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Preface

The preface of a book is traditionally devoted to remarks that have some per-
sonal character, and for most books these are mundane and reassuring. “Even
in these turbulent times” the author’s feelings gravitate, like a pendulum un-
der the slow influence of friction, to appreciation of his or her parents, the
delightful domestic environment he or she currently enjoys, the support and
encouragement of colleagues, that nice person from the publisher who took
care of all those pesky details, and so forth.

I could easily profess to such sentiments, but it would be evasive, because
what everyone really wants to know is: Why in the world is an economist
writing a book of algebra and algebraic geometry? What sort of hubris might
inspire him to think he has any competence for such a task? What could he
possibly hope to gain? And in the face of these questions, how do I conceive
of my efforts, and what sort of “public face” am I trying to present to the
world?

The actual answers are quite a bit less dramatic than this sounds. I am
a mathematical economist, which means that if I am perhaps not exactly a
mathematician, I am certainly not exactly not a mathematician. From the
point of view of pure mathematics, mathematical economics is a fringy thing,
perhaps mildly interesting, but suspiciously justified by appeals to values be-
yond mathematics, and inessential to the central thrust and foundations of
the discipline. Be that as it may, it does present a rich menu of technical chal-
lenges, and is perhaps not more distant from the main currents of research
than various other subfields within mathematics proper. Over the years it has
attracted the interest of many mathematicians, including the Fields medalists
Stephen Smale and Pierre-Louis Lions. Relative to other specializations, the
technical foundations of mathematical economics are quite broad. Economic
phenomena can be modelled in many ways, so if there’s a tool out there that
can be put to use, probably somebody will do so eventually. Real analysis,
topology, functional analysis, and mathematical statistics underly fundamen-
tal economic models.

In the mid 1980’s it occurred to me that algebraic geometry might have
some relevance to game theory, because the notion of Nash equilibrium is
a matter of polynomial equations and inequalities. (It turns out that the
seemingly nearby but actually quite distant field of semi-algebraic geometry
does indeed provide quite useful results and insights.) So, I walked across

vii
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campus and started attending a course based on Hartshorne (1977). The first
chapter was not impossible (if one accepted the cited results from algebra) but
after that I quickly became hopelessly confused. At first I could understand
the logic of the definitions related to scheme theory, if not their motivations,
but before too long I was just lost in the jungle at night.

I did learn that, along with logic, topology, measure theory, and functional
analysis, the reformulation of algebraic geometry in the 1960’s was one of the
profound transformations of mathematics during the 20" century, and that if I
didn’t find some way to learn more, large swaths of contemporary mathematics
would be far beyond my comprehension and appreciation. But I think that
my persistence really had more to do with not wanting to accept such a defeat.
Now Hartshorne makes it pretty clear that he expects a strong background
in algebra, so I obtained various books and read each one up to some point.
It’s a gorgeous subject, but it has its own motivations and internal agenda,
as did each of the authors. Certainly I learned a lot, but each time I tried to
return to Hartshorne I was rebuffed, and this was also the case after I read
lower level books on algebraic geometry.

About a decade ago it occurred to me that I might try reading Serre’s
“Faisceaux Algébrique Cohérents” (henceforth FAC) which was obviously an
important milestone in the history of the subject, presumably much closer to
the original motivations and ways of thinking, and universally praised in the
highest terms. My high school French is barely adequate for mathematics,
and it is a journal article, not a textbook, so this also proved quite difficult.
However, I had the thought that instead of reading it, it might work better to
prepare a translation. This had the advantage of slowing me down, so that I
could patiently work through each logical detail. Both for my own benefit, and
because I could imagine it becoming accessible to readers at a much lower level
than would otherwise be the case, I interpolated explanatory remarks when
Serre elided some details, appealed to some not entirely elementary result,
wrote in a way that later became obsolete, and so forth. This had the effect of
creating a sense of dialogue, making it at least a quite original mathematical
document. Everything seemed to be going nicely, and “working” on it was a
delightfully relaxing activity.

Serre’s style is very gentle throughout, and up to a certain point FAC is
effectively self-contained, but then there are a flurry of citations to Cartan
and Eilenberg’s Homological Algebra (henceforth CE) which would appear in
print the following year. I acquired this (still very useful) book, and set about
figuring out what these results were. It quickly emerged that they were central
to Serre’s project, and that my translation couldn’t succeed unless the reader
could access them easily. At the same time CE was not an acceptable source,
since what the reader of FAC needs is mixed in with a great many other things,
and some of the cited results are exercises. No other source seemed suitable,
so I set out to write a minimal treatment, working backward in CE in order
to extract only what was required. The result was a “Supplement” consisting
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of several dozen pages.

Within FAC the work went forward again, until I reached the last few
pages, where I learned, somewhat to my horror, that Serre appeals to various
results of commutative algebra that are not in Atiyah and McDonald’s An
Introduction to Commutative Algebra. Again, I set out to extract a minimal
treatment from various sources, and the supplemental material expanded ac-
cordingly. Eventually it became clear that I would need to take control of the
subject from the beginning, so I wrote what is now Chapter A, even though
this material is basic and very well treated elsewhere. Somehow the “Supple-
ment” ballooned to over two hundred pages, dwarfing (at least in bulk) the
original intent and spirit of the project.

By this point you have probably figured out that I enjoy writing mathe-
matics. Early in my career I had great difficulties with writing (had it not
been for the advent of personal computers my career might have been lost) so
I tried to take that aspect of the work seriously, tracking down written advice
about exposition and (more usefully) thinking about what it was that made
the writings of John Milnor, Michael Spivak, J.S. Milne, Allen Hatcher, and
others, work so well. I also put a lot of effort into writing, learning much from
various mistakes and other experiences. Perhaps most important, I developed
a taste for mathematical exposition as a medium of aesthetic expression. If
you asked why I spent so much time on this project, I would say that no one
would think it odd if I spent the occasional Saturday afternoon dabbling in
watercolors, and this really isn’t any different.

As you might expect, I have strong and well developed views concerning
mathematical exposition, but for the most part I hope that they are better
expressed implicitly in the text than I could state them here. I should say
two things about the book. First, it is the sort of book I would like for
myself, insofar as it is meant to be read, not “studied.” (Readers who like to
work exercises should have no difficulty finding them elsewhere.) I am a busy
professional who doesn’t like being told that he can’t learn a subject without
going back to the course work ghetto, or doing endless problem sets. As much
as possible, I have tried to craft a book that can be absorbed and appreciated
with minimal effort. The reader should be aware of two particular aspects
of this. I have kept the coverage almost as minimal as possible, subject to
the nature of the project. (At a certain point I thought that factoriality of
regular local rings would be required. This turned out to be wrong, but it
would be a shame to stop within spitting distance of this glorious theorem.)
Sometimes I have added inessential results that illustrate or apply the ideas
under discussion, but I have deliberately avoided trying to make the coverage
of any topic “complete.” Second, I have allowed the organization complete
freedom to fall in line with the logic of the material. Possibly this book might
serve as the main text of quite a nice course, but relative to any established
curriculum or concept of what every young algebraist needs to know, and
when she needs to know it, there are large and obvious gaps.
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The second point is that this is the work of an amateur, in several senses.
It was pursued for its own sake, outside of any strategy for “career develop-
ment.” (At best it might push my reputation in economics further sideways.)
Consequently work on it proceeded in “slow cooking mode,” and I could in-
dulge a kind of perfectionism that the pressure to publish can easily quash.
Also, I am no expert in commutative algebra, and perhaps was better able to
appreciate the logic of the material as something fresh, and to convey some
sense of that to the reader. In retrospect the surprising degree of coherence it
attained is, I think, ultimately a reflection of Serre’s long range vision.

Expository projects in this spirit will almost certainly continue to be not
that well rewarded, because accomplishment in research will continue to be
the only acceptable qualification for membership in the academy. (As an
economist I could advance various points of view concerning whether that is a
good or bad thing, but I see no likelihood that it will change soon.) Perhaps
the example of this book may inspire others to think that such work can, in
and of itself, be more than ample reward.

Ordinarily at this point in a preface there would be a long list of names
of all the people who provided feedback, encouragement, and various forms
of assistance. However, economists tend to be quite dubious when they learn
that one of their colleagues is indulging a taste for pure math, so I have been
completely secretive about this project while it was underway. Hopefully
things won’t be that bad ex post, when people see that during the decade or
so that I have been noodling around with FAC, I have also done roughly the
usual amount of the usual sort of research. But just to be on the safe side, if
you happen to meet an economist, please don’t tell them about this, OK?
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Le travail [14] (cité (FAC)) de J.-P. Serre peut aussi étre con-
sidéré comme un exposé intermédiare entre le point de vue clas-
sique et le point de vue des schémas en Géométrie algébrique, et
a ce titre, sa lecture peut constituer une excellente préparation a
celle de nos Eléments.

—Alexander Grothendieck, Eléments de Géométrie Algébrique

For many, including your author, learning about algebraic geometry can
be a daunting undertaking. There are introductory books that give some
glimpse of the subject, mostly from a classical point of view, but to go beyond
them, to the substance and consequences of the reformulation of the subject
by Grothendieck and his colleagues in the 1960’s, requires a very substantial
technical background, in both commutative and homological algebra. It may
seem “logical” to take courses in these subjects before attempting to tackle
the theory of schemes, but these are large subjects that draw their motivations
from many sources, and have active, independent research agendas. One can
learn quite a bit about both of them and still be far from ready to tackle a
text such as Hartshorne (1977).

Moreover, this “logical” approach flies in the face of the way people ac-
tually learn, which is by accumulating experiences that make the topic in-
creasingly familiar. Now one might try to read some algebraic geometry while
accepting some of the background on faith, to be studied seriously at some
later time, but this never works for me. Unless I'm grasping each step in the
logic, I'm not really learning mathematics, and then I just get confused.

This book embodies a different approach, which is to undertake a substan-
tial, logically self contained project of some relevance. Specifically, we’re going
to study Serre’s 1955 Annals of Mathematics paper “Faisceaux Algébriques
Cohérents,” (FAC) together with all of the algebra required to understand
it, completely, by which I mean that you will see that everything that Serre
says is justified. You won’t see all the algebra that is relevant to algebraic
geometry, by a long ways, but all the algebra herein ¢s highly relevant. The
material is very close to being a minimal rendering of all the results that Serre
applies, and all the material that is logically prior to that, so the selection of
topics is the product of happenstance, but somehow it comes together into
quite a coherent package.
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Although FAC is a journal article, it is, in its style and overall approach,
quite close to being a textbook. Serre was laying out a new approach to
algebraic geometry, and throughout he is systematic and patient with his
readers. He does expect them to be mature mathematicians of that era, so he
passes lightly over some tedious details, and expects a pretty solid algebraic
background. In addition to translating to English, I've included a chapter
titled “What It’s All About” that gives a brief overview of the main concepts,
and I've interpolated some explanatory remarks when I thought it might help
contemporary students get past various bumps in the road. A reader at an
early stage of her education should be aware that these comments are intended
to provide some guidance and concrete sense of what is involved in reading
journal articles. For many students going beyond textbooks to the primary
literature is hard, and perhaps put off too long. The typical difficulties will
be confronted here in one of the gentlest possible settings.

The algebraic text is self contained, and it would be “logical” to read it in
its entirety before beginning FAC, but I can hardly imagine a less enjoyable
way to approach this material, or one that is more contrary to the spirit
of this project, which is to illuminate its various aspects by applying them in
meaningful contexts. The reader should be familiar with the five lemma before
starting FAC, but otherwise one can go quite a way into FAC before the results
in the preceeding text become important. At a certain point, however, Serre
cites results that are quite advanced. For almost everyone the best approach
will be to go back and forth, taking prior background and the interests of the
moment into account.

Classic papers have many advantages, in comparison with textbooks. In
addition to the presentation of the material itself, they open a window into the
mind of the author at that time, and through that into the surrounding math-
ematical landscape as leading researchers of the era saw it. In most areas of
research there are a few papers whose deep study is the main source of inspira-
tion for years of research activity, and there is something quite strained about
trying to learn about this research without studying its wellspring directly.
For algebraic geometry in particular, it is difficult to appreciate Mumford’s
or Hartshorne’s way of thinking without going back to Grothendieck, and in
turn Grothendieck’s work was in large part a matter of seizing the opportu-
nities opened up by FAC. Later authors of texts are always writing from the
point of view of an expert, which tends to smooth things out in various ways,
but it also creates a certain distance between the material and the research
that brought it into existence. In contrast, the author of the original paper is
writing from and for the mind of a beginner.

A real understanding of FAC involves much more than absorbing its logical
content. In several ways it stands at the midpoint of 20"
a culmination of developments in topology and complex analysis whose echoes
continue to resound.

From around the year 1900, largely beginning with the work of Poincaré,

century mathematics,
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mathematics developed two methods of associating invariants with a well
enough behaved topological space, namely homotopy groups and what started
out as integers, such as the Euler characteristic and the Betti numbers, and
developed (largely due to the influence of Emmy Noether) Noether, Emmy
into homology-cohomology groups. In each case a continuous function in-
duces a homomorphism of the associated groups, functorially. Each of these
ways of associating a group with a space is, then, a collection of functors from
the category of “well enough behaved” topological spaces to the category of
groups. The most obvious application of this information is that it provides a
method of proving that two spaces are not homeomorphic, but it is important
in many other ways.

Naturally, an important goal is to compute the objects given by the theory.
This concern leads naturally to the investigation of the groups associated with
spaces constructed by combining given spaces in certain ways, and in various
cases the groups associated with the constructed space stand in certain alge-
braic relationships with the groups associated with the given spaces. Thus
the exploration of topological issues gave rise to a body of related, and seem-
ingly subordinate, algebraic theory. Incidentally, in 1954 Serre had become
the youngest ever recipient of the Fields Medal in recognition of contributions
to the theory of spectral sequences, which provide sophisticated computations
of this sort.

How homological algebra outgrew its topological origins is a curious story.
Both homotopy groups and homology/cohomology are invariant under homo-
topy: if fo, fi : X — Y are continuous and homotopic, then they induce the
same homomorphisms of associated groups. A continuous function f : X — Y
is a homotopy equivalence if there is a continuous function g : Y — X such
that g o f and f o g are homotopic to the respective identities. If this is the
case, then f and ¢ must induce inverse isomorphisms of the associated groups.

One key result of homotopy theory is that for any finitely presented group
G, there is a compact topological space that has GG as it fundamental group,
and has all higher order homotopy groups vanishing. Moreover, any two such
spaces are homotopy equivalent. This means that we can start with any given
G, pass to a uniquely (up to homotopy equivalence) defined topological space,
and from there pass to the associated homology and cohomology groups. The
starting point and end result are algebraic structures, which suggests that this
process should have a purely algebraic description, and indeed, eventually such
a description was found. Similar developments occurred in the theory of Lie
algebras Lie algebra and the theory of associative algebras.

CE organized the algebraic aspects of homological algebra as a large body
of common methods, together with additional bodies of theory related to
each of the specific applications mentioned above. It was and still is credited
with transforming homological algebra from a somewhat scattered collection
of results and computational methods into an independent subject, drawing
motivation from several sources, but not subordinate to any one of them.
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A few years before FAC Weil (1949) had formulated certain conjectures
concerning the number of roots of certain systems of polynomial equations
over finite fields, establishing them in certain cases, and pointing out that
they would follow easily from a well behaved cohomology theory for algebraic
varieties over finite fields. Insofar as the geometric phenomenon analyzed
by cohomology are present also in the case of nonzero characteristic, such a
cohomology theory was seemingly a reasonable aspiration, but all the methods
for defining cohomology known at the time depended on the topology of the
real numbers. Weil’s work suggested the existence of geometric structures
governing arithmetic phenomena that were as yet entirely invisible.

Serre’s breakthrough was to show that a new approach to the definition
of cohomology was possible in algebraic geometry. Various definitions of ho-
mology and cohomology had been proposed for topological spaces in the pre-
ceeding decades, and the situation had recently been clarified by Eilenberg
and MacLane, who showed that they were (within some range of well behaved
spaces) all the same because they all satisfied a system of axioms that deter-
mined the theory completely. The axiom system describes the relationships
between the homology and cohomology groups of different spaces, and the ho-
momorphisms induced by continuous functions. In contrast, sheaf cohomology
works with a single fixed space and develops relationships between the coho-
mology groups of different sheafs on that space. It had recently become quite
influential in the theory of several complex variables and complex analytic
varieties, which was quite active at that time.

Shortly after the appearance of FAC it became clear that Serre’s coho-
mology could not be used to prove the Weil conjectures, but during the next
fifteen years the methods he pioneered were developed in great depth and
generality, particularly by Grothendieck and his colleagues. This resulted in
a radical reformulation of the foundations of algebraic geometry, which had
languished after the work of the Italian school had gone beyond what the
foundations of the subject at the time were able to support. Application of
these methods to a different cohomology theory pioneered by Grothendieck
led eventually to the complete verification of the Weil conjectures by Deligne
in 1972. The structures developed by Grothendieck are still the basis of work
in algebraic geometry, as well as arithmetic geometry.



Chapter A

Elements of Commutative Algebra

This chapter provides an introduction to commutative algebra. It presumes
very little background, and is logically self contained for anyone who has
absorbed the rudiments of linear algebra, groups, rings, and fields. It is just a
bit more than the minimal treatment of the subject required by the subsequent
chapters, which has the consequence that, although it is dense with important
topics and results, it is really only the skeleton of the subject, leaving out
numerous details and subsidiary results, as well as problems and other material
that would be part of any initial course. Whether it is self contained in
practice is a matter of the reader’s mathematical maturity; most beginners
will derive maximal benefit if they also study an introductory book such as
Atiyah and MacDonald’s Introduction to Commutative Algebra that provides
a more comprehensive coverage of the beginnings of the field.

Al Rings and Modules

We fix once and for all a commutative ring with unit R. We always assume
that 1 # 0, which is to say that R # {0}, unless the other possibility is
explicitly mentioned. Homomorphisms for such rings are always assumed to
map the multiplicative identity of the domain to the multiplicative identity of
the range.

A nonzero ring element 7 is:

e nilpotent, or a nilpotent, if there is an integer m such that r = 0;
e a zerodivisor if there is a nonzero s € R such that rs = 0;
e a unit if there is an s € R such that rs = 1.

Note that a nilpotent is a zero divisor while a unit cannot be a zero divisor.
The set of units is evidently an abelian group with multiplication as the group
operation.

The ring R is:

e reduced if it has no nilpotents;
e an integral domain (or just a domain) if it has no zerodivisors;

e a field if its group of units is all of R\ {0}.
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Evidently an integral domain is reduced, and of course a field is an integral
domain.

An R-module is an abelian group M (whose group operation is written
additively) that is endowed with a scalar multiplication by elements of R such
that

Im=m, r(sm)=(rs)m, (r+sym=rm+sm, r(m+n)=rm+rn

for all r,s € R and m,n € M. If M and N are R-modules, a function
@ : M — N is an R-module homomorphism if it is a homomorphism of the
underlying abelian groups and ¢(rm) = r¢o(m) for all r € R and m € M. It is
easy to check that R-modules and their homomorphisms constitute a category.

If M is an R-module, a subset M’ C M is a submodule if it is a subgroup of
the underlying abelian group and r M’ C M’ for all » € R. In this circumstance
the quotient module is the quotient group M/M’ endowed with the scalar
multiplication r(m + M') = rm + M’; it is straightforward to check that
M/M' is an R-module.

We note two elementary isomorphisms.

Lemma A1l.1. If L is an R-module and M and N are submodules, then
(L/N)/((M +N)/N)=L/(M+ N).
In particular, if N C M, then (L/N)/(M/N) = L/M.

Proof. The map x+ N +— x4+ M+ N is a surjective homomorphism from L/N
to L/(M + N), and its kernel is (M + N)/N. O

Lemma A1.2. If M is an R-module with submodules My and Ms, then
(M1 + MQ)/Ml = MQ/(Ml N Mz)

Proof. The composition My — My + My — (My + Ms) /M is surjective with
kernel M7 N M. O

A2 Ideals

Evidently R is itself an R-module; its submodules are called ideals. For the
most part R itself is not regarded as an ideal, but sometimes there arise
situations in which whether a submodule is proper is in doubt, in which case
we will use the phrase “proper ideal” to describe a submodule that is a proper
subset of R.

The verification of the following general fact requires only a bit of thought.

Lemma A2.1. If C is a nonempty set of ideals, then (\;co I is an ideal.
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If S is any subset of R, the ideal generated by S is the smallest (not
necessarily proper) ideal containing S. In view of the result above, this is a
well defined concept. Alternatively, the ideal generated by S is the collection
of all finite sums 7189 + + - - + 758, where r1,...,7, € R and s1,...,s, € S. If
S ={ay,...,a} is finite, the ideal it generates is denoted by (aq,...,ar). An
ideal is principal if it is generated by a singleton.

If I,...,I; are ideals, then, by definition, I; + - - - + I is the ideal

{a1+-4ag:a1€h,...,a5 € I} }
and I - - - I, is the ideal generated by
{ar1 -+ ax:a1 €I1,...,a € I}, }.

Evidently Iy --- [, C Iy N -+ N 1.
The radical of an ideal I is

radI = {r € R:r™ € I for some integer m > 1}.

If r,s € rad I, then r 4+ s € rad I because for sufficiently large m, every term
in the binomial expansion of (r+s)™ isin I. If r € rad [ and s is any element
of R, then sr € rad I, obviously. Thus rad I is an ideal.

The ideal T is:

e radical if radl = I;
e prime if ab ¢ I whenever a,b ¢ I;
e mazimal if it is not a proper subset of another (proper) ideal.

Usually P will denote a prime ideal and m will denote a maximal ideal.
The R-module R/I is endowed with a multiplication defined by

(r+0D)(s+I)=rs+1.

It is easily checked that this definition does not depend on the choice of rep-
resentatives of cosets, and that it makes R/I a commutative ring with unit.
It is called the quotient ring of 1.

Proposition A2.2. An ideal I is radical if and only if R/I is reduced, it is
prime if and only if R/I is an integral domain, and it is mazimal if and only
if R/I is a field.

Proof. The assertions for radical and prime ideals are immediate consequences
of the definitions. Suppose I is maximal. If ¢ + I was a nonzero element of
R/I that was not a unit, (a) + I would be an ideal that had I as a proper
subset, and that was proper because it did not contain 1, which is impossible.
Conversely, if every element of R/I is a unit, then (a) + I = R for every
a € R\ I, so I is maximal. O
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Corollary A2.3. A prime ideal is radical, and a mazximal ideal is prime.

The next result, with S = {1}, implies that every ideal is contained in a
maximal ideal.

Proposition A2.4. If I is an ideal, S C R and INS = 0, then the set T of
ideals that contain I and have empty intersection with S has an element that

s mazimal, in the sense of not being properly contained in another element of
7.

Proof. A chain in T is a subset of Z that is completely ordered by inclusion.
The union of the elements of a chain is easily seen to be an ideal, which of
course contains I and has empty intersection with S, so any chain has an
upper bound in Z. Therefore Zorn’s lemma implies that Z has a maximal
element. O

If S C R and P is a prime that contains S, we say that P is minimal over
S if there is no prime that contains S and is properly contained in P.

Proposition A2.5. If a set S C R is contained in a prime ideal, then there
s a prime ideal that is minimal over S.

Proof. Let P be the set of prime ideals that contain S. By hypothesis P is
nonempty. Let P be the intersection of the elements of a chain in P. Of course
S C P. If r and s are ring elements that are not in P, then each of them
is outside of some element of the chain, and since the chain is completely
ordered, there is an element of the chain that contains neither of them, so
their product is also outside this element, and thus outside P. Therefore P is
prime. We have shown that any chain in P has a lower bound in P, so Zorn’s
lemma implies that P has a minimal element. O

Zorn’s lemma is equivalent to the axiom of choice, so we see from these
results that commutative algebra cannot get off the ground outside of a version
of set theory that includes that axiom.

A multiplicatively closed subset of R is a set S C R that contains 1 and all
products st of elements s,t € S, but does not contain 0. Important examples
include {1}, more generally {1,r,72,...} for a nonnilpotent r, the group of
units, and R\ P, where P is a prime.

Proposition A2.6. If S is multiplicatively closed and I is an ideal that is
mazximal among those that do not meet S, then I is prime.

Proof. Suppose, on the contrary, that a,b ¢ I and ab € I. Then I 4 (a) meets
S, so there are 7 € I and p € R with ¢ + pa € S, and similarly there are j € T
and g € R such that j + gb € S. Then (i + pa)(j + ¢b) € SN I, contrary to
hypothesis. O



A2. IDEALS 9

An R-algebra is a commutative ring with unit .S that is an R-module. If
this is the case, then there is an ring homomorphism ¢ : R — S taking r to r-1
where 1 € §'is the multiplicative identity element. Conversely, if ¢ : R — S is
a ring homomorphism, then the scalar multiplication (r,s) — ¢(r)s makes S
into an R-module. If I C R is an ideal, then the ideal generated by ¢(I) is the
extension of I, and if J C S is an ideal, the ideal ¢~1(J) is the contraction of
J. (This terminology easily becomes ambiguous in complex settings, and we
will usually not use it, but the reader should know it.)

