 small enough that

if f 00 : �U1 ! M with Gr(f 00) � B(Gr(f j �U1); 
); then Gr(f 00j@K
S

@L) �

B(Gr(f j@K
S

@L); �1): We now claim that it su�ces to construct a map f 00 :

�U1 ! M with Gr(f 00) � B(Gr(f j �U1); 
) and F(f) = ; if �(f; U) = 0 or

F(f) � B(x�; �) if �(f; U) 6= 0: For suppose that such a map is given. Let

f1 : @K
S
@L be given by f 00 on @K and by f on @L: Let f2 : J !M be an

extension of f1 with Gr(f2) � B(Gr(f jJ ); �): A satisfactory f 0 : �U ! M is

now given by letting f 0jK = f 00jK; f
0jJ = f2; and f

0jL
T

�U = f jL
T

�U :

Fix a number � 2 (0; ") small enough that d( (x; s);  (x; t)) < 
=3 for

all x 2 @M and all s; t 2 [0; �]: (Here d may be any metric on M:) Let

M 0 = M �  (@M � [0; �=2)): De�ne a retraction r : M ! M 0 by setting

r(x) = x if x 2 M 0 and setting r( (x; t)) =  (x; �=2) for x 2 @M and

0 � t < �=2: Let i :M 0 !M be the inclusion. De�ne a homeomorphism h :

M !M 0 by setting h(x) = x if x 62  (@M � [0; �)) and setting h( (x; t)) =

 (x; (t+ �)=2) for x 2 @M and 0 � t < �:

Observe that our construction of U1 implies that r( �U1) = �U1
T
M 0 =

h( �U1); so the maps i � h � f � h�1 � rj �U1 and f � h
�1 � r � i � hj �U1 are de�ned.

In addition our construction of �U1 implies that (i � h)�1(U1) = U1 and that

(i � h)�1( �U1) = �U1; so that in particular �U1 is the closure of (i � h)�1(U1):
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Commutativity now yields

�(i � h � f � h�1 � rj �U1 ; U1) =

�(f � h�1 � r � i � hj �U1; (i � h)
�1(U1)) = �(f; U1);

and Additivity implies that �(f; U1) = �(f; U):

If x is a �xed point of i � h � f � h�1 � rj �U1; then x 2 M 0 since x is

an image of i; so r(x) = x and h�1(x) is a �xed point of f: Conversely

h(x) is a �xed point of i � h � f � h�1 � rj �U1 whenever x is a �xed point

of f: Thus F(i � h � f � h�1 � rj �U1) = h(F(f)): If �(f; U) = 0 then we

may apply Proposition 4.7 to obtain a function g : �U1 ! M with Gr(g) �

B(Gr(i�h�f �h�1�rj �U1); 
=3): If �(f; U) 6= 0 then there is a slight technical

problem insofar as it may be the case that F(f) = fx�g is a singleton but

�(f; U) 62 f�1; 0; 1g: In this case we can modify f without disturbing our

hypotheses by �xing a coordinate system at x� (so that M near x� is an

open subset of a half space) and replacing f(x) with �(x)x + (1� �(x))f(x);

where � : M ! [0; 1] is a map that is identically 1 in a neighborhood of

x� and identically 0 outside a ball around x� whose radius is small relative

to 
 and is also small enough that the domain of the coordinate system

contains the images under f of points in the ball. Combining this trick

with Proposition 4.7, when �(f; U) 6= 0 there is a map g : �U1 ! M with

Gr(g) � B(Gr(i � h � f � h�1 � rj �U1); 
=3) all of whose �xed points are in the


=3-ball around h(x�): Without going into details it is clear that when 3 is

su�ciently large we will have Gr(g) � B(Gr(f); 
); and if �(f; U) 6= 0 then

all �xed points of g lie in the 
-ball around x�:==
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