Suppose that I is an ideal of R and J is an ideal of S. The definitions
immediately imply that I is a subset of the contraction of its extension, and
that J contains the extension of its contraction. If I is the contraction of
J, then the contraction of its extension is a subset of I because it is the
contraction of the extension of the contraction of J. Similarly, if J is the
extension of I, then it a superset of the extension of its contraction. Thus:

Lemma A2.7. An ideal of R is the contraction of an ideal of S if and only
if it is the contraction of its extension, and an ideal of S is the extension of
an ideal of R if and only if it is the extension of its contraction.

If J is prime, then its contraction is prime, obviously.

Proposition A2.8. If a prime P of R is the contraction of an ideal of S,
then the set of ideals of S that contract to P has a mazimal element, and any
such maximal element is prime.

Proof. Let U = R\ P. The extension of P contracts to P, so it does not
meet ¢(U), and Proposition A2.4 gives a maximal ideal ) among those that
contain ¢(P) and do not meet ¢p(U). Since P is prime, U is a multiplicative
subset of R, so ¢(U) contains ¢(1) = 1 and all products of its elements. Also,
0 ¢ ¢(U) because the complement of ¢(U) contains an ideal. Thus ¢(U) is a
multiplicative subset of S, so @ is prime by Proposition A2.6. U

The nilradical of R is rad (0). In view of the following result it is the
intersection of the minimal prime ideals.

Corollary A2.9. For any ideal I, rad I is the intersection of the primes that
are minimal over I.

Proof. 1t is enough to show that rad I is the intersection of the primes that
contain I, because Proposition A2.5 implies that each such prime contains a
minimal such prime. Obviously any prime that contains I must contain rad /.
On the other hand, if r is not in the radical of I, then Proposition A2.4 and
the last result give a prime ideal P that contains I and is maximal among
those that do not meet {1,r,72,...}. O
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We can also say something now about the set of zerodivisors. There will
be a more precise characterization later, in connection with the study of as-
sociated primes.

Lemma A2.10. If R is reduced, then every zerodivisor is contained in a
minimal prime.

Proof. Suppose x is a zero divisor, say xy = 0 and y # 0. Since R is reduced,
its nilradical is (0), so the last result implies that y is outside some minimal
prime P. Since xy € P,  must be an element of P. O

The intersection of all of the maximal ideals of R is an important ideal
called the Jacobson radical of R. It has the following concrete description.

Proposition A2.11. The Jacobson radical of R is the set of x € R such that
forally e R, 1 —xy is a unit.

Proposition A2.12. The Jacobson radical of R is the set of x € R such that
forally e R, 1 —xy is a unit.

Proof. Suppose that x is an element of the Jacobson radical. If, for some v,
1 — zy was not a unit, then (1 — zy) would be a proper ideal, and would be
contained in some maximal ideal m. Since z is in the Jacobson radical, x € m
and thus 1 € m, which is impossible.

If x is not in the Jacobson radical, then it is outside some maximal ideal
m. Maximality implies that m + (x) = R, so r + xy = 1 for some r € m and
y € R, and 1 — zy is not a unit because it is an element of m. U

The ring R is local if it has a unique maximal ideal m. If this is the case,
k = R/m is called the residue field of R. Local rings are extremely important
in algebraic geometry, and will be prominent in our work. It is annoying
to have to reintroduce the maximal ideal and the residue field whenever one
works with a local ring. Many authors deal with this by defining a local ring
to be a triple (R, m, k), but this is cumbersome in its own way, and would
clash with our approach in which R is simply present at all times. Instead
we adopt the convention that whenever R is local, it is automatically the case
(i.e., it goes with saying) that m is its mazximal ideal and k is its residue field.
The reader should be warned that m will often denote a maximal ideal when
R is or may not be local.

Since the Jacobson radical of a local ring is the unique maximal ideal, the
following result can easily be applied, and in fact it is invoked quite frequently.

Theorem A2.13 (Nakayama’s Lemma). Suppose M is a finitely generated R-
module and I is an ideal contained in the Jacobson radical of R. If IM = M,
then M = 0. If the images of x1,...,x, € M in M/IM generate it as an
R-module, then x1,...,z, generate M.



A3. THE CAYLEY-HAMILTON THEOREM 11

Proof. Suppose that M is generated by z1,...,x,, but not by fewer gener-
ators. Then Ixq,...,Ix, also generate M, so z, = ajx1 + -+ + apx, for
some aq,...,a, € I. Since I is contained in the Jacobson radical, 1 — a,, is a
unit, and if b(1 — a,,) = 1, then x,, = bayz1+ - - bay—12,—1, which contradicts
minimality unless n = 1, and even when n = 1 we have (1 — a;)x; = 0 and
thus ;1 =0, i.e., M = 0.

For the second assertion let M’ =", Rx; and N = M/M’. By hypothesis
M'+1IM = M, so Lemma Al.1 gives

N/IN = (M/M"))(IM +M'/M") = M/(IM + M') = M/M = 0.
Now the first assertion implies that N =0, so M’ = M. U

Corollary A2.14. If I is an ideal contained in the Jacobson radical, M is a
finitely generated R-module, and N is a submodule of M such that IM + N =
M, then N =M.

Proof. Since I[(M/N) = (IM+N)/N = M/N, the claim follows from Nakayama’s
lemma applied to M/N. O

Suppose R is local and M is a finitely generated R-module. Then M/mM is
annihilated by m, so it may be regarded as a vector space over k. A particularly
important example is m/m?2. Via the following result, one can sometimes use
facts of linear algebra to prove that a collection of elements is a system of
generators for a module.

Proposition A2.15. Suppose R is local and M is an R-module.

(a) If the images of x1,...,x, € M in M/mM are a basis of this vector

space, then x1,...,x, is a system of generators for M.
(b) If x1,...,xy, is a minimal system of generators of M, then their images
Z1,...,Tp are a basis of M/mM.

Proof. (a) Let N be the submodule generated by x1,...,z,. The composition
N — M — M/mM maps N onto M/mM, so N+ mM = M, and the last
result gives N = M.

(b) Since Z1,...,Z, span M/m, if they were not a basis there would be
some proper subset that was a basis, and by (a) their preimages would be a
system of generators of M, contrary to minimality. O

A3 The Cayley-Hamilton Theorem

Most people learn Cramer’s rule, at a very early stage of their education, as a
formula for the inverse of a nonsingular matrix. In a ring one cannot always
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divide by the determinant, but the determinant of a matrix is still defined,
and the principle underlying Cramer’s rule is valid and important.

Let M be an R-module, and let ¢ : M — M be a homomorphism. There is
an R-algebra whose elements are the endomorphisms of M that are polynomial
functions of 1,; and ¢, with coefficients in R. In this ring the product of two
endomorphisms is defined to be their composition.

Theorem A3.1 (Cayley-Hamilton Theorem). Suppose M is generated by
Mi,...,My, I is a (possibly improper) ideal of R, and p(M) C IM. Then
there is a monic polynomial p(x) = " + p1x™ ! +- -+ p, with pj € I for all
J such that p(¢) = 0.

Proof. The hypotheses imply that for each i there are a;1,...,a;, € I such
that p(m;) = >_; a;;m;j. We will work in the space of n x n matrices whose
entries are elements of the ring of endomorphisms generated by 13, and ¢.
Let C = (c¢;5) be the matrix

anlpy—¢ - ainlpg
C — . .

an1lpyg cor Apply — @

Evidently Cm = 0 where m = (mq,...,my) € M".

Let p(¢) = det(C). The formula for the determinant as a sum over permu-
tations implies that the coefficients of p lie in the asserted ideals. The adjugate
or classical adjoint of C'is the n x n matrix D with entries

dij = Z SgN(0)Co(1)1 " * Co(i—1)i—1 * LM * Co(it1)i+1 """ Co(n)n-
0ESn,o(i)=j

Cramer’s rule boils down to the formula DC' = det(C')I where I is the diagonal
matrix whose diagonal entries are all 1;. (The proof of Cramer’s rule is left
as an exercise because it is just a straightforward, bulky, and uninformative
computation that is valid when the entries are from any commutative ring.)
Therefore 0 = DCm = p(¢)m. That is, p(¢)m; = 0 for all j, so p(¢) =0
because myq, ..., m, generate M. ]

Corollary A3.2. If M is a finitely generated R-module, I is an ideal of R,
and IM = M, then there is an a € I such that am =m for all m € M.

Proof. If we take ¢ = 1,7 in the last result we arrive at the formula
(1+p1+-+p)ly =0,
where p1,...,p, € I, so we can set a = —(p1 + - -+ + pp). 0

Corollary A3.3. If M is a finitely generated R-module and f: M — M is a
surjective homomorphism, then f is an isomorphism.
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Proof. In the obvious way we regard M as an R[f]-module. By assumption
(f)M = M, so the last result implies that 1), € (f), which is to say that
there is a g € R[f] such that gf = 1. O

Corollary A3.4. If x1,...,z, € R" generate R", then they generate R"
freely.

Proof. The map (ry,...,r,) — r1x1 + -+ - + 1@y, is surjective by assumption,
so it is also injective. O

When R is local we can say a bit more.

Corollary A3.5. If R is local, M is a finitely generated R-module, x1,. .., T,
and 1, ...,Yyn are minimal systems of generators of M, x; = Zj a;jyj, and A
is the matriz with entries a;j, then the determinant of A is a unit in R, so A
1s invertible.

Proof. Let &; and §; be the images of x; and y; in M/mM, let a;; be the
image of a;; in k, and let A be the matrix with entries ai;. Then Z41,...,7,
and 1,...,Jn are bases of M/mM (Proposition A2.15) so the determinant
of A is nonzero, and is the image in k of the determinant of A, which is
consequently a unit because it is not an element of m. Now Cramer’s rule
computes the inverse of A. O

A4 Noetherian and Artinian Rings and Modules

An R-module M is Noetherian if it satisfies the ascending chain condition:
every increasing sequence of submodules My C My C My C --- is eventually
constant. The terminology honors Emmy Noether, who first demonstrated
that this condition could be used to simplify and generalize material that had
previously been treated using what is now known as “elimination theory.”

In addition to the definition, there are two other formulations of the con-
dition that are applied frequently.

Lemma A4.1. For an R-module M the following are equivalent:
(a) M is Noetherian.
(b) Every nonempty set of submodules of M has a mazimal element.
(c) Every submodule of M is finitely generated.

Proof. If (b) fails one can easily construct an infinite ascending chain, so
(a) implies (b). If (b) holds and N is a submodule, then the set of finitely
generated submodules of N has a maximal element, which clearly must be
N itself (otherwise we could expand it by adding one more generator) so (b)
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implies (c). If (¢) holds and M; C M, C --- is an increasing sequence of
submodules, then |J; M; is a submodule, which is finitely generated, so it
must be some M,,. Thus (c) implies (a). O

The module M is Artinian if it satisfies the descending chain condition:
every descending sequence of ideals My D M; D My D --- is eventually
constant. This piece of terminology honors Emil Artin. For Artinian modules
there is a slightly simpler result, whose proof should be obvious.

Lemma A4.2. For an R-module M the following are equivalent:
(a) M is Artinian.
(b) Every nonempty set of submodules of M has a minimal element.

We say that R itself is Noetherian or Artinian if it is a Noetherian or
Artinian R-module, which means that its ideals satisfy the ascending or de-
scending chain condition. Eventually we will see that Artinian rings and
modules are much more special, and much less important, than Noetherian
rings and modules, but for the time being it is logically efficient to treat them

in parallel.

A composition L I, M —2+ N of R-module homomorphisms is exact at

M if the image of f is the kernel of g. A short exact sequence is a composition
0L Lo M2 N0

that is exact at L, M, and N. That is, in addition to being exact at M, f
is injective and ¢ is surjective. Whenever g : M — N is surjective there is
a short exact sequence 0 — Ker(g) - M — N — 0. Whenever f: L - M
is injective (in particular, if L is a submodule of M) there is a short exact
sequence 0 - L — M — M/Im(f) - 0. When 0 - L - M — N — 0 is
exact we will often identify L with its image in M.

Lemma A4.3. If0 — L oMt N — 0 is a short exact sequence
of R-modules, M' is a submodule of M, f(L) C M’, and g(M') = N, then
M' = M.

Proof. We regard L as a submodule of M and identify N with M/L. Then
M/L = M'/L, so any m € M is m' 4+ ¢ for some m’ € M’ and ¢ € L, and
consequently m € M’ + L = M’'. Thus M = M. O

Proposition A4.4. If 0 - L - M — N — 0 is a short exact sequence of
R-modules, then M is Noetherian (Artinian) if and only if L and N are both
Noetherian (Artinian).
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Proof. An ascending sequence in L maps injectively into an ascending se-
quence in M. The preimages of the modules in a strictly ascending sequence
in N are a strictly ascending sequence in M. Thus if M is Noetherian, then
so are L and N.

Suppose that L and N are Noetherian. Let My C My C My C --- be an
ascending sequence of submodules of M. For each j let L; be the preimage of
M; in L, and let N; be the image of M; in N; clearly 0 — L; — M; — N; — 0
is a short exact sequence. Since the sequences Ly C Ly C Lo C --- and
Ny € Ny C Ny C --- are eventually constant, Lemma A4.3 implies that
My C My C My C --- is eventually constant.

The proof for Artinian modules is the same except that there are descend-
ing sequences of modules. O

Corollary A4.5. If My, ..., M, are Noetherian (Artinian) R-modules, then
M, @ --- @ M, is Noetherian (Artinian).

Proof. This follows by induction on n, with the induction step being the ap-
plication of the last result to 0 — M,, — © M; — EB;L:_llMZ- — 0. O

Proposition A4.6. If R is Noetherian (Artinian) and M is a finitely gener-
ated R-module, then M is Noetherian (Artinian).

Proof. There is an exact sequence 0 - K — R"™ — M — 0. By the last
result R™ is Noetherian (Artinian) so the preceeding result implies that M is
Noetherian (Artinian). O

An R-module M is finitely presented if there is an exact sequence
RT" - R - M —0

for some integers p and ¢. In view of the importance of this condition in
sheaf theory, one might expect it to be quite prominent. However, its explicit
appearances are infrequent because in the most important settings it is a
consequence of finite generation:

Proposition A4.7. If R is Noetherian and M is an R-module, then the
following are equivalent:

(a) M is finitely generated;
(b) M is finitely presented;
(¢) M is Noetherian.

Proof. The last result and Lemma A4.1 imply that (a) and (c) and equivalent,
and of course (b) implies (a). If M is finitely generated there is an exact se-
quence 0 - K — RP — M — 0, and RP and K are Noetherian by virtue of the
lemmas above. In particular, K is finitely generated, so there is a surjection
R? — K whose composition with K — RP achieves finite presentation. O
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A submodule M’ of an R-module M is irreducible if it is not the intersec-
tion of two submodules which each contain it strictly.

Lemma A4.8. If M is a Noetherian R-module, then each of its submodules
s a finite intersection of irreducible submodules.

Proof. If the set of submodules that are not finite intersections of irreducible
submodules is nonempty, then it has a maximal element M’. Since M’ is not
itself irreducible, it is the intersection of two submodules that each contain it
strictly. Each of these is a finite intersection of irreducible submodules, so M’
is also such an intersection, but of course this is a contradiction. O

The representation of M’ as an intersection of irreducible modules need
not be unique. For example, a linear subspace of a finite dimensional vector
space can be the intersection of codimension one subspaces in many ways. For
ideals one can say somewhat more.

Lemma A4.9. A prime ideal P is irreducible.

Proof. If P=1NJ, where I and J are distinct ideals that contain P strictly,
then for any a € I'\ P and b € J \ P we have ab € P, contradicting primality.
O

The following basic fact was first pointed out by Emmy Noether.

Proposition A4.10. If R is Noetherian, any ideal of R has finitely many
primes that are minimal over it.

Proof. If the set of ideals with infinitely many minimal primes is nonempty,
there is a maximal element I. Of course I cannot be prime, so there are
a,b € R\ I with ab € I. Any prime that contains I contains ab, so it must
contain either a or b because it is prime. Therefore a minimal prime over I is
minimal over either I + (a) or I + (b), and by construction there are finitely
many such primes. O

We now have the following refinement of Corollary A2.9.

Proposition A4.11. If R is Noetherian, then a radical ideal I is the inter-
section of the primes that are minimal over it, which are finite in number, and
this is the unique representation of I as a minimal (in the sense that no ideal
can be omitted) intersection of prime ideals.

Proof. Let Py,...,P; be the primes that are minimal over I. Corollary A2.9
implies that (), P, = I. Let I = Q1 N ---N Qg be a representation of I as an
intersection of prime ideals. If some F; is not among the @), then, because F;
is minimal over I, for each j there is some r; € Q; \ P;, and ry---rp € I C P,
contradicting the primality of P;. O
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Clearly a field is both Noetherian and Artinian. The ring K[X7, ..., X,]
of polynomials in the variables Xi,..., X, with coefficients in a field K is
Noetherian by virtue of repeated applications of the following famous result.
In general, if f = ag X%+ --- + a1 X + ap € R[X] is a univariate polynomial
with aq # 0, the degree indexdegree of a polynomial of f is d and the leading
coefficient of f is aq. (The leading coefficient of 0 € R[X] is zero, and a
common convention is that its degree is —1, but we will not rely on that.)

Theorem A4.12 (Hilbert Basis Theorem). If R is Noetherian, then the poly-
nomial ring R[X] is Noetherian.

Proof. Let I be an ideal in R[X], and let J be the set of leading coefficients
of elements of I. It is easy to see that J is an ideal, and that for each
d=0,1,2,... the set J; of leading coefficients of elements of I of degree < d
is also an ideal. Since R is Noetherian, each J; is generated by the leading
coefficients of finitely many elements of I of degree < d, say fa1,..., fin,-
Multiplying by a power of X, we may arrange for the degree of each fy to be
exactly d. Since Jy C J; C Jo C --- and |J,; Jg = J, there is some d such that
Jg=J.

We claim that I is the ideal I’ generated by { fai}, <d<d.1<i<ny" Aiming at_ a
contradiction, let g be an element of I'\ I’ of least degree dy. For d = min{dy, d}
there are c1, ..., ¢y, € Rsuch that the leading coefficient of ¢1 fg1+- - - +cn, fan,
is the same as the leading coefficient of g. Therefore

g— X% ey far + -+ oy fany)

is an element of I\ I’ of degree less than dy, contradicting the choice of g. 0O

A5 Localization

Localization is a method of defining rings of fractions. In the most common
applications in algebraic geometry these are rings of germs of rational func-
tions, each of which is defined in some neighborhood of a given set.

Let S be a multiplicatively closed subset of R. (Recall that this means
that 1 € S C R and st € S for all s,t,€ S.) If M is an R-module, S~'M is
the set of equivalence class of symbols of the form m/s where m € M, s € S,
and m/s and n/t are equivalent if there is a u € S such that u(tm — sn) = 0.
Addition and multiplication by elements in R are defined by the formulas

m n  tm+4sn m am

—+—-—=——— and a-—=—.

s t st s S
These definitions do not depend on the choice of representatives: if ”;—/, =,
so that u(m's —ms’) = 0 for some u € S, then MWEsn = tmbsn gy am’ — am

because

u(st(tm’ + s'n) — s't(tm — sn)) = tu(sm’ — s'm) =0
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and
u(sam’ — s'am) = au(sm’ — s'm) = 0.

Thus S~'M is an R-module.
Multiplication in S™!R is defined by the formula

st

a b _ab
s t

. . !
Again, if u(sa’ — s'a) =0, then ‘SL—/;’ = Z—i’ because

u(st(a’'b) — s't(ab)) = tbu(sa’ — s'a) = 0.

Evidently S™!R is a commutative ring with unit. With the scalar multiplica-
tion

t st
S~=1M is also an S~!R-module. (The proof that this multiplication is inde-
pendent of the choice of representatives is left as an exercise.) In fact the ring
homomorphism 7 — 7 makes S~IR into an R-algebra.

If f: M — N is an R-module homomorphism, then there is a S™'R-
module homomorphism S~!f: 7'M — S~IN given by

a m am
S

S f(m/s) = f(m)/s.

If g: N — P is a second homomorphism, then S~!(go f) = S~lgo S~!f,
obviously, so the formation of fractions with denominators in S is a functor.

Proposition A5.1. If M N N2+ Pis exact, then
s 2 gy S g1p
18 exact.

Proof. This has two parts: (a) S™1goS™1f = S~!(gof) = 0; (b) if S~1g(n/t) =
g(n)/t = 0, then there is u € S such that 0 = ug(n) = g(un), so un = f(m)
for some m € M, and S™!f(m/tu) = un/tu = n/t. O

If @ is a second ring, a functor F' from the category of R-modules to the
category of ()-modules is exact if

F(f)

Fr) 29 povy 29

F(N)

is exact whenever L BN M —L+ N isexact. Dressed up as abstract nonsense,
Proposition A5.1 asserts that M — S™1M is an exact functor from R-modules
to S~!R-modules.
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Corollary A5.2. If M is a submodule of N, then STN/S™YM and S~Y(N/M)
are isomorphic.

Proof. Apply the last result to 0 - M — N — N/M — 0. U

A similar situation arises in algebraic geometry. One may pass from a
ring of germs of continuous functions at a point to the restrictions of the
germs to a subdomain containing that point, then form the quotient ring with
the restricted germs that do not vanish at that point as the denominators.
Alternatively, one may first form the ring of quotients of germs, then pass to
the restrictions of the quotients to the subdomain. For actual functions the
two procedures obviously give the same result, but when we are dealing with
ring elements that are thought of as “representing” functions this becomes an
isomorphism. Suppose that I is an ideal that does not meet S. Let S/I =
{s+1:s€ S} C R/I. Thisisa multiplicative subset of R/I.

Proposition A5.3. (S/I)"Y(R/I) = S~'R/S7'I.

Proof. We first show that the map % =+ ST is well defined. We have

gi—f = ij if and only if there is a t + I € S/I such that

t+D((r+D)(s'+1) = (" +I)(s+1)) =0,

which boils down to there being a t € S such that t(rs’ — r’s) € I. On the
other hand % + 87 = Z—: + S~ if and only if there are i € I and t € S such

that £ — Z—j = L. If this is the case, then t(rs'—r's) € I, and if thereisat € S
such that t(rs’ —'s) € I, then £ — L, = trs—r's) ¢ g-17.

s s tss’

Specializing this reasoning, we see that % = % if and only if there is a
t € S such that tr € I, which is the case if and only if £ + ST = % + 5711,
Thus the map is injective, and it is obviously surjective. U

The functor S~! preserves images and kernels. Proposition A5.5 below
may be understood as asserting that “localization commutes with homology.”

Lemma A5.4. If o : M — N is an R-module homomorphism, thenIm S™1p =
S~HIm ¢) and Ker S~1p = S~1(Ker ¢).

Proof. That Im S~'p = S~!(Im ¢) follows immediately from the definition
of S~1¢, and the containment S~ (Ker ¢) C Ker S~!¢ is also immediate. If
m/r € Ker S7lp, then p(m)/r = 0 € STIN, so there is some s € S such
that s@(m) = 0, but this implies that ¢(sm) = 0, so that m/r = sm/sr €
S~1(Ker ). Therefore Ker S~1p C S71(Ker ¢). O
Proposition A5.5. If M I, N -2+ Pisa composition of homomorphisms
with go f =0, then Ker S~1g/Im S~1f = S~1(Ker g/Im f).
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Proof. The exactness of localization implies that
0— S 'm f - S 'Ker g = S~} (Ker g/Im f) = 0
is exact. Combining this with the last result gives

S~ (Ker g/Im f) = S Ker g/S 'Im f = Ker S71g/Im S1f.

We now study the ideals of ST'R. If I is an ideal of R and r € R, let
(I:r)={a€R:arel}.

Evidently (I : r) is an ideal that contains I. If a € (I : s) and b € (I : t), then
a+be (I:st),so|Jseq(I :s)is an ideal. Note that I is prime precisely when
Urer :7) =1,

The next result gives a bijection between the ideals of S~'R and the ideals
I C R that do not meet S and satisfy I = (J,cq(! : s), ie., (I : s) = I for
all s € §. This bijection restricts to a bijection between the respective prime
ideals.

Proposition A5.6. Let ¢ : 7+ r/1 be the natural map from R to S™'R.

(a) If I is an ideal of R that does not intersect S, then S~I is an ideal of
S~IR.

(b) If I is an ideal of R, then o~ 1(S7) = J,.q(I : s).

SES

(c) If J is an ideal of S~'R, then o~ '(J) is an ideal of R that does not
intersect S, and S~tp1(J) = J.

(d) If P is a prime of R that does not intersect S, then S~ P is prime, and
e 1(S7IP) = P.

(e) If Q is a prime of S~R, then o~ Y(Q) is prime.

Proof. (a) Using the definitions of addition and multiplication in S~'R, it is
simple to check that S~™!I is an ideal. It is a proper ideal because it cannot
contain 1/1: if ir/s = 1/1, then t(ir — s) = 0 for some t € S, so that
tir=stelInS.

(b) If a € ¢~ 1(S71I), then p(a) = i/s for some i € I and s € S, which
means that t(as — i) = 0 for some ¢t € S, so a € (I : st). On the other hand,
if a € (I:s), then ¢(a) = as/s € S7I.

(c) Of course ¢~ !(J) is an ideal. There cannot be an s € ¢~ 1(J)N S,
because then J would contain ¢(s) - 1/s = 1/1. Clearly S~!¢~1(J) C J. For
the reverse inclusion observe that if j/s € J, then j/1 € J so j € ¢~ 1(J) and
thus j/s € S~lo~1(J).
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(d) If a,b ¢ P and a/s-b/t = i/u for some s,t,u € S and i € P, then
there is v € S such that vuab = vsti € P, which is impossible. Therefore
S~LP is prime. Since P is prime, (P : s) = P for all s € S, so (b) gives
e 1(S7IP) = P.

(e) If Q is prime, then so is ¢~ 1(Q) because the preimage of a prime ideal
under a ring homomorphism is always prime. O

In particular, (¢) gives an inclusion preserving bijection between the ideals
of ST'R and a subset of the set of ideals of R, so:

Corollary A5.7. If R is Noetherian, then so is ST'R.

One common application of localization is the formation of the ring
Rz ={1,z,2% ... }7'R

where z is not nilpotent. But by far the most important application of lo-
calization occurs when P is a prime ideal of R and S = R\ P. We write
Rp and Mp in place of (R\ P)"'R and (R\ P)"'M. When ¢ : M — N is
an R-module homomorphism we write ¢p in place of (R\ P)"1p. If R is an
integral domain, R ) is called the field of fractions of R, and will sometimes
be denoted by K(R). The map r — r/1 allows us to regard R as a subring of
K(R).

In view of Proposition A5.6 the ideals of Rp are precisely the ideals Ip =
{i/s:i€l,se R\ P} where I is an ideal contained in P, and the prime
ideals are precisely the Qp where @) is a prime contained in P. In particular,
Pp is the unique maximal ideal, so Rp is a local ring.

From topology we are familiar with a number of important properties
that are “local,” insofar as they hold in a space if and only if they hold in
a neighborhood of each point. There will be a number of such properties of
R-modules, of which the following is perhaps the most basic.

Lemma A5.8. If M is an R-module, m € M, and m goes to zero in each
localization My, at a maximal ideal, then m = 0. Consequently M = 0 if and
only if My = 0 for every mazimal ideal m.

Proof. Suppose m # 0, and let I be the annihilator of m. Since I does not
contain a unit, it is a proper ideal, and is contained in some maximal ideal m.
Since m contains I, there is no a € R\ m such that am = 0, so m does not go
to zero in My,. O

Since localization preserves images and kernels, this implies that:

Lemma A5.9. An R-module homomorphism ¢ : M — N is injective (sur-
jective, bijective) if and only if, for each maximal ideal m, py is injective
(surjective, bijective).
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A6 Tensor Products

Let M and N be R-modules. A function ¢ : M x N — P, where P is
a third R-module, is bilinear if, for all m € M and n € N, the functions
Y(m,-) : N — P and ¢(-,n) : M — P are R-module homomorphisms. We
can let ¥y = ¥(+,0) and ¥y = 9(0,-), or equivalently, we may be given R-
module homomorphisms ¥, : M — P and ¥y : N — P, after which we can
set ¢ = ¥y X Y. The tensor product is a construction that handles bilinear
functions systematically.

Let F' be the free R-module with M x N as its set of generators. As a set,
the tensor product M ®gr N is the set of equivalence classes of elements of F
induced by the transitive closure of the three relations

(my +ma,n) = (my,n) + (ma,n), (m,n; +ng) = (m,n1)+ (m,n2),

r(m,n) = (rm,n) = (m,rn).

What this means precisely is that M @ g N = F/E where E is the submodule
of I' generated by all elements of the forms

(mq 4+ meo,n) — (my,n) — (mg,n), (m,ny +ng)— (m,ny)— (m,n2),

r(m,n) — (rm,n), r(m,n)— (m,rn).

The equivalence class or coset of (m,n) is denoted by m®mn, or perhaps m®@gn
if more than one ring is under consideration.

This is a quite cumbersome and tedious construction, and it turns out
that a categorical perspective provides a much simpler method of handling
tensor products. Since the concepts are quite important, and they illustrate
the nature and use of categorical notions, we are going to address this in a
rather leisurely fashion.

To begin with we consider products of sets. Let X and Y be sets, and let
px : X XY = X and py : X xY — Y be the standard projections. If S is
aset and fy : S — X and fy : § — Y are functions, then there is a unique
function f: S — X x Y such that the following diagram commutes.

S
N2
S X XY Y
Py
Py
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In fact the cartesian product X x Y is uniquely defined, up to unique isomor-
phism, by the fact that for any .S, fx, and fy there is a unique f making this
diagram commute. For any category C, a product of objects X and Y is an
object X x Y such that for any object S and morphisms fx : S — X and
fy : S = Y there is a unique morphism f : S — X xY such that this diagram
commutes. For example, the product of R-modules M and N is, obviously,
their cartesian product, endowed with its natural R-module structure.

The phrase ‘up to unique isomorphism’ may seem disturbing, but blurring
the distinction between identity of R-modules and canonical isomorphism is
actually liberating. In fact such blurring pervades commutative algebra, to
such an extent that it very frequently goes unmentioned, and the reader should
start to get used to it.

In category theory, whenever the construction of a “whatever” is defined
by the ability to complete a particular diagram, the construction of a “cowhat-
ever” is defined by the ability to complete the same diagram with all arrows
reversed. Thus an object Z, with morphisms ¢x : X - Z and gy : Y — Z, is
the coproduct of X and Y if, for any object S and morphisms gx : X — S and
qy : Y — S, there is a unique morphism ¢ : Z — S such that the following
diagram commutes.

S
& Iy
S X XY Y
qy
qy
X

For sets, and also for topological spaces, the coproduct of two objects is their
disjoint union, which seems pretty uninteresting.
But the coproduct of R-modules M and N is M ®p N! There is a map

¢p:MxXN—-MerN, ¢(mn)=maen,

which is obviously bilinear. (To make things a bit more compact, we work
with a bilinear ¢ rather than homomorphisms ¢p; : M — M ®r N and
on : N - M ®p N, and similarly for ¢ below.) If K : M g N — P is a
homomorphism, where P is a third R-module, then ko ¢ is bilinear. For every
R-bilinear v : M x N — P there is a unique homomorphism x : M ®gr N — P
such that 1) = ko ¢, namely the one satisfying x(m ®@n) = ¥(m,n). (To show
that x is a well defined R-homomorphism observe that E is in the kernel of
the obvious homomorphism F' — P.) These properties characterize the tensor
product up to unique isomorphism:
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Proposition A6.1. If B is an R-module and ¢' : M x N — B is a bilinear
function such that, whenever ¢’ : M x N — P’ is bilinear, there is a unique
R-module homomorphism k' : B — P’ such that ' o ¢ = 4/, then B is
canonically isomorphic to M Q@ N.

Proof. Setting P = B in the preceeding discussion and B’ = M ®r N, k and
k' are inverse isomorphisms. O

Instead of working with the explicit construction of the tensor product, it
is usually much easier to work with the characterization given by this result.
For example, this approach does much to simplify the presentation of the basic
properties of the tensor product:

Lemma A6.2. The tensor product is commutative, associative, and distribu-
tive with respect to direct sums: (@;c; M;)@rN = @,;c; M;@rN. In addition
R acts as an identity element: RQr M = M.

Proof. To prove commutativity, consider the map ¢ : (m,n) — n®m €
N ®gr M. This is evidently bilinear, and if v : M x N — P is bilinear, then
there is a unique homomorphism « : N g M — P such that ¥ = ko ¢,
namely the one satisfying x(n ® m) = ¥ (m,n).

Now let ¢ : (B, M;) x N — @, M; ® N be (3, mj,n) — > . m; @n. If
Y (@; M;) x N — P is bilinear, then ¢ = ko¢ where k : m; @n — ¥(m;, n).

Similarly, the map ¢ : (r,m) — rm is easily seen to have the properties
required to verify that R®pr M = M.

The proof of associativity follows the same general pattern, but is rather
bulky, so it is left to the reader. (It can also be found on pp. 26-27 of Atiyah
and McDonald (1969).) O

The method provided by Proposition A6.1 is a bit indirect, so identities
that eventually become second nature can be difficult for the beginner to
reconfirm mentally when they arise. We now provide a number of such results,
and we will cite them rather systematically when they occur.

Lemma A6.3. If I is an ideal of R, then M @r R/I = M/IM.

Proof. Let ¢ : M x R/I — M/IM be the map ¢(m,r +1) =rm+ IM. For
a bilinear ¢ : M x R/I — P we can let k : m + IM — ¢(m,1+I). O

Let S C R be a multiplicatively closed set.
Lemma A6.4. S7'M =S 'R®pr M.

Proof. Let ¢ : ST'R x M — S™'M be the map #(%,m) = ", It is easy to
check that if g—: = <, then 7";7/” = 7, so this definition does not depend on the
choice of representatives. Clearly ¢ is bilinear. If ¢ : ST'R x M — P is R-
bilinear, then the function & : 1M — P given by x(2) = (1, m) is easily
shown to be a well defined R-module homomorphism such that ¥ = ko¢. [
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Localization commutes with tensor products:
Proposition A6.5. S/ (M ®@p N) =S 'M ®g-15 S~!N.
Proof. Let ¢: S™'M x SN — S™1(M ®g N) be the map ¢(=2, %) = m&n,

FRE? st
To check that this definition does not depend on the choice of representatives,

suppose that ”;—// = 2, so that u(sm’ — s'm) = 0 for some u € S. Then

m'®n
s't

—_ m®
= 2% because
u(st(m’ @ n) — s't(m @n)) = u(sm’ — s'm) @ tn = 0.

Clearly ¢ is bilinear. If ¢ : S™!M x S™'N — P is bilinear, then the map
K %8’" = (%, ) is the unique S~!R-module homomorphism such that

=Ko U
Similarly:
Lemma AG6.6. If M is an R-module and N is an S™'R-module, then
STIM ®@g-1p N =M ®g N.

Proof. First, observe that M ®z N is an S~'R-module with scalar multi-
plication (r/s)(m ® n) = m ® rn/s. Let ¢ : ST'M x N — M @ N
be the map ¢(m/s,n) = m ® n/s. To check that ¢ is well defined, sup-
pose that m’/s’ = m/s, so that u(sm’ — s'm) = 0 for some v € S. Then
m' ®@n/s’ =m & n/s because

u(s(m' @n) — ' (m@n)) =u(sm’ —s'm)@n =0.

Clearly ¢ is S™!R-bilinear. If ¢ : S™'M x N — P is S~!R-bilinear, then the
map K : m ®@n + P(m,n) is the unique S~'R-module homomorphism such
that ¢ = ko ¢. U

If f: M — M’ is a homomorphism, we define
f®RN:M®RN—>M/®RN

to be the homomorphism taking each m ® n to f(m) ® n. This is well de-
fined because (as is easy to see but tedious to write out) if F’ is the free
R-module on the set of generators M’ x N, then the map Zle ri(mg,n;) —
Zle ri(f(m;),n;) maps E into the corresponding submodule E’ of F’'. Evi-
dently

(ffof)erN=f ®rNof®rN

whenever f and f’ are composable R-module homomorphisms, and 1,;QrN =
1yvepN, SO —® N is a covariant functor from the category of R-modules to
itself. Similarly, for a homomorphism g : N — N’ let M ®rg: M @gr N —
M ®pr N’ be the homomorphism taking each m ® n to m ® g(n). Again, for
any given M, M ®pg — is a covariant functor.
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Lemma A6.7. If f : M — M’ is a R-module homomorphism, then
Silf = ls—lR ®R f

Proof. The meaning of this assertion is that if ¢/ : STIR x M’ — S~1M’ is
the map ¢'(%,m’) = rTm,, then ¢’ o (1g-1z x f) = S™1f o ¢, which is easily
verified. O

We say that M is flat if M ® p— and —®gr M are exact functors. In view of
the last result, the diagram considered in Proposition A5.1 can be rewritten
as

S 1R ey M L5788

571R®g
- >

S R@sN - S R®R P

and the result can be reexpressed as follows:
Proposition A6.8. The R-module ST'R is flat.

We will have much more to say about flatness in Chapter B.

There is a tensor product of R-algebras that is closely related to the tensor
product of R-modules, but with additional features. Suppose that g : R — .S
and 77 : R — T are ring homomorphisms. The tensor product of these R-
algebras is S ® g T' endowed with the multiplication

(81 & tl)(SQ & tg) = 5182 ® t1to.

To show that this product is well defined we should verify that if F' is the
free R-module generated by the elements of S x T and F is the submodule
defined at the beginning of the section, then Zz}j rirj(sisj, tit;) € E whenever
Zle ri(si,ti) € E or Z§:1 rj(sj,t;) € E. This is obvious, even if writing
out the details would be quite tedious. Evidently this product is associative,
commutative, and distributive, and 1g ® 17 is a multiplicative identity, so
S ®@pr T is a commutative ring with unit.

There are ring homomorphisms xgs : S = S®rT and xr: T — SQrT
given by xs(s) = s ® 1p and xr(t) = 1lg ® t, so S ®r T is both an S-
algebra and a T-algebra, and the ring homomorphism yg o m1g = X7 © 7
makes S ®p T into an R-algebra. If ¢g : S — Z and ¢ : T — Z are ring
homomorphisms, then there is a ring homomorphism « : S®rT — Z given by
k(s ®t) = s(s)Yr(t). (Again, we need to verify that >, ritps(si)r(t;) =0
whenever ZLI ri(si,t;) € E, and again this is both obvious on inspection and
bulky to write out.) Of course s is uniquely determined by the requirement
that ¥g = ko xg and Y7 = K o x7.

Evidently we have defined a coproduct in the category of R-algebras. How-
ever, in the categorical perspective that is most useful in algebraic geometry,
R is allowed to vary. This leads to the notion of a cofibered product.

We first define fibered products. If W, X, and Y are objects in a category
C,and ex : X — W and ey : Y — W are morphisms, then an object Z,
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together with morphisms px : Z — X and py : Z — Y, is a fibered product
of the data (W, X,Y,ex,ey) if ex o px = ey o py and, for any object S and
morphisms fx : S — X and fy : § — Y such that ex o fx = ey o fy, there
is a unique morphism f : S — Z such that fx = px o f and fy = py o f. For
the category of sets the fibered product is given by setting

Z={(r,y) e X xY :ex(z) =ey(y)}

and letting px and py be the restrictions of the usual projections from X x Y
to X and Y. This construction also gives the fibered product for the category
of topological spaces if we endow Z with the relative topology inherited from
the product topology of X x Y.

S
AONE
7 Y
4%
Px ey
X —X  w

The cofibered product is obtained by reversing all arrows. That is, if W,
X, and Y are objects in a category C, and ex : W — X and ey : W — Y
are morphisms, then an object Z, together with morphisms px : X — Z and
py 1 Y — Z, is a cofibered product of (W, X,Y,ex,ey) if, for any object S and
morphisms fx : X — S and fy : Y — S such that fx oex = fy o ey, there
is a unique morphism f : Z — S such that the diagram above commutes.
We now see that the tensor product is a cofibered product for the category of
commutative rings with unit.

A7 Principal Ideals, Factorization, and Normality

We now take up a set of concepts related to factorization and the appropriate
generalization of the notion of an integer. We will see that if all of a ring’s
ideals are principal, then the rings elements can be factored uniquely, up
to units. We begin with a very specific way in which this can happen that
pertains to the integers, and also to the ring Z[i] of Gaussian integers.

The ring R is Euclidean if there is function |- | from R to the nonnegative
integers, called the norm, such that |a| = 0 if and only if a = 0 and, for all
nonzero a,b € R there are ¢, € R such that a = ¢b+ r and |r| < |b]. The
ring R is a principal ideal domain if it is an integral domain and every ideal
is principal.
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Proposition A7.1. If R is Fuclidean, then it is a principal ideal domain.

Proof. Let I be an ideal. We may assume that I # (0), so let b be a nonzero
element of I of minimal norm. Any nonzero a € I is ¢b + r for some ¢ and r
with |r| < |b|, and since r € I it follows that » = 0, so that a € (b). O

The integers Z are Euclidean; the usual absolute value is the norm. The
ring of polyomials in a single variable with coefficients in a field is Euclidean;
the norm is the degree. The Gaussian integers Z[i] are Euclidean; the norm is
c+id is ¢ +d?. (Proving that this is a norm is not entirely trivial.) Of course
these examples are quite prominent. Nevertheless, Euclidean rings are quite
special, and in fact principle ideal domains turn out to be rather uncommon.

An element of R is irreducible if it cannot be written as a product of two
nonunits. A ring element p is prime if (p) is a prime ideal. Concretely, p is
prime if, whenever p divides a product ab, either p divides a or p divides b.

Lemma A7.2. If R is an integral domain, then a prime element is irreducible.

Proof. Suppose that r is prime but not irreducible, so that r = ab where a
and b are nonunits. Since (r) is prime, it contains either a or b. If b € (r), say
b = cr, then r = acr, so 1 = ac because R is a domain. But a is not a unit,
so this is impossible. O

The ring R is factorial, or a unique factorization domain (UFD), if it is an
integral domain and every nonzero element is uniquely (up to multiplication
by units) a product of irreducible elements.

Lemma A7.3. An irreducible element of a UFD is prime.

Proof. Let r be irreducible. If there were a,b ¢ (r) such that ab € (r), say
ab = cr, then representations of a, b, and ¢ as products of irreducibles would
give two representations of ab = ¢r as a product of irreducibles that are distinct
because r a factor in one but not the other. O

Lemma A7.4. If R is an integral domain and every ascending chain of princi-
pal ideals stabilizes, then every nonzero element of R is a product of irreducible
elements. If, in addition, irreducibles are prime, then R is factorial.

Proof. Suppose that 0 # a € R cannot be written as a product of irreducibles.
It must not be irreducible itself, so it is a product a = bc of nonunits. Either
b or ¢ must not have a representation as a product of irreducibles, and we
may suppose it is b. We cannot have b € (a), say b = ad, because a = adc
implies 1 = dc, so (a) is proper subset of (b). Again we can represent b as a
product of two nonunits, one of which is not a product of irreducibles, and
continuing in this fashion gives an infinite ascending chain of principal ideals
(a) C (b) C ---, contrary to hypothesis.



A7. PRINCIPAL IDEALS, FACTORIZATION, AND NORMALITY 29

Now assume that irreducibles are prime, and suppose that two products
of irreducibles 7y -7, and s;---sp are equal. Since sy---s; € (r1), this
ideal must contain some sj, which is necessarily the product of r; and a
unit, because it is irreducible. We may divide by r;, because R is a domain.
Repeated reductions of this sort lead eventually at the conclusion that the two
products are the same up to units. ]

Proposition A7.5. If R is a Noetherian integral domain and every prime
minimal over a principal ideal is itself principal, then R is factorial.

Proof. In view of the last result we only need to show that any irreducible
a € R is prime. Of course (a) is contained in a maximal ideal, which is prime,
so Proposition A2.5 implies that there is a prime P that is minimal over (a).
By hypothesis P = (p) for some p, so a = rp for some r. Since a is irreducible
and p is not a unit, » must be a unit, so that (a) = P. O

Theorem A7.6. A principle ideal domain is factorial.

Proof. After the last result it suffices to show that R is Noetherian. If (a;) C

(ag) C -+ is an increasing chain of principal ideals, then its union is an ideal,
which is necessarily principal, say (b). There is some n such that b € (ay)
which implies that (ay) = (apy1) =---. O

For geometric applications it is important to understand the effect of lo-
calization.

Proposition A7.7. If R is a UFD and S is a multiplicatively closed subset
of R, then S™'R is a UFD.

Proof. We first study when an element £ of S 1R is a unit. If this is the case,

say £.Y = %, then xy = st, so all the prime factors of x and y divide elements

of S. Conversely, if all the prime factors of x divide elements of S, then z
divides an element of S, say ar =t, and £ - = % In particular, if p € R is

¢
irreducible, then ¥ is a unit if and only if p divides an element of S.

Now suppose that p is a prime that does not divide any element of .S. We

claim that £ is prime. Suppose that ¥ = £ . %, Then pst = xy. Uniqueness

of prime factorization implies that p divides = or y but not both, and that all

other prime factors of xy are factors of st. In particular, if p divides x, then
Y is a unit in ST'R, so £ divides Z.

Next suppose that ¢ is irreducible in S7IR, and that a = p; - - - py, is the

prime factorization of a. We have ¢ = 1. BL... Bt 50 precisely one of the 2t
is a nonunit. Thus every irreducible of SR is (up to units) of the form k

where p is a prime of R that is not a factor of an element of S.

Combining all this with unique factorization in R, any % has a representa-

tion of the form ¢ = %- B ... B where p1,...,p; are (not necessarily distinct)
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primes that do not divide elements of S and x divides an element of S. Further-
more, any representation of ¢ as a product of irreducibles can be brought to
this form by multiplying by units. Finally, if ¢ = f—,l . % e % is a second such
representation, then unique factorization applied to t'zp; - - - py = ta'p} - - D,
reveals that pi,...,py and pj,...,p, are the prime factors that do not di-
vide elements of S, so the second list is a reordering of the first. Thus prime

factorization in S~'R is unique. O

Just which algebraic numbers deserve to be regarded as integers is a basic
conceptual issue in algebraic number theory. For a variety of reasons the most
satisfying definition, by far, is that an algebraic number is an integer if it
satisfies a monic equation with integral coefficients. Somewhat surprisingly,
this concept is also quite important in algebraic geometry.

Suppose that S is a ring that contains R as a subring. An element s € .S
is integral over R if it is a root of a monic polynomial with coefficients in R.
That is, there is an integer n and rg,71,...,7r,—1 € R such that

$" A+ Tpo18" T 4 s 19 = 0.
The Cayley-Hamilton theorem gives a surprisingly general test for integrality.
Proposition A7.8. For s € S the following are equivalent:
(a) s is integral over R;

(b) there is an S-module N and a finitely generated R-submodule M that is
not annihilated by any nonzero element of S, such that sM C M.

Proof. Supposing that (a) holds, take N =S and M = R][s|. Then sM C M,
and M is finitely generated because for some n it is generated by 1,s, ..., s" 1.
Since 1 € M, M is not annihilated by any nonzero element of S.

Suppose that (b) holds. We may regard multiplication by s as an endo-
morphism of M. Applying the Cayley-Hamilton theorem (with improper ideal
I = R) gives a monic polynomial p with coefficients in R such that p(s)M = 0,
and p(s) = 0 because M is not annihilated by any other element of S. O

We say that S is finitely generated as an R-algebra, or simply finitely
generated, if there are x4, ...,z such that S = R[zy,...,x]. This is a much
weaker condition than being finitely generated as an R-module.

Corollary A7.9. For s € S, s is integral over R if and only if R[s] is finitely
generated as an R-module.

Proof. If s is integral over R, then for some n every element of R[s] is an
R-linear combination of 1,s,...,s" 1. Conversely, if R[s] is finitely generated
as an R-module, we may take N =S and M = R][s] in the last result. (Since
1 € RJ[s], R[s] is not annihilated by any nonzero element of S.) O
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Lemma A7.10. If R C S C T with S finitely generated as an R-module
and S finitely generated as an S-module, then T is finitely generated as an
R-module.

Proof. We may assume that there is an s such that S is generated over R by
1,s,...,8™ ! and there is a t such that T is generated over S by 1,¢,...,t" "1,
since the general case follows from this special case by induction. Evidently
T is generated over Rby {sit/ : 0<s<m—-1,0<j<n-—1} U

We say that S is integral over R if each of its elements is integral over R.

Proposition A7.11. If S is finitely generated as an R-algebra, then S is
integral over R if and only if is finitely generated as an R-module.

Proof. Suppose that S is finitely generated as an R-module and s € S. Then
(b) of Proposition A7.8 holds with N = S and M = R[s], because 1 € R]s] is
not annihilated by any s € S, so s is integral over R.

Suppose that S = R[s1,...,s,| is integral over R. Then R[s;] is finitely
generated as an R-module. Since s9 is integral over R, it is integral over R[s1],
and consequently R[si,so] is finitely generated as an R[si]-module, and so
forth. The last result implies that S is finitely generated as an R-module. [

Proposition A7.12. If R C S C T are rings with T integral over S and S
integral over R, then T is integral over R.

Proof. Any t € T satisfies a monic equation t" + s,_1t" ' + .- + 59 = 0
where sg,...,8,-1 € S, in which case R]sq,...,Sn—1,t] is a finitely gener-
ated Rl[so,...,Sp—1]-module. Since S is integral over R, Rl[sg,...,Sp_1] is
a finitely generated R-module, and consequently Lemma A7.10 implies that
Rl[sg,...,Sn—1,t] is finitely generated as an R-module, hence integral over R,
and in particular t is integral over R. U

The integral closure of R in S is the set of elements of S that are integral
over R.

Proposition A7.13. The integral closure of R in S is a subring of S that
contains R.

Proof. Each r € R is a root of the monic polynomial X — r, so the integral
closure contains R. We need to show that the integral closure contains all sums
and products of its elements, so suppose that s and ¢ are integral over R. For
some integers m and n, R[s,t] is generated by {sit/ : 0 <s<m —1,0<j <
n—1}. Now (b) of Proposition A7.8 is satisfied by N = S and M = R]s,t],
so s +t and st are integral over R. O

We say that R is integrally closed in S if it is itself its integral closure in
S. This terminology makes sense:
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Proposition A7.14. The integral closure of R in S is integrally closed in S.

Proof. Let R’ is the integral closure of R in S, and let R” be the integral
closure of R’ in S. Proposition A7.12 implies that R” is integral over R, hence
contained in R'. O

We now study integrality in relation to integral domains.
Proposition A7.15. If S is an integral domain, and integral over R, then:
(a) If I is a nonzero ideal of S, then RN 1 # ().
(b) An element r € R if and only if it is a unit of S.
(c) R is a field if and only if S is a field.

Proof. (a) If 0 # s € I, then s satisfies an equation s"+7, 15" '+ 47y = 0,
which implies that r¢ € I. By taking n minimal we can obtain rqg # 0.

(b) If r is a unit of R, it is automatically a unit of S. Suppose that r € R
is a unit of S, so rs = 1 for some s. If s” + r,_15" "1 4+ .-+ 19 = 0, then
multiplying by r*~! gives s = — (1,1 + 7p_or + -+ + 197" 1), 50 s € R.

(c) If S is a field, then (b) implies that R is a field. Suppose that R is
afield and 0 # s € S. If s" +71,_18" ' +---4+1ry = 0 and ry # 0, then
s(s" V1 18" 2 4o 4 r)(—10) " =1, s0 s is a unit. O

If R is an integral domain, the normalization of R is its integral closure
in its field of fractions K(R). We say that R is normal, or a normal domain,
or integrally closed, if it is integrally closed in K (R), which is to say that it is
its own normalization. Like the earlier steps in this section (from Euclidean
rings to PIDs, then to UFDs) this is an increase in generality.

Theorem A7.16. If R is factorial, it is normal.

Proof. We need to show that if r/s is a fraction that is integral over R, then
it is an element of R. Without loss of generality we may assume that r and s
have no common prime factors. There is an n and a,_1,...,ay € R such that

(1/8)" + ap_1(r/s)" L+ -4 ag=0.
Multiplying by s” and rearranging gives
n

= —ap_ " s — - — ags”,

so any prime factor of s is a prime factor of ", and thus a prime factor of r,
which is impossible. We conclude that s is a unit, and that r/s € R. O

We conclude this section with some results relating integral closure to the
main operations on rings.
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Proposition A7.17. Let ¢ : S — S’ be a ring homomorphism. If S is integral
over R, then ¢(S) is integral over ¢(R). In particular, if I is an ideal of S,
then S/I is integral over R/(RNI).

Proof. If s™ +ry,_18" 1+ ... 419 =0, then

0(8)" + @(rn_1)p(s)" L+ -+ 4+ p(rg) = 0.
|

Proposition A7.18. If R C T C S are rings, T is the integral closure of R

in S, and U C R is multiplicatively closed, then U~'T is the integral closure
of UT'R in U™1S.

Proof. Ift € T satisfies the monic equation 2™+, 12" 1+ -47rp, and u € U,
then t/u satisfies the monic equation 2™ + (r,_1/u)z" 1 + - + rg/u™ = 0.
Thus the integral closure of U~!'R contains U~1T.

Suppose that s/u satisfies a monic equation

(5/w)" + (rn—1/un—1)(s/u)" " + - + 1o /ug = 0.
Multiplying by (ut,—1 - --ug)™ gives an equation showing that su,_1---ug is

integral over R, hence an element of T, so that s/u € U~'T. Thus the integral
closure of U"'R is contained in U~'T. O

Corollary A7.19. If U C R is multiplicatively closed and S is integral over
R, then ULS is integral over U R.

Corollary A7.20. If R is an integrally closed integral domain and U C R is
a multiplicatively closed set, then U™'R is integrally closed.

Normality is a local condition:

Proposition A7.21. If R is an integral domain, then the following are equiv-
alent:

(a) R is integrally closed.
(b) Rp is integrally closed for all prime ideals P.
(¢) Ry is integrally closed for all mazimal ideals m.

Proof. In view of the result above, (a) implies (b), and of course (c) follows
automatically from (b). We will show that if R is not integrally closed, then
some Ry, is not integrally closed. Let = be an element of K (R)\ R that satisfies
a monic equation z™ +rp_1z" L4 44 rg = 0 with coefficients in R. Let
I={r € R:rzx e R}. (Thisis called the ideal of denominators of x.) Since
x ¢ R, this is a proper ideal of R, and is contained in a maximal ideal m. Now
x & Ry (its ideal of divisors as an element of Ry, is {i/s:i€ I,s € R\ m})
but it satisfies the equation above, which may be understood as monic with
coefficients in Ry. (Of course K(Ry) = K(R).) Thus Ry, is not integrally
closed, so (c) implies (a). O
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A8 Noether Normalization and Hilbert’s Nullstellensatz

This section presents two quite famous results. As we will see in the next
section, the second of these has a crucial role in algebraic geometry from the
very beginning, and the first also has an important geometric interpretation.

In preparation we discuss a useful piece of notation for polynomials in

R[Xi,...,X,]. An exponent vector is an n-tuple e = (eq,...,e,) of non-
negative integers. For such an e let X¢ = X7'--- Xt». Now any element of
R[X1,...,X,] has the form ) r. X¢ where the sum is over all exponent vectors

and only finitely many of the 7. are nonzero.

Theorem A8.1 (Noether Normatization). Let K be a field, and suppose that
A= Klxy,...,xy,] is a finitely generated K -algebra. Then there are algebraicly
independent z1, ..., 2z, € A such that A is integral over K[z1,...,2zm].

Here the relevant Noether is Max, Emmy’s father.

Proof. We argue by induction on n. Of course the case n = 0 is trivial, so
suppose the claim has been established with n — 1 in place of n. If z1,..., 2,
are algebraicly independent we are done, so suppose that f(z1,...,2,) =
0 for some nonzero f € K[Xi,...,X,]. Let 8 = (B1,...,Bn-1,1), where
B1, ..., 0n—1 are positive integers to be specified later. For i = 1,...,n—1 let
Yi = T; — :cgi, and let B = K[yi,...,yn—1].- Below we show that z,, is integral
over B, after which Proposition A7.11 implies that A is integral over B. The
induction hypothesis gives algebraicly independent z1,..., 2, € B such that
B is integral over Klz1,...,2y,]. In view of Proposition A7.14, the integral
closure of K|[z1,...,2y] in A is all of A.

For each exponent vector e we substitute the various z; = xﬁ' + y;, obtain-
ing

x¢ = mg.e + Ge(Y1s- - Yn—1,Tn)

where g is a polynomial in which the maximal power of z,, is less than S-e.
(Here -e is the usual inner product, an unexpected fringe benefit of using
exponent vectors!) If f =5 a.X¢, then substituting these expressions gives

0= Zafﬁg'e + h(yla s ayn—1,$n)

where h is a polynomial whose maximal power of x,, is less than the maximum
of B-e over all exponent vectors with a, # 0.

In order to interpret this as a monic equation satisfied by z,, we need to
insure that the sum of the a., over those e with a, # 0 for which 5 - e is
maximal, is not zero. This is certainly the case if the integers 5-e are distinct.
An effective (if somewhat brutal) method is to let 3; = d* where d is an integer
greater than the maximum degree of f in any variable. With this choice we
can divide the equation above by a., where e is the exponent vector that is
maximal for §-e, thereby displaying x, as a root of a monic polynomial, as
desired. O
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If K and L are fields with K C L, then L is a field extension of K. We
write L/K to indicate this situation. The extension is finite if L is finite
dimensional as a vector space over K. An element of L is algebraic over K if
it is the root of a polynomial with coefficients in K. Since we can divide any
polynomial with coefficients in K by its leading coefficient, being algebraic
over K is the same as being integral over K, and the theory we developed in
the last section is entirely applicable. In particular, if L is finite, then each
of its elements is algebraic over K. Conversely, L/K is a finite extension if L
is generated by finitely many elements that are algebraic over K. In fact a
weaker hypothesis suffices to imply that L/K is finite:

Lemma A8.2 (Zariski’s Lemma). If L/K is a field extension, and L is finitely
generated as a K-algebra, then L is a finite extension of K.

Proof. Noether normalization gives z1,..., 2, € L that are algebraicly inde-
pendent over K such that L is a finitely generated K|z1,...,2y]-module. If
m > 1, then 1/z; satisfies some condition of the form

Gt peeazl P4+ pe=0

where pg,...,pr—1 € K|z1,...,2n]. After rearranging terms, and possibly
multiplying by a negative power of z;, we obtain such an equation with
P0y- -, Pk_1 € K[z9,...,2n]. Multiplying by 2¥ gives a violation of algebraic
independence, so m = 0, which is the desired conclusion. ]

Corollary A8.3 (Weak Nullstellensatz). If K is a field, R is a finitely gener-
ated K -algebra, and m is a mazximal ideal of R, then R/m is a finite extension
of K. Consequently R/m = K if K is algebraicly closed.

Proof. Since R/m is a finitely generated K-algebra, and also a field, the last
result implies that it is a finite extension of K. O

A9 (Geometric Motivation

The concepts developed up to this point are enough to support a description
of the initial motivations and definitions of algebraic geometry. This section
has a different spirit from the rest of our work, which aims to do as little as
possible consistent with achieving our main objectives. Here we aim to give
as rich a sense of the interplay of algebra and geometry as we can without
going too far afield.

There will be two main geometric settings. First, let K be a field, fix
an integer n, and let n-dimensional affine space A™ be the n-fold cartesian
product of K, regarded as a geometric setting. Any set S C K[Xy,...,X,]
determines a set

V(S)={zecA": f(x)=0forall feS}.
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Evidently V(S) = V(I) where I is the radical of the ideal generated by S.
A set of the form V(I) is called is called an affine algebraic set. These sets,
and the corresponding subsets of projective spaces, are the traditional focus
of algebraic geometry, at least at the outset.

Finite unions of affine algebraic sets are affine algebraic sets, because for
any ideals I, Is we have V(I;) UV (I3) = V(I - I). Arbitrary intersections
of affine algebraic sets are affine algebraic sets: if {I;};cs is any collection of
ideals, (1, V(I;) = V(J) where J is the ideal generated by |J; ;. In addition,
) = V(R) and A™ = V() are affine algebraic. Therefore the affine algebraic
sets are the closed sets of a topology, called the Zariski topology. For each
x € A", {z} = V(X1 — x1,...,X,, — x,)), so singletons are closed. (For
topologists, a space in which singletons are closed is a Tj-space.) But the
Zariski topology is not Hausdorff except in trivial cases, and in other respects
as well it is highly peculiar, at least for those who rarely venture beyond metric
spaces, as we will see below.

A subset A C X of a topological space X is reducible if it can be written
as the union of two proper subsets that are relatively closed; otherwise it is
irreducible. There is an algebraic characterization of irreducibility for affine
algebraic sets. Any set S C A" determines a set

IS)={feK[X1,....X,]: f(x) =0forall z € S }.
It is easy to see that I(S) is a radical ideal.

Lemma A9.1. An affine algebraic set Y is irreducible if and only if 1(Y') is
prime.

Proof. Suppose that Y = Y7 UY5 where Y7 and Y5 are affine algebraic set that
are both proper subsets of Y. There is a polynomial f that vanishes on Y;
but not on Y5, and there is a polynomial g that vanishes on Y5 but not on Y7.
Then f,g ¢ Y and fg € I(Y), so I(Y) is not prime.

Now suppose that Y is irreducible. If fg € I(Y), then Y C V({fg}) =

V{1 UV ({Hg}), so

Y=FnV{/Hunvi{g})

Since Y is irreducible, either Y = Y NV ({f}) or Y = Y NV ({g}), so that
either f € I(Y) or g € I(Y'). Thus I(Y) is prime. O

When V is an affine algebraic set, I'(V) = R/I(V) is a finitely generated
K-algebra, called the coordinate ring of V. We think of this as the set of
polynomial functions on V taking values in K. Note that I'(V') is reduced,
because (V) is radical.

Conversely, let R be a reduced finitely generated K-algebra, let @1, -+, zy,
be a system of generators, and let I be the kernel of the map f — f(x1,...,2,)
from R to R. Then R = R/I is the coordinate ring of V' (I). Thus the class of
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affine algebraic sets is exactly mirrored in the class of reduced finitely generated
K-algebras.

We can also say something about the geometric significance of integrality.
Let R be a reduced finitely generated K-algebra, that we think of as the

coordinate ring of some affine algebraic variety. Let x1,...,x, be a system of
generators. After reordering, we may assume that z1,...,x, are algebraicly
independent, and that 41, ...,x, are algebraic over K[z1,...,x,]. Suppose
that each such z; is actually integral over K[z1,...,z,], so that it is a root of

a monic polynomial:

mj;—1

pi(xj,y) = 27 + ajm; ()] 4+ aji(y)z; + ajoy) =0
where a;o(y),...,ajm—1(y) € K[z1,...,z,]. For each y € K" the fiber
F(y) ={(xr41,...,2n) 1 pj(zj,y) =0forall j=r+1,...,n}

is a cartesian product F(y) = [[; F;j(y) where F;(y) = {z; : pj(x;,y) = 0}.
Because p; is monic, the coefficient of x;nj in p;(-,y) never vanishes, so each
F;(y) contains m; roots when these are counted according to multiplicity. In
connection with K = R or K = C, the geometric picture is that a branch of
the set of solutions cannot go to infinity as one approaches some y € K". The
point of the Noether normalization theorem is that it is possible to perturb
the system of generators so as to bring this situation about.

What we have seen so far suggests that the correspondence between radical
ideals and affine algebraic sets may allow a quite fruitful algebraic analysis
of geometric issues. This raises the question of whether the algebraic and
geometric perspective are exact mirrors of each other. For any affine algebraic
set V(S) we have V(I(V(S))) € V(S) because S C I(V(S)). On the other
hand V' (S) C V(I(V(S5))) because for any = € V(5), every element of I(V(5))
vanishes at z, so x € V(I(V(S))). Thus V o I takes each affine algebraic set
V(S) to itself. In particular, the map V(S) — I(V(S)) from affine algebraic
sets to radical ideals is injective.

But the map I — V/(I) from radical ideals to affine algebraic sets is not
injective in general. For example the ideal (X? — 2) and the improper ideal
K[X,] are both mapped to the null set if K = Q.

We will consider two responses to this conundrum. The first is to require
that K be algebraically closed, in which case the correspondence is bijective
by virtue of the following result.

Theorem A9.2 (Hilbert’s Nullstellensatz). If K is algebraicly closed and
I C R is a radical ideal, then I(V(I)) = I.

Proof. Obviously I € I(V(I)). Aiming at a contradiction, suppose that f €
I(V(I))\ I. Since I is the intersection of the minimal primes that contain it
(Proposition A4.11) there is a prime ideal P C R that contains I but not f.
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Let RN = R/P, let f~be the image of f in R, and let m be a maximal ideal of
R[1/f]. Since R[1/f] is generated by 1/f and the images of X,..., Xy, it is
finitely generated, so Corollary A8.3 implies that R[1/f]/m = K.

Let 8 be the composition of ring homomorphisms
R— R— R[1/f] = R[1/f]/m = K.

Since 8(1) = B(1-1) = B(1)?, either 3(1) = 0 or 3(1) = 1. The image of 1 € R
in R is nonzero because P is a proper ideal, so it is 1 € R. In turn, its image
in R[1/f]is 1 € R[1/f], and this is not in m, so 3(1) = 1.

For each 1 = 1,...,n let x; = 5(X;), and let © = (z1,...,x,) € K™. The
set of g € R such that 5(g) = g(x) includes all elements of K and X7, ..., X,,
and it is closed under addition and multiplication, so it is all of R. If g € P,
then 8(g) = 0, so z € V(P) c V(I). Since the map R[1/f] — K takes
1= f-1/f to 1, it must be the case that f(z) = B(f) # 0. This contradicts
our supposition that f € I(V(I)), which completes the proof. O

Any field K can be embedded in an algebraic closure K, leading to an em-
bedding of A™ in the corresponding affine space A". Let R = K[X1,..., X,].
For any subset S C R one may study the relationship between the subsets of
A" and A" that it defines, and one may study the special properties of these
sets that result from S being a subset of R. The algebraic geometry of R and
A" sets the stage, and is implicitly present in the background, of these more
specific studies, so the study of algebraic geometry over algebraically com-
plete fields should be simpler than, and prior to, the sorts of issues that might
arise in arithmetic geometry. Hilbert’s nullstellensatz is perhaps the most
important basic result endowing these general considerations with concrete
substance.

The second response begins with the idea that we may consider all the
maximal ideals of K[X1,...,X,], not just those that correspond to points in
A"™. Note that there is a maximal ideal corresponding to each point in A".
This method can be applied to any ring, and doing so should be interesting
and useful because a variety of rings arise naturally during any sort of analysis.
In this general context it makes sense to consider all prime ideals, including
those that are not maximal. (For example, a local ring has a single maximal
ideal, by definition, but the structure of its set of prime ideals can be quite
rich.) This perspective is the starting point of the theory of schemes.

Now let R be an arbitrary commutative ring with unit. The spectrum of
R, denoted by Spec R, is the set of prime ideals of R. For any S C R, let

V(S)={Pe€SpecR:SCP}.

Clearly V(S) = V(I) where I is the radical of the (possibly improper) ideal
generated by S. For a nonempty S C Spec R let

(5= P,

PesS
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and let I()) = R. Evidently I(S) is a (possibly improper) radical ideal.

As before, for any S C R we have V(I(V(S))) = V(S): V(I(V(S))) C
V(S) because S C I(V(S)), and V(S) c V(I(V(S))) because I(V(S)) is a
subset of each P € V(S), so that P € V(I(V(S))). Any radical ideal I is
the intersection of the primes that contain it (Corollary A2.9) so I(V(I)) = I
and V(I(V(I))) = V(I). Thus V and I authomatically restrict to inverse
bijections between the set of (possibly improper) radical ideals and the set of
subsets of Spec R of the form V(S).

For ideals Iy, Is, V(I;) UV (I3) = V(I; N I5). (Any prime P that contains
either I or Iy contains I; N I, and if Iy NIy C P, then P contains either I
or I because otherwise the product of an element of I; \ P and an element of
I>\ P would be an element of (I;N13)\ P.) More trivially, for any set of ideals
Z. Nyer V(I) = V(J) where J is the ideal generated by J;c7I. In addition
V((0)) = Spec R and V(R) = (). Therefore the sets V' (I) are the closed sets of
a topology on Spec R that is also called the Zariski topology. We now study
Spec R in relation to basic concepts from topology.

In this version of the Zariski topology singletons need not be closed. Con-
cretely, @ is an element of the closure of {P} whenever P and @) are primes
with P C Q. For this reason the maximal ideals of R are called closed points.
For the most part, when K is algebraicly closed there are corresponding prop-
erties of the Zariski topology of affine algebraic sets that can be derived by con-
sidering the relative topology of the set of closed points of Spec K[X7, ..., X,].

We have seen that passing from Spec R to its set of closed points, endowed
with the relative topology, throws away pertinent geometric information ex-
cept in the circumstance described by Hilbert’s nullstellensatz. More generally,
no information is lost if R is a Jacobson ring, which is to say that every prime
ideal (and thus every radical ideal) is the intersection of the maximal ideals
that contain it. Of course a field is a Jacobson ring, and it turns out that R
is Jacobson if and only if R[X] is Jacobson. This result provides the proper
(in the sense of maximal generality) understanding of the nullstellensatz; it is
treated in Sections 1-3 of Kaplansky (1974) and also in Section 4.5 of Eisenbud
(1995).

Working with Spec R retains the information lost in passing to its space
of closed points. One may also ask what is lost in the passage from R to
Spec R. Let N be the nilradical of R. The prime and radical ideals of R/N
are precisely the P/N and I/N where P and I are prime and radical ideals
of R, so Spec R/N and Spec R are homeomorphic. (With respect to certain
issues studied below, the picture is clarified if we assume that R is reduced.)
In a sense, the passage to Spec R throws away information about R that is not
retained in the passage from R to R/N. The theory of schemes retains this
information by embedding Spec R in a larger structure called an affine scheme
which, in effect, has R as part of its data. Nilpotents were systematically
exploited by some of the important advances in algebraic geometry following
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the introduction of schemes.

Recall that a topological space X is disconnected if it is the union of two
disjoint nonempty open (or closed) sets. It is connected if it is not discon-
nected.

Proposition A9.3. If R is reduced, then Spec R is disconnected if and only
if R = R1 X Ry where Ry and Ry are commutative rings with unit.

Proof. First suppose that R = Ry x Ry. Let I be an ideal, and let
L={ri:(ri,me)€l} and Iy ={ry:(ri,m) €}

Clearly I; and I are ideals of R1 and Ry respectively, and I; x I3 is an ideal
of R that contains I. If (r1,7r2) € I, then (r;,0) = (r1,72) - (1,0) € I, so
I x {0} C I, and symmetrically {0} x Is C I. Taking sums gives I1 x Iy C [
and thus I = I; x Iy. Evidently I is radical if and only if I; and I are radical.

Now suppose that I is prime. Any (ry,r2) € I is the product of (ry, 1) and
(1,79), one of which must be in I, so either I; = Ry or Iy = Ry. If [1 = Ry,
then I must be prime, and [y is prime if Is = Ry. Conversely, if P; and P,
are prime ideals of Ry and Rg, then P; x Ry and Ry X P» are easily seen to
be prime ideals of I.

Since R is reduced, R; and Ry are reduced, so for each its respective (0)
is radical. Writing

Spec R = V((0) x Ry) UV (R; x (0))

displays Spec R as the union of two disjoint nonempty closed sets.

Now suppose that Spec R is disconnected. Then there are radical ideals Ry
and Ry such that every prime ideal contains either R; and Ry and no prime
ideal contains both. Therefore R; N Ry is the nilradical of R, which is (0),
and Ry + Ro cannot be proper ideal, so it is R. Therefore there are unique
11 € R1 and io € Ry such that 1 = 47 + 9. For each i = 1,2, if r; € R;, then
i1ri = (i1 + t2)r; = r;. Thus i; and iy are identity elements for R; and Rs
respectively, which means that R; and Ry are commutative rings with unit
such that R = R; X Rs. O

Let X be a topological space. For any = € X, the connected component
of x, denoted by C, is the union of all the subsets of X that contain x and
are connected; it is connected (supposing otherwise quickly leads to a contra-
diction) and is the largest connected subset of X containing x. The closure
of a connected set is connected (supposing otherwise quickly yields a contra-
diction) so Cy is closed. The collection {C, : = € X } is a partition of X
because if g € C; N Cy, then Cp U Cy is a connected set contained in Cy,
that contains both x and 2/, so C;, = C.

A set A C X is irreducible if and only if it does not have two disjoint
nonempty relatively open subsets, so a nonempty open subset of an irreducible
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space is dense, and an irreducible set is connected. Thus the collection of
irreducible sets refines the collection of all connected components. For any
x € X, the closure of {z} is irreducible, and the union of a collection of
irreducible sets that is completely ordered by inclusion is irreducible, so Zorn’s
lemma implies that x is contained in a maximal irreducible subset. Such
a set is called an irreducible component. The closure of an irreducible set
is irreducible (supposing otherwise quickly leads to absurdity) so irreducible
components are closed. However, unlike connected components, two different
irreducible components can have a nonempty intersection.

The bijection between radical ideals and closed subsets of Spec R special-
izes to a bijection between prime ideals and irreducible subsets.

Proposition A9.4. For any radical ideal I, V(I) is irreducible if and only if
I is prime.

Proof. If I is not prime, then there are f,g ¢ I with fg € I. Let Iy and I, be
the smallest ideals containing I and f and g respectively. Then I C Iy NI,
so V(I;)UV(I,) c V(I). If P ¢ V(I;)UV(I,), then there are r +af € Ir\ P
and s +bg € I, \ P where r,s € I, and (r +af)(s +bg) € [\ P,so P ¢ V(I).
Thus V(I) € V(I;)UV(I,). Finally, because [ is the intersection of the prime
ideals that contain it, V(I;) and V/(I,) are proper subsets of V(I), so V(I) is
reducible.

Now suppose that V(I) is the union of two proper subsets V(I;) and
‘7(_[2). We may assume that I; and Is are radical, which implies that [; N Iy
is radical. Then I = I; N I because I is the unique radical ideal such that
V(I) = V(I;)UV(Iy). Thus I is a reducible ideal and consequently (Lemma
A4.9) not prime. O

A topological space X is Noetherian if any descending (ascending) se-
quence of closed (open) sets stabilizes. Obviously this terminology is derived
from the fact that if R is a Noetherian ring, then Spec R is a Noetherian topo-
logical space. An argument similar to those for Noetherian rings and modules
shows that X is Noetherian if and only if any nonempty collection of closed
(open) sets has a minimal (maximal) element. In a Noetherian topological
space, any closed set is a finite union of irreducible sets. (If the set of closed
sets that are not finite unions of irreducibles was nonempty, it would contain a
minimal element C', which could not itself be irreducible, but could also not be
a finite union of closed proper subsets, because each of these would be a finite
union of irreducibles.) Any subspace Y of a Noetherian X, with the induced
topology, is Noetherian: if {C}} is a collection of relatively closed subsets of
Y, then the collection {C,} of closures in X has a minimal element U;, and
C7 is minimal in {C;}.

Following Bourbaki, algebraic geometers say that a topological space is
quasi-compact if every open cover has a finite subcover. (It is compact if it
is quasi-compact and Hausdorff.) A base of a topology is a collection of open
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sets such that every open set is the union of sets in the base. Since any open
cover can be refined to a cover by base elements, a space is quasicompact if
every cover by base elements has a finite subcover.
For f € R let
D(f)y={PeSpecR: f¢P}.

For any S C R we have

Spec R\ V(S) = Spec R\ (| V() = |J D(f),

fES fES
so the sets D(f) are a base for Spec R.

Proposition A9.5. Spec R is quasicompact.

Proof. If {D(f;)}icr is an open cover of Spec R, then the ideal generated by
{fi} cannot be proper because if it was, it would be contained in a maximal
ideal m, and m would not be a member of any D(f;). Therefore there are
i1,...,% and 71, ..., rg such that ri f;, +---+rpfi, =1, and Spec R = D(f;,)U
-~ UD(fi,)- O

A Noetherian space (and thus also any subspace) is quasi-compact, because
we can choose elements Uy, Us, ... of an open cover with U,+1 ¢ U1 U...UU,
whenever U; U ... U U, is not the entire space, and the sequence Ui, U; U
Us, Uy U Uy U Us, ... must stabilize. Since all subsets of Spec R are quasi-
compact when R is Noetherian, in one sense quasicompactness plays a very
small role in algebraic geometry, but the existence of finite subcovers is invoked
frequently.

If X € A™ and Y C A" are affine algebraic sets, perhaps the most
natural functions p : X — Y are those given by polynomials. That is, we have
a polynomial function p : K — K" such that p(X) C Y. Such a function
induces a ring homomorphism ¢ : g — g o p from the coordinate ring of ¥ to
the coordinate ring of X, and in effect we study p by analyzing ¢. Roughly,
¢ is injective if p is surjective. (More precisely, ¢ is injective if an element of
the coordinate ring of Y is determined by its values on p(X).) In this sense it
seems simplifying to replace Y with p(X), so that ¢ is injective.

The corresponding setup in the realm of spectra has rings R C .S, thought
of as the coordinate rings of Y and X respectively. There is a map

7w : SpecS — Spec R

given by 7(Q) = RNQ. When P = RNQ we say that Q lies over P. If [ is a
radical ideal of R and J is the radical of the ideal generated by I as a subset
of S, then 7= 1(V(I)) = V(.J), so 7 is continuous.

Corresponding to our earlier discussion of the geometric significance of
Noether normalization, we should expect that 7 is well behaved when S is
integral over R. There are several important results in this direction. First of
all, we should hope that the fibers of 7 are zero dimensional:
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Proposition A9.6. If S is integral over R and Q is a prime of S, then Q is
mazximal if and only if m(Q) is maximal.

Proof. Let P = RN Q. The induced map R/P < S/Q is an inclusion of
integral domains, and (by Proposition A7.17) S/Q is integral over R/P. Of
course, P is maximal if and only if R/P is a field, and similarly for @, and
Proposition A7.15(c) implies that R/ P is a field if and only if S/Q isa field. O

The geometric picture of the next result is that if two irreducible varieties
in the domain have the same image, and one is contained in the other, then
they are the same.

Proposition A9.7. If S is integral over R, 7(Q) = n(Q') = P, and Q C Q'
then Q = Q.

Proof. The set U = R\ P is multiplicative, both as a subset of R and as a
subset of S. There is an induced inclusion U7'R < U~'S, and (Corollary
A7.20) U1S is integral over U~ R. Since QNU = (), U~ Q is a prime ideal of
U~LS (Proposition A5.6(c)) and it lies over U1 P, which is a maximal ideal of
U 1R. (In most other contexts we would of course write Rp and Pp instead
of U7'R and U~'P.) Therefore the last result implies that U ~'(Q) is maximal.
This argument applies equally to Q’, so U~'Q = U~'Q’ and consequently
(Proposition A5.6(d)) Q = Q'. O

Theorem A9.8 (Lying Over). If S is integral over R, then m is surjective.

Proof. Let P be a prime ideal of R, and let U = R\ P. Then U~'S is integral
over U™'R (Corollary A7.20) so the hypotheses are satisfied with U~'R and
U~1S in place of R and S. If Z is a prime ideal of U~1S that lies over U P,
then (Proposition A5.6) {s € S:s/1 € Z} is a prime ideal that lies over P.
Therefore we may assume that R is local, and it suffices to find a prime of S
lying over m.

We now show that m.S is a proper ideal of S. If not there are r1,...,7, € m
and s1,...,8, € S such that r1s1 + -+ +rpsp = 1, s0 S = Rl[s1,...,8;] is a
finitely generated R-algebra, and consequently (Proposition A7.11) finitely
generated as an R-module. But now mS = S implies S = 0 by Nakayama,
which is of course impossible.

Since mS is a proper ideal of S, it is contained in a maximal ideal ). Now
m(Q) is an ideal containing m, which is maximal, so 7(Q) = m. O

The next two results are quite famous. The first is often stated as a matter
of being able to extend a chain of primes of S lying over a chain of ideals of
R. That is, for given primes Py C --- C P, of Rand Qg C ---Q,, of S
with 7(Q;) = P;, there are primes Q11 C -++ C @, with Q,, C Q41 and
7m(Q;) = Pj. Of course this more elaborate version is proved by applying the
following special case inductively.
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Theorem A9.9 (Going Up, Cohen-Seidenberg). If S is an integral extension
of R, P C P’ are primes of R, and 7(Q) = P, then there is a prime Q' of S
such that Q C Q' and ©(Q") = P'.

Proof. By Proposition A7.17, S/Q is integral over R/P. Every prime ideal of
S/Q is Q'/Q for some prime Q' of S, and the last result gives such a @’ with
Q' /QNR/P=P'/P,sothat Q@ "R =P O

The Krull dimension of R is the maximum length d of a chain of distinct
prime ideals Py C --- C P;. Proposition A9.7 implies that if S is integral over
R, then the Krull dimension of S cannot be larger than the Krull dimension
of R. Given a chain Py C --- C Py in R, lying over implies that there is a Qq
with m(Qo) = Py, and going up then gives a preimage chain Qp C -+ C Qg in
S, so together they imply the opposite inequality.

The next result is also often stated as a matter of extending chains of prime
ideals, and again the general form is proved by applying the special case below
inductively. It has been included here because of its geometric content, and
because it completes the picture in a sense, but (like everything else in this
section) it will not be applied later, so the reader may choose to bypass the
proof, which is relatively elaborate.

Theorem A9.10 (Going Down, Cohen-Seidenberg). Suppose R is a normal
domain and S is an integral extension of R that is an integral domain. If
P’ C P are primes of R and ©(Q) = P, then there is a prime Q" of S such
that Q' C Q and ©(Q') = P'.

Three preliminary results prepare the proof. If R C S is an inclusion of
rings and [ is an ideal of R, we say that s € S is integral over I if it satisfies
a monic equation s™ + a,_15"" ' + -+ + ag with ag,...,an_1 € I. The set of
such s is the integral closure of I in S.

Lemma A9.11. If S is an integral extension of R and I is an ideal of R,
then the the integral closure of I in S is the radical of IS.

Proof. If s is integral over I, then the monic equation of the definition puts s
in the radical of IS. On the other hand suppose that s™ = a1s1 + - - - + agsk
for some n, ay,...,ax € I, and s1,...,s; € S. Since S is integral over R,
M = R|[s1,...,sk] is a finitely generated R-module (Proposition A7.11). If
¢ : M — M is multiplication by s", then (M) C IM, so the Cayley-Hamilton
theorem implies that ¢ satisfies some monic equation

p(p) = @™ + am1¢™  + - +ag=0

with ag,...,amy,—1 € I. Multiplication by p(s) annihilates M, and 1 € M, so
0=p(s) =" 4+ a1 V" 4 ... £ ag. O
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Lemma A9.12. Let R be an integrally closed domain, and let K be its field
of fractions. If f,g € K|x] are monic and fg € R[z], then f,g € R[x].

Proof. Let L/K be a field extension in which f and g split as products of
monic linear factors, and let S be the integral closure of R in L. Since f and
g are monic, their roots are elements of S. The coefficients of f and g are
polynomials in these roots, hence elements of S, and they are also elements of

K. But KNS = R because R is integrally closed. O

Lemma A9.13. Suppose that S is an integral extension of the integrally closed
domain R, and R does not contain any zero divisors of S. For a nonzero s € S,
let €5 : Rlx] — S be the evaluation map e5(f) = f(s). Then the kernel I of €5
s a principal ideal generated by a monic polynomial.

Proof. Since s is integral over R, it satisfies some monic polynomial h € R[z],
so I # (0). Let K be the field of fractions of R. Then [ K|[z| is an ideal of
K|[xz], which is a PID, and I K[x] # (0), so I K[x] is generated by a polynomial
f, which may be taken to be monic. We have h = fg for some g € K]x],
which must be monic, so from the last result f,g € Rx].

For any nonzero j € IK|[x] there is a nonzero r € R that clears denomi-
nators, so that rj € IR[zx] = I, whence rj(s) = 0. Therefore (since r is not a
zero divisor) j(s) = 0. In particular, f(s) = 0, which is to say that f € I.

To complete the proof that I = fR[x] we must show that f divides an
arbitrary p € I. Since fK[z] = IK|z], there is a ¢ € R[x] and a nonzero
r € R such that p = fq/r. In view of our goal, we may assume that r is not a
unit. Passing to residue classes in (R/(r))[x], the equation rp = fq becomes
0 = fq. Since f is monic, f # 0, so § = 0, and thus q/r € R[z], as desired. [

Proof of Theorem A9.10. Let T be the set of all products rs of elements r €
R\ P and s € S\ Q. Since S is an integral domain, 7" does not contain 0
and is consequently a multiplicative subset of S. Also, R\ P’ and S\ Q are
subsets of T because 1 € (R\ P")N(S\ Q).

The bulk of the proof is concerned with showing that P’'S NT = 0, but
first we explain why this implies the result. Basic facts concerning localization
(Proposition A5.6) imply that P’S7 is a proper ideal of St and is consequently
contained in a maximal ideal m, which is Q'St for some prime @’ of S that
does not meet T', so that @ "R C P’ and Q' C Q. Since P’ C {s€ S:s/l1¢€
m} = Q' we actually have P' = Q' N R = 7(Q’), as desired.

Aiming at a contradiction, suppose that rs € P'S N T where r € R\ P’
and s € S\ Q. Because rs is an element of (the radical of) P'S, Lemma A9.11
implies that there is a monic polynomial f(z) = 2™ + ap_12™ ' + - + ag
with ag,...,am—1 € P' and f(rs) =0. Let

g(x) =rmz™ + ™ e, 2™ 4+ oa.
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Then ¢(s) = f(rs) = 0. By Lemma A9.13 there is a monic polynomial h €
RJx] that generates the kernel of the evaluation map €5 : R[z] — S. Therefore
g = hj for some j € R[z]. Passing to residue classes in the polynomial ring
(R/P")[z], we have § = hj. Since R/P’ is an integral domain, §j = #™z™ # 0,
where 7 is the residue of r, and h and j are monomials. Since h is monic,
h = z* for some k < m, so

h(z) = 2% + ap_ 12" 1+ + ag

for some ag,...,ap_1 € P'. Since h(s) = 0, Lemma A9.11 implies that s
belongs to the radical of P'S. But P'S ¢ PS C Q and @ is prime, so s € Q,
contrary to assumption. ]

A10 Associated Primes

Fix an R-module M. A prime P is associated to M if P is the annihilator
of some element of M. Put another way, for m € M the ideal Ann(m) is an
associated prime of M if and only if it is proper (i.e., m # 0) and prime. For a
geometric interpretation one may imagine that R is the coordinate ring of an
affine variety and M is an R-module of functions defined on that variety. The
prime ideal consisting of those functions that vanish on a certain irreducible
component of the variety is associated to M if some m € M is nonzero on a
dense subset of that component and vanishes outside it.

The set of associated primes of M is denoted by Ass(M), or Assr(M)
if more than one ring is under discussion. An automatic consequence of the
definition is that Ass(N) C Ass(M) whenever N is a submodule of M, and
by extension whenever there is an injection mapping N into M.

Even though an ideal I is an R-module, by convention the set of associated
primes of I is Ass(R/I). (One of the reasons this convention works rather well
is that when M = R, the associated primes of M are the associated primes of
the ideal (0).) Note that if P is a prime of R, then Ass(R/P) = {P} because
P is the annihilator of every nonzero element of R/P. This simple example is
implicitly the key building block of much of the following analysis.

Lemma A10.1. A prime P is associated to M if and only if there is an
injective homomorphism R/P — M.

Proof. When P = Ann(m) there is the injection r + P +— rm. Conversely, if
R/P — M is injective, then P is the annihilator of the image of 1+ P. [

The next result is frequently applied to show that Ass(M) # () when R is
Noetherian.

Lemma A10.2. The mazimal elements of { Ann(m) : 0 # m € M} are
associated primes.
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Proof. We show that if Ann(m) isn’t prime, then it isn’t maximal. If ab €
Ann(m) and a,b ¢ Ann(m), then bm # 0 and Ann(bm) is a proper superset
of Ann(m) because it contains a. O

The set of zerodivisors of R is | J, . Ann(r), so this has the following simple
consequence.

Corollary A10.3. If R is Noetherian, the set of zerodivisors of M is the
union of the mazimal associated primes of (0).

When R is reduced, every zerodivisor is contained in a prime that is min-
imal over (0) (Lemma A2.10) so each associated prime is contained in the
union of the minimal primes. For Noetherian reduced rings there will be a
more precise result below.

The support indexmodulelsupport of of a M, denoted by Supp(M), is the
set of prime ideals P such that Mp # 0.

Proposition A10.4. Ass(M) C Supp(M).

Proof. Suppose that P € Ass(M). The result above gives an exact sequence
0 - R/P — M. Since Rp is flat (Proposition A6.8) applying the exact
functor —®pr Rp to this and 0 - P — R — R/P — 0 gives exact sequences
0— R/P®rRp — Mpand 0 - Pp — Rp — R/P ®r Rp — 0. Since Pp is
a proper subset of Rp, R/P ®r Rp # 0, and it follows that Mp # 0. U

When M is finitely generated Supp(M) has a simple characterization.

Lemma A10.5. If M is finitely generated, then Supp(M) is the set of primes
that contain Ann(M).

Proof. Fix a prime P. An element m € M goes to zero in Mp if and only if
there is some r ¢ P with rm = 0. Since M is finitely generated, Mp = 0 if
and only if there is such an element for each generator. Since the product of
these elements is not in P, Mp = 0 if and only if there is some r ¢ P that
takes all generators to 0, which is to say that there is some r € Ann(M) \ P.
Equivalently, P € Supp(M) if and only if Ann(M) C P. O

Let S be a multiplicatively closed subset of R. As we explained in Propo-
sition A5.6, the prime ideals of ST!R are the S™'P where P is a prime of R
that does not intersect S.

Proposition A10.6. Suppose that R is Noetherian and P is a prime.
(a) If P = Ann(m) and PN S =0, then S™1P = Ann(m/1).

(b) If m/s #0, ST'P = Anng-1z(m/s) then PNS = () and P = Ann(tm)
for somet € S.
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Consequently Assg-1p(S™'M) ={S7'P: P ¢c Ass(M) and PNS =0}.

Proof. (a) Clearly S™'P C Anng-1z(m/1). If (a/s)(m/1) = 0, then atm = 0
for some ¢ € S. We have at € P and thus a € P because t ¢ P. Therefore
Anng 1z(m/1) C STLP.

(b) If s € PN S, then S~!P = (s/s) = S~ R, which is impossible (only 0/1 is
annihilated by all of ST'R) so PN.S = (). Since R is Noetherian, P has a finite

set of generators aq,...,a;. For each ¢ there is some t; € S with ¢;a;m = 0.
Let t =ty ---tx. Now P C Ann(tm). If atm = 0, then (sat/1) - (m/s) =0, so
that sat € P and consequently a € P. Therefore Ann(tm) = P. O

Theorem A10.7. If R is Noetherian, then Supp(M) is the set of primes that
contain elements of Ass(M). Consequently the minimal elements of Ass(M)
and Supp(M) coincide.

Proof. Suppose that P € Supp(M). By definition Mp # 0. Since R is
Noetherian, Lemma A10.2 implies that Ass(Mp) # (). In view of Proposition
A10.6 this means precisely that there is some P’ € Ass(M) with P’ C P.
Conversely, if P is a prime that contains some associated prime P’ =
Ann(m), then Mp # 0 because Ann(m/1) = P}, is a proper subset of Rp. O

An associated prime that is not minimal is said to be embedded.  We
summarize the consequences of Lemma A10.5 and the last result when their
hypotheses hold.

Theorem A10.8. If R is Noetherian and M is finitely generated, then Supp(M )
is the set of primes that contain Ann(M), and Ass(M) is a subset that includes
the primes that are minimal over Ann(M).

The specific consequences of this for ideals are worth emphasizing.

Theorem A10.9. If R is Noetherian and I is an ideal, then Supp(R/I) is
the set of primes ideals containing I, and the set of primes associated to I is
a subset that includes all the primes that are minimal over I.

From Lemma A2.10 we know that if R is reduced, then the zerodivisors
are contained in the union of the primes that are minimal over (0), and from
Corollary A10.3 it follows that each prime associated to (0) is contained in
this union. When R is Noetherian there is a more precise result whose proof
uses the following very useful fact, which is known as prime avoidance.

Lemma A10.10 (Prime Avoidance). If I, Jy,...,J, are ideals, I C Uj Jj,
and at most two of the J; are not prime, then I is contained in some J;.

Proof. We use induction on n, with the case n = 1 being trivial. The induction
hypothesis implies the claim if [ is contained in any union of n—1 of the ideals
Ji,...,Jn, so we may suppose that for each j there is an x; € I\ U#]‘ Ji.
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When n = 2 this gives a contradiction because x; + x2 is in I but not in J;
or Jo. If n > 2 we may suppose that J; is prime, so that zy---z, ¢ J; and
1+ T2+ @y is in I, but not in any J;, which is again a contradiction. O

We rephrase prime avoidance to put it in the form in which it is most
commonly applied later, and to explain its name.

Corollary A10.11. If Ji,...,J, are ideals, at most two of which are not
prime, and I is an ideal that is not contained in any J;, then there is an

xGI\UJ]

Proposition A10.12. If R is Noetherian and reduced, then the primes asso-
ciated to (0) are the minimal primes.

Proof. Above we saw that each prime associated to (0) is contained in the
union of the minimal primes, which are finite in number (Proposition A4.10).
Prime avoidance implies that each prime associated to (0) must be contained
in (and therefore coincide with) one of the minimal primes. But above we saw
that each minimal prime is associated to (0). O

Suppose R is the coordinate ring of an affine algebraic set V and I is an
ideal. Each prime that is minimal over I is the set of functions that vanish
on one of the irreducible components of the set W C V where all elements of
I vanish. If I is radical, so that R/I is reduced, there are no other primes
associated to I. If I is not radical and P is an embedded prime associated to
I, then we think of the set Z C W where all elements of P vanish as a set
where the elements of I satisfy some additional condition, for instance that
some partial derivative or Jacobean vanishes.

The remainder of this section studies the finiteness of Ass(M).

Lemma A10.13. If0 - M’ — M — M" — 0 is a short eract sequence of
R-modules, then

Ass(M") € Ass(M) C Ass(M') U Ass(M").

Proof. The first inclusion is immediate. For the second, suppose P = Ann(m)
for some m € M. For any a € R\ P we have am # 0 and Ann(am) = P
because P C Ann(am) automatically, and if b € Ann(am), then abm = 0,
which implies that ab € P and therefore b € P because P is prime. Since
this is the case for every nonzero am € Rm, either Rm N M = 0 or P €
Ass(M’). In the former case the restriction of M — M"” to Rm is injective,
and consequently P is the annihilator of the image of m in M". O

Corollary A10.14. For any R-modules M and N, Ass(M & N) = Ass(M)U
Ass(N).
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Proof. Apply the last result to the short exact sequences
0O+M-—-+>M&N-—-N—-0 and 0=>N—->M&N M —0.
O

Proposition A10.15. If R is Noetherian and M is finitely generated, then
there is a chain of submodules 0 = My C -+ C M, = M with each M;/M;_,
isomorphic to R/P; for some prime P;.

Proof. Lemma A10.2 implies that M has an associated prime, say P; =
Ann(mq). Then M; = Rm; is a submodule of M that is isomorphic to
R/P;. Similarly, if P, = Ann(mgy+ M) is an associated prime of M /M, then
My = Rmy + Rmg is a submodule with Mj /My isomorphic to R/P,, and so
forth. Since M is Noetherian (Proposition A4.7) this construction eventually
arrives at M,, = M. O

Theorem A10.16. If R is Noetherian and M is finitely generated, then
Ass(M) is finite.

Proof. Let 0 = My C -+ C M,, = M be as in the last result. Applying Lemma
A10.13 to the short exact sequence 0 — M;_1 — M; — M;/M;_1 — 0 gives
Ass(M;) C Ass(M;_1) U{P;} for all i, so Ass(M) C {P,...,P,}. O

All Primes Associated to Principal Ideals

This section develops a specific result cited by Serre. In this way we are led
to briefly touch upon discrete valuation rings, and to apply related methods.
Of the many topics not considered in this book, for the sake of minimality,
the theory of discrete valuation rings and Dedekind domains is certainly one
of the most important.

Let K be a field, and let K* = K \ {0}. A discrete valuation for K is a
function v : K* — 7Z such that for all z,y € K:

(a) v(zy) =v(z) +v(y);
(b) v(z +y) > min{v(z),v(y)}.

For example, given a prime p, any nonzero r € Q can be written as p?(g /t
where s and t are integers that are not divisible by p. Similarly, if P € K[X]
is irreducible, then any nonzero f € K(X) is P*)Q/R where Q and R are
polynomials that are not divisible by P.

The valuation ring of v is

R,={xz e K:v(x) >0} U{0}.
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Evidently (a) and (b) imply that R, is closed under addition and multipli-
cation of nonzero elements, and it is trivially closed under addition of 0 and
multiplication by 0, so it is in fact a ring. Let

m, ={x € R, :v(x) >0} U{0}.

It is equally obvious that m, is an ideal. By (a), v(1) = v(1) 4+ v(1), so
v(1) =0, and v(x~!) = —v(z), so every x such that v(x) = 0 is a unit of R,.
Consequently m, is the unique maximal ideal, so R, is local. Furthermore,
m, = (y) for any y such that v(y) = 1, because the ratio of any two such
elements is a unit. In fact if I is any ideal and y is an element of smallest
valuation, then I = (y), so the ideals of R, are the powers of m,.

Turning the definitions around, R is a discrete valuation ring (DVR) if it
is an integral domain and there is a valuation on its field of fractions for which
it is the valuation ring.

Proposition A11.1. If R is an integral domain, then it is a DVR if and only
if it is a Noetherian local ring and m is principal.

Proof. That R is local and m is principal when R is a DVR was argued above.
Since the ideals are the powers of m, it is Noetherian.

Suppose that R is Noetherian and local, and m is principal, say m = (¢).
Nakayama’s lemma implies that ()72, m"™ = (0), so for any nonzero a € R
there is a maximal n such that ¢ € m"™. Then a = ut™ for some u € R, which
must be a unit because a ¢ m™*!. Thus R is the disjoint union {0}UJ,~, t"U
where U is the group of units, and the quotient field is the disjoint union
{0} UU,ezt"U. Set v(r) = n for r € t"U. It is easy to check that this
function satisfies (a) and (b). O

Theorem A11.2. If R is a Noetherian normal domain and I = (z) is a
principal ideal, then any prime P associated to I is minimal over I.

Proof. There is a y € R such that P = (I : y). Let K be the quotient field
of R, and let a = y/x € K. For any nonzero r,s € R, if a = r/s, then
ys = rx € I and consequently s € P. Therefore a ¢ Rp. We also have
aP ={py/x :py € I} C R, so aPp C Rp. There are now two possibilities
for aPp.

First suppose that aPp is a proper ideal of Rp, and consequently aPp C
Pp. The Cayley-Hamilton theorem (applied to the endormorphism p/s —
ap/s of Pp) implies that a” + ¢, _1a" ' +---+ ¢y =0 for some n and ¢, | =
Pn—1/Sn—1,---,C0 = po/so € Pp. Let s = s¢- - s,_1. Multiplying by s™ shows
that sa satisfies a monic polynomial with coefficients in R, so sa € R, because
R is integrally closed, and consequently a € Rp, but this is false.

Therefore aPp = Rp. Let

Pyl ={ce K:cPpCRp},
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and let Pp L. Pp be the set of sums of products ¢b where b € Pp and ¢ € Py L
Then the definition of P, 1 gives Pp L. Pp C Rp, and since a € Pp I we have
PIZI - Pp = Rp. Nakayama’s lemma implies that (Pp)?> # Pp. Choose a
t € Pp \ (Pp)2. If th—l C Pp, then tRp = th—l - Pp C (Pp)2, which is
impossible because ¢ ¢ (Pp)2. Therefore tPp" is not contained in Pp, but it is
an Rp-module contained in Rp, so tP;l = Rp. Now Pp = tP;l - Pp =tRp,
so Pp is principal. Of course Rp is local with maximal ideal Pp, and it is
Noetherian because R is. Therefore Rp is a DVR, and Pp and (0) are its
only prime ideals. Correspondingly, (0) is the only prime properly contained
in P. ]

Al12 Primary Decomposition

Primary decomposition is a weaker concept than prime factorization, and it
is possible in a much wider range of circumstances. It was introduced for
polynomial rings by Lasker (World Chess Champion and student of Hilbert)
in 1905. The theory was subsequently generalized and simplified by Emmy
Noether, using the ascending chain condition. Accordingly, throughout this
section we assume that R is Noetherian.

Fix an R-module M. In preparation for the main definition we establish
that various conditions are equivalent.

Proposition A12.1. If M is finitely generated, then the following are equiv-
alent:

(a) Ann(m) C rad(Ann(M)) for all nonzero m € M;
(b) Ass(M) = {rad(Ann(M))};
(c) Ass(M) is a singleton.

Proof. Let I = rad(Ann(M)). First suppose that (a) holds. Each associated
prime contains Ann(M), so it contains I because primes are radical, but (a)
implies that it is contained in I. Thus [ is the only possible associated prime,
and Lemma A10.2 guarantees that there is at least one associated prime, so
(a) implies (b). Obviously (b) implies (c).

Now suppose that (c¢) holds, so Ass(M) = {P} for some P. Theorem A10.8
implies that Ass(M) contains every prime that is minimal over Ann(M), and
Proposition A2.5 implies that there is at least one such prime, so P is the
unique such prime. Since [ is the intersection of the primes that are minimal
over Ann(M) (Corollary A2.9) we have P = I. If, for some m, Ann(m) was
not contained in P, among such m there would be one for which Ann(m) was
maximal and consequently (Lemma A10.2) a second element of Ass(M). Thus
(c) implies (a). O
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We say that a submodule M’ C M is P-primary if Ass(M/M') = {P},
and that M’ is primary if it is P-primary for some P. In view of this result,
M’ is primary if and only if each zero divisor of M /M’ is in rad(Ann(M/M")).

Lemma A12.2. If M’ is an irreducible submodule of M, it is primary.

Proof. Since R is Noetherian, Lemma A10.2 implies that M /M’ has at least
one associated prime, so if M’ is not primary there are distinct Py, P, €
Ass(M/M'). Lemma A10.1 implies that Ass(M/M’) has one submodule M
that is isomorphic to R/P; and another M/ that is isomorphic to R/P,. For
i = 1, 2 the annihilator of every nonzero element of M is P;, so M{NM; = {0}.
The preimages M7 and My of these modules in M contain M’ strictly, and
My N My is the preimage of M| N M}, so My N My = M’, contradicting
irreducibility. O

Fix a submodule N C M. A primary decomposition of N is a representa-
tion of IV as a finite intersection N = ﬂi?:l M; where each M; is primary.

Theorem A12.3. If M is finitely generated, then N has a primary decom-
position.

Proof. Lemma A4.8 states that IV is a finite intersection ﬂle M; of irreducible
submodules. O

As we mentioned earlier, a linear subspace of a vector space can be an
intersection of codimension 1 subspaces in many different ways, so primary
decompositions are far from unique. Nevertheless, the primes are uniquely
determined if the decomposition is irredundant.

Theorem A12.4. Suppose that M is finitely generated and N = n§:1 M;
is a primary decomposition. If each M; is P;-primary, then Ass(M/N) C
{Py,..., Py}. If the decomposition is irredundant, in the sense that ﬂi# M; #
0 for all j, then Ass(M/N) ={P,...,P}.

Proof. The assertions concern the primary decomposition 0 = Ule M;/N in
M/N, so we may assume that N = 0. The natural map M — @; M/M; is
injective, so (Corollary A10.14) Ass(M) C {P,..., Py}

Now suppose that the decomposition is irredundant. For a given j we will
show that P; € Ass(M). We have (), ,; M; # 0 and M; N[, ,; M; = 0, so
Lemma A1.2 gives

MM = <D]M>/<M]mﬂM) o~ (ﬂ'MiJer)/MjcM/Mj.

i i#j i#]

Therefore Ass(();,; Mi) C Ass(M/M;)

= {P;}, and since R is Noetherian,
Lemma A10.2 implies that Ass((;; M;) # 0

. O
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An ideal Q is primary if it is a primary submodule of R. We have
Ann(R/Q) = @ (note that Ann(l + Q) = Q) so if @ is primary, then
P = rad(Q) is a prime and Ass(R/Q) = {P}. In this circumstance we say
that @ is P-primary. Condition (a) of Proposition A12.1 gives the concrete
condition that is most commonly given as the definition of a primary ideal:
r,s € R\ Qand rs € Q (so r € Ann(s + @Q)) then r € rad(Q).

If Risa UFD and a = pJ]' - - - pf is a prime factorization of a ring element
a, then (a) = ﬂ?zl(pgi), so primary decomposition is a generalization of prime
factorization. However, an ideal @) need not be primary even if P = rad(Q) is
prime and @ is a power of P. For example, let R = K[X,Y, Z]/(XY — Z?),
let z, y, and z be the images of X, Y, and Z in R, and let P = (z,z) and
Q = P2. Then R/P = K[Y] is an integral domain, so P is prime. Of course
rad(Q) C P, and for any f,g € R we have (fz + gz)% € Q, so rad(Q) = P.
An element of P has the form f + zg where f,g € K|z,y] have no constant
terms, and in each of their monomials the exponent of x is at least as large
as the exponent of y. In addition all the monomials of an element of ) have
total degree at least two. Therefore 2y = 22 € Q, z ¢ @, and Q does not
contain any power of y, so () is not primary.

Nevertheless there is one positive result in this direction.

Proposition A12.5. If Q is an ideal and rad(Q)) = m is maximal, then Q is
m-primary.

Proof. The image of m in R/(Q is the nilradical of this quotient, by hypothesis,
and a maximal ideal. Therefore every element of R/Q is either a unit or a
nilpotent. In particular any zerodivisor is nilpotent, which is condition (a)
above. O

It can easily happen that an ideal has a maximal ideal as its radical without
being a power of the maximal ideal (e.g., (X,Y) = rad((X?2,Y)) in K[X,Y])
so a P-primary ideal need not be a power of P.

We need one more result concerning primary decompositions of an ideal
I. Recall that if x € R, then (I :z) ={a € R:ax € 1}.

Proposition A12.6. Let I = ﬂle Q; be a minimal primary decomposition
of the ideal I, and for each i let P; = rad(Q;). Then

k
UPi:{xGR:(I:x)#I}.
=1

Proof. In R/I each Q;/I is P;/I-primary, and the claim follows if we can show
that Ui?:l P;/I is the set of zerodivisors of R/I. Therefore we may assume
that I = (0). Let D be the set of zerodivisors.

Since the decomposition is minimal, Theorem A12.3 implies that each P;
is a prime associated to (0), so there is an z; such P; = Ann(z;). Thus
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\U; P; € D. To prove the reverse inclusion observe that

D =rad(D) = rad( U (0:2)) = U rad(0 : x).
x#0 z#0

It suffices to show that (0:x) C |J,; P; for a given = # 0. We have

0:2)=(Qi:2)=[)Qi:2)= [) (Qi:x)

1TEQ;

because (Q; : ) = R when = € Q;. There is at least one i such that z ¢ Q;
because x # 0. If y € (Q; : =), then zy € Q;, so y € rad(Q;) = P; because Q;
is P;-primary. Therefore

rad(0: x) = ﬂ rad(Q; : x) C ﬂ P C UPZ

A13 Chains of Submodules

In this section we study finiteness conditions on submodules of a given R-
module M. Our aim is to apply these results to R itself, and then in the next
section to achieve a good understanding of Artinian rings.

An R-module N is simple if N and 0 are its only submodules. If this is
the case, then Rz = N for any nonzero x € N, and r+ Ann(x) — rz is an iso-
morphism between R/Ann(z) and N. Moreover, Ann(z) must be a maximal
ideal, because otherwise N would have a submodule that was isomorphic to
an ideal that contained Ann(x) properly. Thus a simple module N is a module
that is isomorphic to R/m for some maximal ideal m. Conversely, each such
R/m is simple, obviously.

A chain of submodules of M is a finite sequence of submodules

M=My>M D>---DOM,

with all containments strict; the length of this chain is n. The chain is a
composition series for M if each M;/M;q is simple and M,, = 0. The length
of M is the least length of any composition series for M, or oo if M has no
composition series.

Lemma A13.1. If M has finite length and M’ is a proper submodule, then
length(M’) < length(M).

Proof. Let M = Mg D My D --- D M, = 0 be a composition series for M,
and for each j = 0,...,n let N; = M’ N M;. Of course N, =0. For j <n
Lemma A1.2 gives an isomorphism

N;j/Nji1 = N;j/(N; O Mj11) = (Nj + Mjy1)/Mjy1 C Mj/Mjq.
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Consequently each N;/Nji; is either simple or zero, and we can obtain a
composition series for M’ by removing redundant modules, so the only way the
result can fail is if each IN;/N;1; is nonzero. But Ny = 0, and if Nj 1 = M; 4
and N; # Njy1, then Nj = M; because N;j/M;; is contained in the simple
module M;/M;ii. Therefore, if all Nj/Nj;1 were nonzero, we would have
M’ = M, contrary to hypothesis. O

Via a simple application of the last result, we find that the length can be
studied using any chain.

Proposition A13.2. If M has finite length, then the length of any chain for
M is not greater than the length of M. Consequently all composition series
have the same length, and any chain refines to a composition series.

Proof. We argue by induction on the length of M. When M has length zero
the claim is trivial. Let M = My D M; D --- D M, be a chain for M. The
last result implies that the length of M is less than the length of M, and the
induction hypotheses implies that the length of M is at least n — 1.

If a chain is not a composition series, it is possible, by definition, to refine
it by inserting an intermediate submodule between two of its terms. O

Proposition A13.3. An R-module M has finite length if and only if it is
both Noetherian and Artinian.

Proof. Suppose that M is Noetherian and Artinian. Since it is Noetherian we
may choose a maximal proper submodule M7, a maximal proper submodule
My of My, and so forth. Since M is Artinian, this sequence terminates, nec-
essarily at 0. Then M = My D My D --- D M, = 0 is a composition series for
M.

Conversely if M has finite length, then Proposition A13.2 implies that it
is both Noetherian and Artinian. O

There are now three results, which are mostly quite obvious, providing
information about the simplest situations in which different lengths might be
compared.

Lemma A13.4. If I is an ideal contained in Ann(M ), then the length of M
as an R-module is finite if and only the length as an R/I-module is finite, and
the two lengths are the same when both are finite.

Proof. The composition series for M as an R-module are the composition
series for M as an R/I-module. O

Lemma A13.5. If My D --- D M, is a chain of R-modules and My/M, has
finite length, then

length(My/M,) = > _length(M;_1 /M;).
=1
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Proof. The chain My/M,, D -+ M,_1/M, D 0 refines to a composition se-
ries for My/M,, and taking the quotient by M; of the resulting chain from
M;_1/M,, to M;/M,, gives a composition series for M;_1/M,;. O

Proposition A13.6. If0 — L .M N N — 0 is a short exact sequence
of R-modules and L and N have finite length, then

length(M) = length(L) + length(N).

Proof. f L = Lo D L1 D --- D Ly, and N = Nyp D Ny D --- D N, are
composition series for L and N, then

M=3"YNg) D DB YN, =a(Lo) D Da(Ly)=0

is a composition series for M. ]

Al14 Artinian Rings

As we demonstrate below, Artinian rings are a special type of Noetherian ring,
and consequently they arise rather infrequently. Nevertheless, we will need to
have a good understanding of them.

Proposition A14.1. If R is Artinian, then each of its primes is mazximal.

Proof. Let P be a prime ideal. The ideals of R/P are derived from the ideals
of R that contain P, so R/P is Artinian. Let a be a nonzero element of R/P.
Since R/P is Artinian, (a®!) = (a") for some n, whence a" = ba™"! for some
b, and ab = 1 because R/P is an integral domain. Thus every nonzero element
of R/P has an inverse, i.e., R/P is a field. O

Let N be the nilradical of R.
Proposition A14.2. If R is Artinian, then N is nilpotent.

Proof. The sequence N D N2 O --- is eventually constant, say with value
I. Seeking a contradiction, suppose that I # (0). The set of ideals I’ such
that 11" # 0 is nonempty because I is an element, so (Lemma A4.2) it has
a minimal element J. Let a be an element of J with al # 0. Then J = (a)
because J is minimal. In addition, (al)I = al? = al # 0, and al C (a), so
minimality implies that al = (a). Therefore there is a b € I such that ab = a,
and we have a = ab =ab®> = ---, but b € I C N, so b* = 0 for large k, and
consequently a = 0, which contradicts al # 0. U

Noetherian rings also have this property.

Lemma A14.3. If the nilradical N is finitely generated, it is nilpotent.
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Proof. Suppose that N = (z1,...,x,). For each i there is some k; such that
xfl = 0. For each K, N¥ is generated by those x? cexb with 3,4 = K,
and if K =1—n+ Y, k;, then NX =0. O

Our next result concerning Artinian rings requires a basic fact.

Proposition Al14.4. If I1,...,1, are ideals and P is a prime ideal that con-
tains the product Iy - - - I,, then P contains some I;. Consequently P contains
some I; whenever (\;_; I; C P.

Proof. If there is an i; € I; \ P for each j, then ¢y ---i, € I ---I,, \ P. O

Proposition A14.5. If R is Artinian, then it has only finitely many mazimal
ideals.

Proof. The set of finite intersections of maximal ideals has a minimal ele-
ment (Lemma A4.2) say m; N ---Nm,. Each maximal ideal m contains this
intersection, and Proposition Al4.4 implies that m contains some m;. U

Proposition A14.6. If (0) is a product my - - - m,, of (not necessarily distinct)
mazximal ideals, then R is Noetherian if and only if it is Artinian.

Proof. We consider the descending sequence
ROomiDmmygD---Dmy---my, =0.

For each j = 0,...,n — 1 an additive subgroup of m;---m;_y/m;---m; is
closed under multiplication by scalars in R if and only if it is closed under
multiplication by scalars in the field R/m;, where the scalar multiplication is

(a+mj)(m+my---my) =am+my---m;.
j j J

Thus the submodules of the R-module m; - - - m;_;/m; - - - m; are the linear sub-
spaces of my ---m;_1/my - - - m; regarded as a vector space over R/m;. A finite
dimensional vector space is both Noetherian and Artinian, and an infinite
dimensional vector space is neither, so my---m;_;/my---m; is a Noetherian
module if and only if it is an Artinian module.

Evidently R is Noetherian if and only if each m; ---m; (including R, cor-
responding to j = 0) is Noetherian. Multiple applications of Proposition A4.4
to the short exact sequences

0—>m1---mj—>m1---mj,1—>m1---mj,1/m1---mj—>0

show that each m; - - - m; is Noetherian if and only if each my - - - mj;_1 /my - - - m;
is Noetherian. This is so if and only if each my ---m;_;/my ---m; is Artinian,
and multiple applications of Proposition A4.4 show that the latter condition
holds if and only if each my ---m; is Artinian, which is the case if and only if
R is Artinian. O
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Recall that the Krull dimension of R is the maximum length r of a chain
P.DOP_1D---DPDF

of distinct prime ideals. In particular, a O-dimensional ring is one whose prime
ideals are all maximal.

Theorem A14.7. The following are equivalent:
(a) R is Noetherian and 0-dimensional;
(b) R is Artinian.

Proof. Suppose that R is Noetherian and zero dimensional. Then (Corollary
A2.9) N is the intersection of the prime ideals that are minimal over it, which
are finite in number (Proposition A4.11), and since R is O-dimensional, each
of these is maximal. Thus m;---my C ﬂj m; = N for some maximal ideals
my,...,mg. Lemma A14.3 implies that IV is nilpotent, so (0) is a finite product
of maximal ideals, and Proposition A14.6 implies that R is Artinian.

Now suppose that R is Artinian. Above we saw that R is 0-dimensional.
so every prime ideal is maximal. In addition we saw that there are finitely

many of these, say my, ..., my. Corollary A2.9 gives N = (), m;, and of course
my---my C ();m;. Since N is nilpotent, (0) is a finite product of maximal
ideals, so (Proposition A14.6) R is Noetherian. O

This result has several easy and important consequences.
Corollary A14.8. A ring is Artinian if and only if it has finite length.

Proof. A ring has finite length if and only if it is both Noetherian and Artinian
(Proposition A13.3) which (by the last result) is the same as being Artinian.
O

Corollary A14.9. If R is Artinian, then an R-module M has finite length if
and only if it is finitely generated.

Proof. If M has finite length, then it is Noetherian, hence finitely generated,
because any ascending chain of submodules refines to a composition series.
If M is generated by x1,...,x,, then there is a surjective homomorphism
@ : R — M. In the obvious way we may use a composition series for R to
create a composition series for R" (incidently demonstrating that the length
of R" is r times the length of R) and the image of this is (after removing
redundant terms) a composition series for M. O

Lemma A14.10. If R is Noetherian, I is an ideal, and R/I is Artinian, then
R/I™ is Artinian for all n.



60 CHAPTER A. ELEMENTS OF COMMUTATIVE ALGEBRA

Proof. Every prime ideal of R/I" is of the form P/I™ where P is a prime of
R that contains I™. For any r € I, ™ € P, so r € P. Therefore P contains
I, and P/I is a prime of R/I. Since R/I is Artinian, P/I is a maximal ideal
of R/I, so P is a maximal ideal of R and P/I" is a maximal ideal of R/I"™.
Thus every ideal of R/I" is maximal, and of course R/I" is Noetherian. [

Lemma A14.11. If R is Noetherian, m is a maximal ideal, and I is m-
primary, then R/I is Artinian.

Proof. Since m = rad([) is finitely generated, m™ C I for some large n. Since
R/m is a field, it is Artinian, so the last result implies that R/m™ is Artinian,
and consequently R/I is Artinian. O

Lemma A14.12. If R is Noetherian, M is a finitely generated R-module,
and S = R/Ann(M) is Artinian, then M has finite length.

Proof. Since M is a finitely generated, it is a Noetherian R-module and an
Artinian S-module (Proposition A4.6). The R-submodules and S-submodules
of M are the same, so M is also Artinian as an R-module, and Proposition
A13.3 implies the claim. ]



Chapter B

Elements of Homological Algebra

Chapters B, C, and D provide an introduction to homological algebra of the
sort that figures prominently in algebraic geometry. The main features are the
theories of projective and injective modules and resolutions, derived functors,
and Tor and Ext. Because it is terse and restricted to a simplified setting,
while still encompassing many of the key arguments, I hope this material will
be useful for readers at an early stage of their study of homological algebra. In
particular, it is a suitable preparation for, or companion to, an introductory
course in homological algebra.

Initially this topic may be rather difficult to appreciate for a reader who is
unacquainted with homology and cohomology as they arise in algebraic topol-
ogy, or perhaps some other setting. On the other hand any first exposure to
homology is likely to be a trial by fire to a greater or lesser extent, precisely
because a certain amount of initially unmotivated technique must be absorbed
before one can begin to understand what homology might be good for. Al-
though it might seem sensible to recommend that novices first read some brief
and elementary introduction that provides basic geometric motivation, such
readings seem hard to find, and in fact it is not so easy to do better than
FAC itself in terms of providing a concrete setting in which this material finds
interesting applications.

In many respects the framework here is as simple as possible, consistent
with encompassing Serre’s applications, and reader should be aware that the
motivation for this is minimization of clutter, rather than any logical simplifi-
cation. On the contrary, the definitions and most of the results extend without
much modification to settings that are more general in many respects, and
there are interesting points that could be mentioned in many directions. A
particularly important point is that for a large fraction of the results the given
ring, or rings, need not be commutative, and many of the methods extend to
functors with an arbitrary number of covariant and contravariant arguments.

There is one other direction of generalization that is, perhaps, worth men-
tioning at this point. An abelian category is a category such that the set of
morphisms between any pair of objects has the structure of an abelian group,
the composition law is bilinear, finite direct sums exist, every morphism has a
kernel and cokernel, every monomorphism is the kernel of its cokernel, every
epimorphism is the cokernel of its kernel, and (finally!) every morphism can
be factored into an epimorphism followed by a monomorphism. This notion
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was introduced by Buchsbaum in his thesis, but the term “abelian category”
was coined in Grothendieck’s famous Tohoku paper, which is a close compan-
ion of FAC in the history of algebraic geometry. The objects of an abelian
category need not be sets, so all the concepts mentioned above need to be
defined categorically in terms of universal properties, and while the results
below mostly generalize to this level of abstraction, the arguments (which re-
fer to elements of the objects) do not. For a discussion of the (mostly quite
demanding) methods of graduating to this level of the subject, see Hartshorne
(1977), p. 203.

B1 The Five and Snake Lemmas

We continue to work with a fixed ring R that is assumed to be commutative
with unit. A sequence

A Y. B_*. ¢

of R-modules and R-module homomorphisms is said to be exact at B if Imvy =
Ker p. A short exact sequence is a sequence

05 A+ B-_2.Cc0

that is exact at A, B, and C, which is to say that i is injective, the image of
1 is the kernel of p, and p is surjective.

The following results, which have many applications, are technical and thus
a bit ill suited to be our first topic, but there is no better spot for them. A
proof that refers to elements is sometimes called a diagram chase, for reasons
that are well illustrated by the arguments below.

Lemma B1.1. Suppose that the diagram

B—" .c—? ,.p
B o 5\

/ Z./ ! p/ /
B C - D

commutes. Then:
(a) If the top row is exact and (3, §, and i’ are injective, then v is injective.

(b) If the bottom row is exact and 3, 6, and p are surjective, then =y is
surjective.

Proof. (a) If ¢ € Ker+y, then ¢ € Ker(p'ovy) = Ker(dop), so ¢ € Ker p because ¢
is injective. Exactness gives a preimage b € B of ¢. Now ¢/ (3(b)) = ~(i(b)) = 0,
so b = 0 because 7' and 3 are injective, and consequently ¢ = 0.
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(b) Suppose that ¢ € C’. Since 6 and p are surjective there is a ¢ € C such
that p/'(¢) = d(p(c)) = p'(7v(c)). Now ¢ —~(c) is in Ker p/, so it has a preimage
in B’ which in turn has preimage b € B, and ~(i(b) + ¢) = i'(8(b)) + v(c) =
d. O

Lemma B1.2. (Five Lemma) Suppose that in the commutative diagram

A B C D E
@ 15} ¥ 1) l €
Al _ B/ _ Cl _ D/ E/

the rows are exact. If o is surjective and B and § are injective, then =y is
injective. If € is injective and B and § are surjective, then vy is surjective.

Proof. Let B = B/Im(A — B), B' = B/Im(A’ — B'), D = Im(C' — D), and
D' =Im(C’ = D), and let §: B— B’ and ¢ : D — D’ be the induced maps.
(Since the diagram commutes, 3 maps the image of A into the image of A’,
so (3 is well defined, and § maps the image of C' into the image of C’, so 4 is
well defined.) It is easy to see that the diagram

0 - B C - D 0
8 o 5\
0 B C’ D' 0

is commutative, with exact rows.

Suppose that « is surjective and ( is injective. Consider a b € B such that
B(b) € Im(A” — B’), say B(b) is the image of a’. The surjectivity of a gives
an a € A such that a(a) = d’. Since the diagram commutes and § is injective,
a is mapped to b. Therefore 3 is injective. If, in addition, d is injective, then
so is the restriction 4, and (a) above implies that ~ is injective.

Suppose that § is surjective and e is injective. If d’ € D', then it is the
image of some ¢ € C’, and also the image of some d € D. Its image in E’ is
0 (exactness) so the image of d in E is zero (because ¢ is injective) so d is the
image of some ¢ € C (exactness). Therefore 4 is surjective. If, in addition, 3 is
surjective, then B is surjective, and (b) above implies that v is surjective. [

Lemma B1.3. (Snake Lemma) If the diagram
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commutes and has exact rows, then there is a homomorphism
0 : Kery — Coker o

defined by letting d(c) = o' + Ima for any ' € A" and b € B such that
(@) = B(b) and g(b) = c¢. The sequence

Kera — Ker § — Ker~y . Coker oo — Coker § — Coker

1$ exact.

Proof. We first show that 0 is well defined. For any ¢ € Ker+y it is always
possible to find satisfactory a’ and b: ¢ has a preimage b € B, by exactness,
and $(b) is in the kernel of ¢’, which is the image of f’.

If we also have g(b) = ¢ and f'(a’) = 5(b), then exactness gives an a € A
such that f(a) = b— b, and commutativity implies that f’(a(a)) = (b —b) =
f(@ —ad'). Since f'is injective, a(a) = a' —d, so &’ + Ima = @’ + Im . Thus
the definition of d(c) does not depend on the choice of b and a’.

Commutativity and exactness imply that f(Kera) C Ker 3, g(Ker3) C
Kervy, f/(Ima) C ImfB, and ¢'(ImB) C Im~. Therefore the sequence in
question is well defined.

To prove exactness we begin by observing that the composition of any
two successive maps in the sequence is zero. For Kera — Kerf — Kervy
and Cokera — Coker § — Coker~y this follows from the exactness of the
rows. From the definition of 0 it is evident that Ker 5 — Kery — Coker «
vanishes, and also that if d(¢) = a’+Im «, then f’(a’) € Im 3, so that Kery —
Coker a@ — Coker [ vanishes.

Suppose that b is in the kernel of Ker 5 — Ker~. Then it is of course in
Kerg =Im f, and if f(a) = b, then commutativity implies that f'(a(a)) =0,
after which exactness implies that a(a) = 0, so b is in the image of Ker o —
Ker 5.

Suppose that ¢ is in the kernel of 9. Then there are b and o’ with g(b) = ¢,
f'(a") = B(b), and o’ = a(a) for some a. Then g(b—f(a)) = cand B(b—f(a)) =
B(b) — f'(a’) =0, so ¢ is in the image of Ker 5 — Ker~.

Suppose that a’+Im « is in the kernel of Coker « — Coker 3. Then f’(d’) €
Im 3, say f'(a’) = B(b), and the definition of 9 gives a’ + Ima = 9(g(b)).

Suppose that & + Imf is in the kernel of Coker 3 — Coker~y, so that
for some ¢ € C we have ¢'(') = v(c). By exactness ¢ = g(b) for some b,
and since ¢'(V/ — B(b)) = ¢’ (V') — v(g(b)) = 0 exactness gives an a’ such that
f(a") =b — B(b). In particular ¥’ + Im (3 is the image of @’ + Im cv. O

B2 Complexes, Homology, and Cohomology

This section defines homology in general, and then specializes to the homology
of a chain complex and the cohomology of a cochain complex. We assume
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familiarity with the category concept, the definition of a functor, and the
definition of a natural transformation between functors.

Center stage will be occupied throughout by the category of R-modules
and R-module homomorphisms. Note that the category of abelian groups is
the special case R = Z. If @) is a second ring, a univariate functor T from the
category of R-modules to the category of Q-modules is additive if

T(f+f) =T +T()

for all R-modules M and N and all f, f’ € Homp(M,N). We will have no
reason to consider functors that are not additive.

An R-module with differentiation is an R-module X endowed with a ho-
momorphism d : X — X such that dod = 0. It is possible that d = 0, in which
case we say that the differentiation is trivial. If X’ is a second R-module with
differentiation, a morphism from X to X’ is an R-module homomorphism
f:X — X' such that d’ o f = f od, where d' : X’ — X’ is the differentiation
operator of X'. It is easy to see that R-modules with differentiation and their
morphisms constitute a category.

Let X be an R-module with differentiation, and let B(X) and Z(X) be the
image and kernel of d. Elements of B(X) are called boundaries and elements
of Z(X) are called cycles. The quotient module

H(X) = Z(X)/B(X)

is the homology module of X. If c € Z(X), then [c] = ¢ + B(X) is the homol-
ogy class of ¢, and c¢ is a representative of this class. Homology modules arise
in diverse contexts in mathematics, and stand in certain systematic relation-
ships with each other. Broadly speaking, homological algebra develops these
relationships in a systematically organized body of concepts and results.

If f: X — X' is as above, the condition d' o f = f o d implies that
f(B(X)) € B(X') and f(Z(X)) C Z(X'), so there is an induced homomor-
phism H(f): H(X) — H(X') taking [¢] € H(X) to [f(c)]. It is easy to check
that H is a functor from the category of R-modules with differentiation to the
category of R-modules. We will sometime regard H as a functor whose range
is the category of R-modules with differentiation by adopting the convention
that the differentiation in H(X) is always trivial.

A homotopy between two morphisms f,g : X — X’ is a homomorphism
s: X — X' such that g — f = d os+ sod. When such an s exists we say
that f and g are homotopic. When this is the case H(f) = H(g) because

g9(x) = f(2) = d(s(x)) — s(d(z)) = d'(s(x))

is a boundary whenever z € Z(X).
In many applications the module with differentiation is graded, with the
grading corresponding usually to some notion of dimension, and the differenti-
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ation operator passing between homogeneous submodules of adjacent dimen-
sion. A chain compler X is a diagram

X ..., Gz n+1%—+1’Xnﬂ’Xn—l 1
where each X, is an R-module, each d,, is an R-module homomorphism, and
dy odp+1 = 0 for all n, which is to say that Imd,, 11 C Kerd,,. Frequently the
groups are all 0 for negative indices, or outside some finite range, in which
case the diagram adjusts to reflect that.
We can identify the chain complex X with the R-module with differentia-
tion obtained by setting X = €,, X,,. Then

B(X):@Bn(X)v Z(X):@Zn(X)7 H(X):@Hn(X)

where, for each integer n,
B, (X) =Im(dyt1), Zn(X)=ZKer(d,), Hp(X)=2,(X)/Bn(X).

Since d,, 0 dy+1 = 0, B,(X) is a submodule of Z,(X), so this makes sense.
If € Z,(X), the associated homology class is [x] = x + B,(X). The chain
complex is said to be exact at X,, if B,(X) = Z,(X), which is to say that
H,(X) =0, and it is ezact of acyclic if it is exact at every X,,. Evidently
H,(X) measures the extent to which X fails to be exact at X,.

If X and X’ are chain complexes, a chain map f: X — X’ is a collection
of homomorphisms {f,} such that f, o dy41 = d'pt1 0 fng1 for all n. If
g: X' — X" is a second chain map, then go f is defined to be the collection of
homomorphisms {g, o f,}. Evidently go f is also a chain map, and it is easy
to see that there is a category of chain complexes and chain maps between
them.

If f: X — X’ is a chain map, where X’ is a second chain complex

dn+2 / dn+1 ; dn ’ dn—1
: n+1 Xn > Xn—l

then for each n, f,(B,(X)) C B, (X') and f,(Z,(X)) C Z,(X'), so there are
induced homomorphisms

Hy(f) + Ho(X) = Ho(X'), @+ Bp(X) = fu(z) + Bu(X').

It is now easy to see that H,, is a covariant functor from the category of chain
complexes of R-modules to the category of R-modules: H,(1x) = 1p,(x)
obviously, and if f': X’ — X" is a second chain map, then simply plugging
in the definitions gives

Hn(f, of)= Hn(f,) o Hyn(f).

In this subject it works well to keep notation spare, so when there seems
to be little danger of confusion we will often write f in place of H,(f).
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The homotopy concept specializes to chain complexes as follows. A chain
homotopy between two chain maps f,g: X — X’ is a collection of homomor-
phisms s, : X;, = X, ; such that

gn_fn:d;z-i—losn‘i‘sn—lodn

for all n. When such a thing exists we say that f and g are chain homotopic.
If this is the case, then the associated morphisms of R-modules are homo-
topic, so @,, Hn(f) = D,, Hn(g) and consequently H,(f) = Hy(g) for each
n. Concretely,

In(7) — fu(x) = d;z—l—l(sn(x)) — sp—1(dn (7)) = d;z—i—l(sn(x))

is a boundary whenever z € Z,,(X).
The definitions related to cohomology are obvious modications of the def-
initions above for homology. A cochain complex is a diagram

X ... ﬁanlﬂX"i,X"+1ﬂ

where each X" is an R-module, each d" is an R-module homomorphism, and
d" od" ! = 0 for all n. That is, a cochain complex is just a chain complex
with superscripts instead of subscripts and the directions of the morphisms
reversed or, if you prefer, with the numerical ordering of the indices reversed.

For each n € Z the modules of n-coboundaries and n-cocycles are B™(X) =
Im(d" 1) and Z"(X) = Ker(d") respectively. The n'* cohomology module of
X is

H"(X) = 2"(X)/B"(X).

We say that X is exact at X™ if H"(X) = 0. If it is exact at each X" we say
simply that X is exact or acyclic.

There is a category of cochain complexes and chain maps between them,
where a chain map f: X — X’ is a collection of homomorphisms {f™} such
that ffod™! = " Yo f"lforaln If f: X — X' is a chain map,
then f"(B™(X)) C B"(X’) and f"(Z™(X)) C Z"(X'), so there is an induced
homomorphism

H"(f): H"(X) - H"(X"), x4+ B"(X)~ f"(z)+ B"(X’).
It is easy to show that if f': X’ — X" is a second chain map, then
H"(f"o f)=H"(f') o H"().

That is, H™ is a covariant functor from cochain complexes to R-modules. As
with homology, we will often write f in place of H™(f) when confusion seems
unlikely.
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If X and X’ are cochain complexes, a chain homotopy between two chain
maps f,g: X — X' is a collection of homomorphisms s, : X;, = X/ _; such
that

gn_fn :dlnflosn_FSnJrlodn

for all n. As above, if f and g are chain homotopic, then H"(f) = H"(g).

As this discussion reflects, at this level of generality cohomology differs
from homology in only trivial ways, but in their applications homology and
cohomology differ significantly, with cohomology being in some ways more
potent. To some extent the difference arises out of a general tendency (or
perhaps convention) that covariant functors going to the category of chain
complexes are treated homologically, while contravariant functors are dealt
with using cohomology.

B3 Direct and Inverse Limits

This section (which is included for reference, and is not part of the logical
flow of this chapter) discusses direct limits of direct systems of R-modules
with differentiation. The main result is that passage to direct limits commutes
with homology. We will also present the definition of the inverse limit of an
inverse system of R-modules with differentiation. It turns out that passage to
inverse limits does not commute with homology.

Because the differentiation may be trivial, and R may be Z, the discussion
encompasses the definition of direct limits of direct systems of R-modules and
abelian groups. In fact it will be evident that these definitions are in fact
applicable to a wide range of categories. We will feel free to cite this section
as a reference for direct and inverse limits in this broader sense.

A directed set is a pair (I, <) in which I is a set and < is a partial ordering
of I such that for all U,V € I thereis W € [ with U < W and V < W. The
most obvious example is the natural numbers. In another important example
the elements of I are the neighborhoods of a point in a topological space,
and < is reverse inclusion, so that U < V when V C U. In the example that
underlies the definition of sheaf cohomology in FAC, I is the set of open covers
of a space and U < V if V is finer than U, in the sense that every element of
V' is a subset of some element of U.

Suppose that for each U € I we have an R-module Xy with differentiation
dy : Xy — Xy, and there is a system of morphisms f‘[,] : Xy — Xy for those
U and V with U <V such that f[[]] is always the identity and f‘l/] o fv‘(// = fvl{,
whenever U <V < W. These objects constitute a direct system of R-modules
with differentiation.

We say that zpy € Xy and 2y € Xy are equivalent if f{,{,(xU) = f&/,(xv) for
some W with U < W and V < W. (You should think through the verification
that equivalence is transitive.) Let [xy] denote the equivalence class of zy.
The direct limit (sometimes called the inductive limit) of the direct system
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is the set of all such equivalence classes. We define addition on this set by
specifying that if iy € Xy, 2y € Xy, and U,V < W, then

[zu] + [wv] = [t (z0) + fir(av)].

(Make sure you see why this definition is independent of the choice of repre-
sentatives.) Scalar multiplication and differentiation are defined by requiring
that

rlzy] = [rey] and  d([zy]) = [du(zv)]-

It is easy to verify that these operations make the direct limit an R-module
with differentiation, which we denote by

liquU.
For each V' let fy : Xy — liﬂXU be the homomorphism zy — [zy].

The direct limit is characterized up to isomorphism by the following uni-
versal property: if Y is an R-module with differentiation and there is a system
of homomorphisms g7 : Xy — Y such that gy o f‘g = gy whenever U < V|
then there is a unique homomorphism g : lingU — Y such that gy = go fi
for all V. To see this observe that, if it exists, g must satisfy g([zv]) = gv (xv)
for all V and xy € Xy . There is no difficulty showing that this formula de-
fines ¢ unambiguously, in the sense that it does not depend on the choice of
the representative xy of the equivalence class [zy], and that this function is a
homomorphism. In addition, if X’ is a second R-module with differentiation
for which there are homomorphisms fj; : Xy — X' satisfying this condition,
then this condition gives homomorphisms lim Xy — X "and X' — lim X7
that are (by virtue of the uniqueness requirement) inverse isomorphisms.

Now note that, because homology is a functor, the R-modules (with trivial
differentiation) H(Xy) and homomorphisms H(fY) are also a direct system.

Proposition B3.1. If {Xy : U € I} and {fY : U <V} is a direct system of
R-modules with differentiation, then (up to isomomorphism)

lim H(Xy) = H(lim Xy).

Proof. Suppose we have an R-module with differentiation Y and a system
of homomorphisms gy : H(Xy) — Y such that gy o H(f{/) = gu whenever
U < V. It is straightforward to check that the formula

9([zu] + B(X)) = gu(2v + B(Xv))

gives a well defined (in the sense of independence of choice of representatives)
homomorphism g : H(X) — Y satisfying gy = g o H(fy) for all U. O

We now turn to the definitions of inverse systems and inverse limits. Sup-
pose that for each U € I we have an R-module with differentiation X, and
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there is a system of homomorphisms f[‘]/ : Xy — Xy for those U and V with
U < V such that fg is always the identity and f[‘J/ o f“}/ = f(‘J/V whenever
U <V < W. These objects constitute a inverse system of R-modules.
The inverse limit (or projective limit)
im X
of this inverse system is the R-module with differentiation consisting of those
(zv)ver € [lye; Xu such that fY(zy) = zy whenever U < V. (Addi-
tion, scalar multiplication, and differentiation are defined componentwise, of
course.) For each V let fV : @XU — Xy be the projection (xy)yer — xy.

The inverse limit can also be characterized by a universal property. Specif-
ically, if Y is an R-module and there is a system of homomorphisms gy : ¥ —
Xy such that fl‘J/ o gy = gy whenever U < V, then there is a unique ho-
momorphism g : ¥ — @XU such that gy = go fy for all V. Of course
9(y) = (9u(y))ver.

Since passage to inverse limits does not commute with homology, there
is nothing to prove, but we can say a few words about why this fails. First,
there is an obvious homomorphism B(@ Xy) — @B(XU) that is easily
seen to be injective, but may fail to be surjective. Second, suppose that
for each U, Yy is a submodule of Xy, and that fY(Yy) C Yy whenever
U < V. (If we like we can require that di(Yy) C Yy for all U, but this doesn’t
have anything to do with the point.) Then there is a natural homomorphism
I.&HXU/I.&HYU — I'&HXU/YU that is easily seen to be injective, but again it
may fail to be surjective.

B4 The Long Exact Sequence

Long exact sequences probably strike the uninitiated as a bit baroque, but one
quickly becomes accustomed to them because they are very useful in comput-
ing many things, and figure in axiomatic characterizations of various concepts.
We first develop the idea in the context of modules with differentiation. This
is more general, and in addition, for certain topics it presents a framework
that is simpler, notationally and in other senses. In this way we will benefit
from a general result to support this style of analysis.
We say that a diagram

of R-modules and homomorphisms is an exact triangle if:

Imf=Kerg, Img=Kerh, Imh=Kerf.
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Proposition B4.1. If0 — A —» B2+ C =0 is a short exact sequence
of R-modules with differentiation, there is an exact triangle

(4) H(C)
H(B)

in which the connecting homomorphism /A has the following description: the
image of [c] € H(C) in H(A) is the homology class [a] of a = i~1(d(b)) for
some b € p~1(c).

Proof. The snake lemma, applied to the diagram

A—.p- Lt . ¢ 0
d d d
0 cA—".p-L.¢C

asserts that we can define 0 : Z(C) — A/B(A) by letting d(c) = a+ B(A) for
some a € A and b € B such that i(a) = d(b) and p(b) = c. We recall that this
map is well defined because: 1) p(d(b)) = d(p(b )) p(c) =0,s0b € i(A), and
2) if &’ is another element of p~1(c), and o’ = i~ (d(b')), then v/ — b = i(a) for
some G € A because p(b' —b) = 0, so d(a) = i~*(d(i(a))) = i~ (d(t — b)) =
a' — a, whence ¢’ + B(A) = a + B(A).

Moreover, the snake lemma asserts that the sequence

Z(A) = Z(B) — Z(C) -2+ A/B(A) — B/B(B) — C/B(C)

is exact. We claim that the first three maps induce maps of homology modules,
and that we can restrict the final three spaces to homology modules, thereby
obtaining.

H(A) = H(B) — H(C) —>+ H(A) — H(B) — H(C).
Specifically, the derived sequence is well defined because
i(B(A)) € B(B),  p(B(B)) C B(C),  9(B(C)) =0,
A(Z(C)) C H(A), i(Z(A) C Z(B), and p(Z(B)) C Z(C).

The first, second, fifth, and sixth containment are consequences of commuta-
tivity. To see the third observe that if ¢ = d(¢), p(t/) = ¢, then p(d(V')) = ¢
and d(d(b')) = 0, so that we can take b = d(b') and a = 0 in the definition of
d(c). For the fourth, observe that if i(a) = d(b) and p(b) = ¢ € Z(C), then
d(a) = i~ '(d(i(a))) = i~ (d*(b)) = 0.

Clearly the composition of any two successive maps in the derived sequence
is zero, so exactness follows from the following observations:
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e If b e Z(B) and p( ) € B(C), say because p(b) = d(¢), then there is b’
such that p(b') = ¢/. Since p(b — d(b')) = 0 there is an a € A such that
i(a) = b—d(). Now i(d(a)) = d(i(a)) = 0, so a € Z(A) because i is
injective, and we have [b] = i([a]).

e If ce Z(C), p(b) = ¢, i(a) = d(b), and a = d(a’), then d(b —i(a’)) =0
and [¢] = p([b —i(a)]).

e Ifa e Z(A) and i(a) € B(B), say because i(a) = d(b), then a = d(p(b)).
In addition, p(b) € Z(C') because d(p(b)) = p(d(b)) = p(i(a)) = 0, so
[a] = A([p()])-

There is a category of exact triangles in which a morphism from the triangle

above to a second one
h/
A’ C’
k y
B/

is a triple of homomorphisms a: A — A’, 3: B — B’, v: C — C’ such that
the following diagram commutes:

f

A B C A
of ol L el
A/ f/ B/ g/ Cl h/ A/.

Theorem B4.2. There is a covariant functor from the category of short exact
sequences of R-modules with differentiation to the category of exact triangles

thattakesO%A—i>B—p>C’—>Ot0

H(A) H(C
)

H(B

The functor maps a morphism

0 A » B C >0
f g h
0 A B ' 0

of short exact sequences of R-modules with differentiation to the morphism of
exact triangles given by H(f), H(g), and H(h).
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Proof. What remains after the last result is to show that we have defined a
functor from short exact sequences of R-modules with differentiation to exact
triangles. Much of this follows from the fact that H is a functor. First, the
image of a composition of morphisms in the domain category agrees with
the composition of the image morphisms. We have to show that for a given
morphism of short exact sequences, the diagram

H(4) —— m(B) —L— H(C) H(A)

R N

H(A) HB) —L v —=— H(A).

commutes. For the first two squares this follows from the commutativity of
the corresponding diagram for the given morphism and the fact that H is a
functor.

We now show that the third square commutes. Suppose that ¢ € Z(C),
with p(b) = ¢. Then p(d(b)) = d(p(b)) = 0, so d(b) = i(a) for some a € A. Let
a = f(a), ¥ = g(b), and ¢ = h(c). Then a’ and ¢’ are cycles because a and ¢
are. In addition,

and
i'(a') =i'(f(a)) = g(i(a)) = g(d(b)) = d'(g(b)) = d'(V'),
so [@'] = A'([¢]). Therefore

O

The next two results are immediate consequences of Theorem B4.2 once
one recognizes that the images of H,,(C') and H"(C') under the respective con-
necting homomorphisms are contained in H,_1(A) and H""1(A) respectively,
by virtue of the connecting homomorphism’s description.

Proposition B4.3. There is a functor from the category of short exvact se-

quences 0 — A —.B-2.Cc =0 of chain complexes to the category of
exact sequences of R-modules with the following properties:

(a) The image of 0 — A e B¢ 0 s the long exact sequence

s Hy(A) = Hy(B) —2 H(€) 2 Hyoy(A) — -

where the connecting homomorphism 0,, has the following description:
the image of [c] € Hy,(C) in H,_1(A) is the cohomology class of the
preimage, in A,_1, of the image, in B,_1, of a preimage of ¢ in By,.



74 CHAPTER B. ELEMENTS OF HOMOLOGICAL ALGEBRA

(b) The functor maps a morphism

0 A - B C -0
f g h
0 A B C’ 0
of short exact sequences of chain complexes to the chain map

— Hu(A) —— H,(B) —— H,(C) ﬁ» n-1(4) —

S B B
o HA(A) — Ho(B) — Ho() L )

Proposition B4.4. There is a functor from the category of short exact se-

quences 0 — A —.B-t.Cc>0 of cochain complexes to the category of
exact sequences of R-modules with the following properties:

(a) The image of 0 — A e B2 050 is the long exact sequence
C— BHY(A) — B(B) 2~ B(C) L H(A) —— -

where the connecting homomorphism 9™ has the following description:
the image of [c] € H™(C) in H""Y(A) is the cohomology class of the
preimage, in A" of the image, in B, of a preimage of ¢ in B™.

(b) The functor maps a morphism

0 A » B C >0
f g h
0 A B ' 0

of short exact sequences of cochain complexes to the chain map
n n n o" n+1
— H"(A) —— H"(B) —— H"(C) — H"" (A4) —
o
— H"(A') — H"(B') — H"(C") — H"™}(A") —
B5 Left and Right Exact Functors

In this section we will study ways in which exactness may be preserved, in
whole or in part, when an additive functor is applied to a short exact sequence.
We begin with a situation that is guaranteed to work out nicely.
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Lemma B5.1. For a short exact sequence 0 — A e B-2.C =0 the
following are equivalent:

(a) there is a homomorphism j: B — A such that joi = 1y4;
(b) there is a homomorphism q : C'— B such that po q = 1¢;

(c) there are homomorphisms j: B — A and q : C — B such that ioj+qo
p=1p.

When these conditions hold we say that the sequence splits, and that j
and g are splitting maps.

Proof. We first show that (a) and (b) each imply (c). If (a) holds, then
jo(lp—ioj)=j—140j =0, so the image of 15 — i o j cannot contain
any nonzero element of the image of 7, which is the kernel of p. Thus the
restriction of p to the image of 15 — 7 o j is injective, and it is surjective
because po (1p —io0j) =p. Let ¢ be its inverse. Now

lp—ioj=gqopo(lg—ioj)=qop.

If (b) holds, then po(1p —gop) = 0, so the image of 15 —gop is contained
in the image of 7, and since 7 is injective we can define j to be the composition
of 15 — g o p with the inverse of i, so that toj =1 —qop.

Now suppose that (¢) holds. Then

i=(ioj+qgop)oi=io(joi)and p=po(ioj+qgop) = (poq)op.

Since 4 is injective, j o ¢ = 14, and since p is surjective, p o ¢ = 1¢. That is,
(a) and (b) hold. O

Fix a second ring ), and let T be an additive covariant functor from the
category of R-modules to the category of (Q-modules.

Proposition B5.2. If the exact sequence 0 — A N B-Lt.cCc=0 splits,

then 0 — T'(A) e, T(B) ), T(C) — 0 is an ezxact sequence that splits.

Proof. Of course T'(p) o T'(i) = T'(poi) = 0, which is to say that the image of
T'(i) is contained in the kernel of T'(p). Let j and ¢ be splitting maps. Then
T(j) o T(i) = 1pay and T(p) 0 T(q) = 1p(cy, so T(i) is injective and T'(p) is
surjective. We also have

1y =T(1p)=T(ioj+qop)=T(i)oT(j)+T(q)oT(p)

This will show that the sequence splits, but first we need to observe that it
also implies that the kernel of T'(p) is contained in the image of T'(i), so that
the sequence is exact. ]
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We say that T is ezact if 0 - T'(A) — T(B) — T(C) — 0 is exact when-
ever 0 > A = B — C — 0 is exact. A number of important functors are
exact, perhaps most notably localization (Proposition A5.1), but the proper-
ties of such functors are not an important motivation for homological algebra,
perhaps precisely because they are unproblematic.

Instead, homological algebra is principally concerned with certain functors
that satisfy weaker conditions, specifically the bifunctors Homp(—,—) and ~®p
— that will be introduced in Section B7. We say that T is left exact (resp. right
exact) if 0 - T'(A) — T(B) — T(C) (resp. T(A) — T(B) — T(C) — 0) is
exact whenever 0 - A — B — C — 0 is exact. Note that T is exact if and
only if it is both left and right exact.

Exactness, and left and right exactness, imply superficially stronger con-
ditions.

Lemma B5.3. The covariant functor T is exact (resp. left exact, right exact)
if and only if T(A) — T(B) — T(C) (resp. 0 — T(A) — T(B) — T(C),
T(A) - T(B) = T(C) — 0) is exact whenever A — B — C (resp. 0 - A —
B—C,A— B—C—0)is exact.

Proof. In all three cases the ‘if’ is immediate. To prove the converses let
A — B — C be exact. If we set

A" =Ker(A — B), B =Im(4A— B)=Ker(B— (), C'=Im(B— C),
then the sequences
0—-A—-A—-B -0, 0B —-B—-C —0,

and

0-C'-C—=C/C'"=0

are all exact.
First suppose that T is exact. Application of T' gives three short exact
sequences, from which we extract, respectively,

T(A) - T(B)—0, T(B)—T(B)— T,

and
0— T(C") = T(C).

In view of the second of these, it suffices to show that the image of T'(A) —
T(B) is the image of T(B’) — T(B) and the kernel of T(B) — T(C) is the
kernel of T(B) — T(C"). Since A — B is the composition A — B’ — B,
T(A) — T(B) is the composition T'(A) — T(B’) — T(B), so the first of the
derived sequences implies that the image of T(A) — T'(B) is the image of
T(B') — T(B). Similarly, B — C' is the composition B — C" — C, so the
third implies that the kernel of T(B) — T'(C) is the kernel of T'(B) — T'(C").
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Now suppose that T is left exact. We may suppose that 0 - A - B — C
is exact, which is to say that A’ = 0. Applying T to the exact sequences

0-A—-B -0, 0B —-B—-C =0, 0=-C —C—(C/C"—0,

left exactness is enough to give the same exact sequences as above, and the
argument of the last paragraph shows that T'(A) — T'(B) — T'(C) is exact. In
addition, we actually have exactness of 0 — T'(4) — T'(B’) and 0 — T(B’) —
T(B), so the composition T'(A) — T'(B’) — T(B) is injective.

Similarly, if 7" is right exact we may suppose that A - B — C — 0 is
exact, which is to say that C' = C. Applying T to the exact sequences

0+A—-B —+B—-0, 0B -B—-C =0, 0=C —C-—=0,

we again obtain the exact sequences above and can then show that 7'(A4) —
T(B) — T(C) is exact. Furthermore, since ¢’ = C, right exactness implies
that T'(B) — T(C) — 0 is exact. O

Now let U be a contravariant functor. The proof of the following assertion
is dual to the corresponding argument above, hence omitted.

Proposition B5.4. If the exact sequence 0 — A . B-L.Cc>0 splits,
- ;

then 0 — U(C) —2+ U(B) —— U(A) — 0 is an ezact sequence that splits.

We say that U is ezxact if 0 — U(C) — U(B) — U(A) — 0 is exact
whenever 0 - A — B — C — 0 is exact. If, for any exact sequence of
R-modules 0 - A — B — C' — 0, the sequence 0 — U(C) — U(B) — U(A)
(U(C) - U(B) - U(A) — 0) is exact, then we say that U is a left exact
(right exact). The proofs of the following assertions are again dual to those
above and omitted.

Lemma B5.5. A contravariant functor U is exact (resp. left exact, right ex-
act) if and only if U(C) — U(B) — U(A) (resp. 0 - U(C) = U(B) = U(A),
UC) - U(B) - U(A) — 0) is eract whenever A — B — C (resp. A —
B—-C—0,0—-A—B—C)is ezact.

One important consequence of this result and Lemma B5.3 above is that
half exactness can be inherited by compositions of functors. For example, if
Q = R, T is left exact, and U is right exact, then the composition M +—
U(T(M)) is a right exact contravariant functor.

B6 The Two Main Bifunctors

A bifunctor F whose first argument takes values in the category A, whose
second argument takes values in the category B, and whose range is the cat-
egory C, associates a functor F(A,—) from B to C with each object in A and
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and a functor F'(—, B) from A to C with each object in B. These must agree
in the sense that the object assigned to B by F(A,—) must be the same as the
object assigned to A by F(—, B). We require that either F'(A,-) is covariant
for all A, or it is covariant for all A, and similarly for the second argument.
Thus there are four types of bifunctors, according to the variances. If F is
covariant in both variables, then we insist that

F(f,B')o F(A,g) = F(A',g) o F(f,B)

for all morphisms f : A — A’ and g : B — B’, and we define F(f,g) to
be the common value of these two compositions. For each of the three other
types of bifunctor the obvious analogous requirement is imposed. Trifunctors,
quadrafunctors, and so forth, are defined analogously, but will rarely figure
in our discussion. We say that F' is additive if, for all A and B, F(A,-) and
F(-, B) are additive univariate functors. We will have no reason to consider
bifunctors that are not additive. indexadditive bifunctor

If F' is a bifunctor taking pairs of R-modules to Q-modules, we say that F'
is right exact if F(M,-) and F(—, N) are right exact for all M and N, and F
is left exact is F(M,-) and F(—, N) are always left exact. In these definitions
F could be covariant or contravariant in either variable. It is possible that
F could be right exact in one variable and left exact in another, but such
functors are uncommon in practice, so we do not specify terminology for these
cases.

The central focus of homological algebra is a pair of bifunctors whose
domain and range categories are categories of modules over a ring. For
R-modules M and N, Hompg(M,N) is the set of R-homomorphisms from
M to N. For a given R-module M, there is an additive covariant functor
Homp(M,~) where, if g : N — N’ is a morphism,

Hompg(M, g) : Homg(M, N) — Hompg(M, N")

is the function ¢ +— go . Similarly, there is an additive contravariant functor
Hompg(—, M) where, for f € Hompg(M, M’),

Hompg(f, N) : Hompg(M', N) — Homp (M, N)
is the function ¢ — @ o f. Evidently
Hompg(M’, g) o Hompg(f, N) = Hompg(f, N') o Hompg(M, g)
because they both take ¢ to fo ¢ og, so Homp(— —) is a bifunctor.

Proposition B6.1. Hompg(—, -) is left exact.

Proof. First consider a short exact sequence 0 — N’ ——~ N —2+ N” — 0.

For an R-module M the sequence

0 — Homp(M, N') —— Homp(M, N) —~ Homp(M, N")



B6. THE TWO MAIN BIFUNCTORS 79

is exact at Homp(M, N') because the injectivity of ¢ implies that i o f # 0
whenever 0 # f € Hompg(M,N’). Since Hompg(M,-) is a functor, poi = 0
implies p’oi’ = 0. On the other hand, if ¢ € Hompg(M, N) and p'(g) = pog = 0,
then the given exactness implies that g =i o f for some f € Hompg(M, N').

Now consider a short exact sequence 0 — M’ —— M —2+ M" — 0 and
an R-module N. The sequence

0 — Homp(M", N) —*+ Homp(M, N) —+ Homp(M', N)

is exact at Homp(M"”, N) because the surjectivity of p implies that hop # 0
whenever 0 # h € Homp(M"”, N). Since Hompg(—, N) is a functor, poi = 0
implies ¢’ op’ = 0. On the other hand, if g € Hompg(M, N) and ¢/ (g) = goi = 0,
then the given exactness implies that g = hop for some h € Hompg(M"”, N). O

The second main example is the tensor product, which has already been
introduced in Chapter A. In addition to the discussion there, at this point it
is only necessary to say that we did verify that — ®p — is a bifunctor (without
using that term) and that this bifunctor is obviously additive.

Proposition B6.2. —®pg — is right exact.

Proof. By symmetry, it suffices to show that M @p — is right exact. Consider

a short exact sequence 0 — N’ ——~ N —2+ N’ — 0. The sequence

M@ N ——~ M&r N -2+ MogN" =0

is exact at M ®g N” because the surjectivity of p implies that every m ® n”
is in the image of p’. Since poi =0 and M ®p — is a functor, p’ o7’ = 0.

It remains to show that Kerp’ = Imi'. Since p’ o = 0, p’ induces a
homomorphism u : Cokeri — M ® N”. If we can show that u is injective, we
will be done.

Since M ®r Imi C Im ¢, there is a surjection v : M ® Cokeri — Coker 7.

For m € M and n” € N” choose n € p~1(n”) and let p(m,n”) denote the
image of m ®n in M ® g Cokeri. The difference between two preimages of n”
is an image of i, so p(m,n”) does not depend on the choice of n. Evidently ¢
is R-bilinear. Therefore the universal property characterization of the tensor
product (Proposition A6.1) gives a unique homomorphism w : M @ N” —
M ®p Cokeri such that w(m @ n”) = p(m,n”).

Starting with m ® n”, pick some n € p~(n”). Then w(m ® n”) is the
image of m®n in M ®p Coker i, v(w(m®mn")) is the image of this in Coker ¢,
and u(v(w(m ®@n"))) =m @n”. Thus uovow is the identity, so « must be
injective. ]

Although the univariate functors derived from Homp(—,—) and —®p — are
not exact in general, for any particular M the derived univariate functors can
be exact. This gives three very important properties of M-modules. Specifi-
cally, M is:
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(a) projective if Homp(M,—) is exact;
(b) injective if Hompg(—, M) is exact;
(¢) flat if M ®r — and —®p M are exact.

These are the respective topics of the next three sections.

Historically, injective modules appeared first, in work by Baer in 1940.
Projective modules were introduced in CE. Flat modules were introduced by
Serre (1956) in the famous paper Géométrie Algébrique et Géométrie Ana-
lytique, which came to be known as GAGA, and they have been important
in homological algebra and algebraic geometry since then. Projective and in-
jective modules figure prominently in the further development of the subject,
and will be treated in a parallel manner, both in the next two sections and
in the first two section of Chapter C, even though there are some important
differences. Eventually we will see that when R is Noetherian, a finitely gen-
erated R-module is projective if and only if it is flat, but nevertheless flatness
will have independent significance throughout the remainder.

B7 Projective Modules

Let M and N be R-modules. We say that N is a direct factor of M if there
is a third R-module L such that L & N and M are isomorphic. Two other
characterizations of this situation occur frequently.

Lemma B7.1. For R-modules M and N the following are equivalent:

(a) N is a direct factor of M.

(b) there are homomorphisms p : M — N and q : N — M such that
poq=ln.

(c) there is a short exact sequence 0 — L oM P N0 that splits.
Proof. If (a) holds, then p : (I,n) — n and ¢ : n — (0,n) satisfy (b). If (b)
holds, then ¢ is a splitting map for 0 — Ker(p) - M — N — 0, so (c) holds.
If (c¢) holds, and ¢ : N — M splits the sequence, then i ®q: L & N — M is
an isomorphism, so (a) holds. O

Proposition B7.2. For an R-module P the following are equivalent:

(a) P is projective.



B7. PROJECTIVE MODULES 81

(b) Whenever f : P — N and g : M — N are homomorphisms, with g
surjective, there is a homomorphism h : P — M such that f = go h.

P
.
f
M- g N

(c) Any exact sequence 0 — K e M-tep o splits.
(d) P is a direct factor of a free module.
Proof. Since Homp(P,—) is left exact, P is projective if and only if
Hompg(P, M) — Homp(P,N) — 0

is exact for each short exact sequence 0 — L — M — N — 0. That is, (a)
and (b) are equivalent.

If0o—>K—M-2+P0is exact, applying (b) with N = P, f = 1p,
and g = p, gives a map ¢ : P — M such that poq = 1p. Thus (b) implies (c).

Let F be a free module on any set of generators of P, let p : I — P be
the natural projection, let K be the kernel of p, and let ¢ : K — F be the
inclusion. Now (c) implies that P satisfies the last condition in the result
above, so P is a direct factor of F.. Thus (c) implies (d).

Suppose that P is a direct factor of a free module F', so that there are
homomorphisms p : FF — P and g: P — F with poqg=1p. Let f: P > N
and g : M — N be as in (b). A homomorphism j : F — M such that
fop = gojisinduced by any assignment of an element of g~(f(p(x))) to
each x in a basis of F'. Let h = j o q. Then

goh=gojogq=fopog=f.
Thus (d) implies (b). O

Criterion (d) allows us to easily prove that projectivity is preserved by a
change of ring:

Proposition B7.3. If S is an R-algebra and P is a projective R-module, then
S ®pr P is a projective S-module.

Proof. If F' is a free R-module, then S ®p F is a free S-module. Concretely,
if {fa} is a basis for F, let N be the free S-module on the set of generators
{1® fa}. Then there is an obvious bilinear ¢ : S x F' — N, and any bilinear ¢
with domain S x F' is k o ¢ where k is the obvious homomorphism. Therefore
(Proposition A6.1) S ®@r F' = N.

Ifi: P— F and p: F — P are homomorphisms with poi = 1p, then
(1s®rp)o(ls®ri) = 1sg,p. Thus S®p P is a direct factor of S@r F. O
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Let P be a projective R-module. This result implies that if I is an ideal,
then P/IP is a projective R/I-module, and if S C R is a multiplicatively
closed set, then S™'P is a projective S~'R-module. But note that if P is
a projective R-module, then S™!P may not be a projective R-module. For
example, Z is a projective Z-module, of course, but Q = (Z \ {0})~'Z cannot
be a projective Z-module because a homomorphism from Q to a free Z-module
is, in effect, a cartesian product of homomorphisms from Q to Z, and the only
such homomorphism is zero.

There is also the following intriguing result.

Proposition B7.4. A projective R-module is flat.

Proof. Let P be projective. By symmetry, proving that P ® — is exact is
enough, and since it is right exact, it suffices to prove that

1p®f:PRrA— PorB

is injective whenever f : A — B is an injective homomorphism.

Proposition B7.2 gives a free module F' and homomorphisms ¢ : P — F
and p : F — P such that p o q is the identity. Let F' = ®;c;R; where each
R; is a copy of R. Since tensor product commutes with direct sum (Lemma
A6.2) we have

F@rA=(®;R)®r A=®i(R; ® A) = ;A
where each A; is a copy of A. Similarly, F' ®r B = &;B;, and evidently
1prRf: FQrA— FRrBis &, f; : ®;4; — ®;B; where each f; : A; — B; is

a copy of f. In particular, 1 ® f is injective.
Now observe that

g14: PRrA—-F®rA and gq1g:P®r B — FQrB

are injective because in each case (p®1)o(q® 1) = (poq) ® 1 is the identity.
We now have the commutative diagram

PerA Lr®f, P®rB

(I®1Al lQ®lB

FoprA X% porB

in which the vertical maps and the lower map are injections, so the upper map
must also be an injection. O

It is easy to see that if f : A — B is an injective Z-module homomorphism,
then 19 ® f : Q ®z A — Q ®z B is injective, so Q is Z-flat. But the only
homomorphism from Q to Z, or from Q to any free Z-module, is zero, so Q is
not Z-projective. However, later in this chapter we will see that a flat module
is projective if it is finitely presented.
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B8 Injective Modules

Paralleling the description of projective modules above, there are the following
alternative characterizations of injective modules. Another important charac-
terization will be developed later, after we have shown that every R-module
can be embedded in an injective R-module.

Proposition B8.1. For an R-module J the following are equivalent:
(a) J is injective.

(b) Whenever f : L — J and g : L — M are homomorphisms, with g
injective, there is a homomorphism h: M — J such that f = hog.

(c¢) Whenever f: L — J and g: L — M are homomorphisms with Ker(g) C
Ker(f), there is a homomorphism h : M — J such that f = hog.

(d) (Baer’s Criterion) For any ideal I of R, every R-homomorphism I — J
can be extended to an R-homomorphism R — J.

Proof. Since Homp(—, J) is a left exact contravariant functor, J is injective if
and only if
Homp(M,J) — Hompg(L,J) = 0

is exact for each short exact sequence 0 - L — M — N — 0, which is
precisely (b). Thus (a) and (b) are equivalent.

Clearly (c) implies (b). For the converse suppose that Ker(g) C Ker(f),
and let f : L/Ker(g) — J and § : L/Ker(g) — M be the obvious derived
maps. Then g is injective, so there is an h : M — J such that f =hog. Let
m: L — L/Ker(g) be the map ¢ — ¢+ Ker(g). Then

f=fom=hogom=hog.

It now suffices to show that (b) and Baer’s criterion are equivalent, and it
is easy to see that (b) implies Baer’s criterion: put L = I and M = R. So,
suppose that Baer’s criterion holds, let f : L — J be given, and suppose that
L is a submodule of M. (This formulation of the given data of (b) eases the
discussion.)

Let A be the set of ordered pairs (N, j) where N is a submodule of M that
contains L and j : N — J is a homomorphism such that j|;, = f. We write
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(N,j) < (N',j/)if N C N" and j'|y = j; this is a partial ordering of A, and
the union (in the obvious sense) of any chain in this ordering is an element of
A that is an upper bound of the chain. Therefore Zorn’s lemma implies that
A has a maximal element (N, j).

Aiming at a contradiction, suppose there is some m € M \ N. Let

I=(N:m)={reR:rmeN},

let @ : I — J be the homomorphism «(r) = j(rm), and let 3: R — J be an
extension. We can now set N = N + Rm and define an extension j : N — J
of j by setting

jn+rm) =jn)+ p(r).
This is unambiguous because if n’ + 7'm = n + rm, then ' —r € I, and

j(') + B(r") = j(n) = B(r) = j(n' = n) +j((r' = r)m) = 0.
Since (N, j) contradicts the maximality of (N, ), the proof is complete. [
Direct sums and products of injective modules are injective.

Lemma B8.2. A direct sum J = @, Jo (or a direct product J =[], Ja) of
R-modules is injective if and only if each J, is injective.

Proof. The proof will be based on (b) of Proposition B8.1 as the criterion for
injectivity. Let homomorphisms f: L — J and g : L — M be given, with g
injective.

The proofs for the two constructions are exactly the same. For each « let
la : Jo — J and po 1 J — J, be the usual inclusion and projection. First
suppose that each J, is injective. Then for each « there is h, : M — J, such
that ho0g = po o f. These combine to give h : M — J with p,ohog = pyo f
for all a, which means (by virtue of the universal property characterizing the
direct product, if you like) that ho g = f.

Now suppose that J is injective, and for some « consider a homomorphism
fa: L = Ju. There is a homomorphism h : M — J such that ho g =i, 0 fq,
and p,, o h has the desired property: (p, o h)og = fa. O

An abelian group G is divisible if, for each ¢ € G and nonzero integer n,
there is some ¢’ € G with ng’ = ¢g. An abelian group is the same thing as a Z-
module, so divisibility amounts to Baer’s criterion: any homomorphism from
an ideal (n) to G has an extension to Z. Thus an abelian group is divisible if
and only if it is an injective Z-module. The prototypical injective Z-module is
Q. As this example suggests, in contrast to projective modules (e.g., R itself
is always projective) for many rings nonzero injective modules are necessarily
quite “large” in relation to the ring, and are rarely finitely generated.

We will need to know that any quotient of a divisible group is divisible.
The logic of the proof is a bit more general.
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Proposition B8.3. If R is a PID, J is an injective R-module, and L is a
submodule of J, then J/L is injective.

Proof. We show that J/L satisfies Baer’s criterion. Let ¢ : I — J/L be a
homomorphism whose domain is an ideal I C R, and let 7 : J — J/L be the
quotient map. Choose i € R and j € J such that I = (i) and (i) = j+ L. A
PID is an integral domain, so the formula ¢'(ri) = r¢ unambiguously defines
a homomorphism ¢’ : I — .J such that mo ¢’ = . Baer’s criterion for .J gives
an extension ¢’ : R — J of ¢/, and 1) = w o)’ is an extension of ¢. O

Corollary B8.4. Q/Z is an injective Z-module, and consequently it is divis-
ible.

B9 Flat Modules

The geometric interest of flatness depends in large part on it being a local
property in the sense of the following result.

Lemma B9.1. For an R-module M the following are equivalent:
(a) M is flat;
(b) for any multiplicatively closed set S C R, S™*M is a flat S~' R-module;
(c) for any maximal ideal m, My, is a flat Ry-module.

Proof. That (a) implies (b) follows from the fact (Lemma A6.6) that for any
S~!R-module N, S~'M ®g-15g N = M ®g N. Of course (b) implies (c).

Suppose that (c) holds, let N' — N be an injection, and let L be the kernel
of NN@r M — N ®r M, so there is an exact sequence

0L >N ®rM—N®rM.
For any maximal ideal m the sequence
0= L®p, Rn = (N'®r M) ®r Ry — (N @ M) @p Ry

is exact because (Proposition A6.8) Ry, is a flat R-module. Now Lemma A6.6
and Proposition A6.5 give

(N/®RM)®RRm:(N/®RM)m:Nr,n®RmMm’

and similarly for N. The hypothesis implies that N}, ® g, Mm — Nu ®@r,, Mm
is injective, so L ® g R = Ly = 0. Since this is true for any m, Lemma A5.8
implies that L = 0. U

We now give a minimal sufficient condition for flatness that is an analogue
of Baer’s criterion for injectivity.
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Proposition B9.2. For an R-module M the following are equivalent:
(a) M is flat.

(b) Whenever i : K — L is an injection, i @ 1y : K Qg M — L @r M is
injective.

(c) For every ideal I, I @ M — R ®@p M = M 1is injective.

Proof. Because — ®@p M is right exact, (a) and (b) are equivalent. That (b)
implies (c) is trivial, so we only need to show that (c) implies (b).

First suppose that L is free of finite rank, i.e., L = R" for some n. If n =1
then K is an ideal, and injectivity holds by assumption. By induction we may
assume that n > 1, so L = L1 ® Ly where L and Ly are free modules of
smaller rank, for which the claim may be assumed to hold. Let K1 = K N L,
and let K5 be the image of K in L/L; = Ly. We have the following diagram
with exact rows:

K1 K K2 >0
L1 - L ‘LQ >0

Since — ®pr M is right exact, the diagram
Ki®prM — KQr M — Ko@p M ——— 0

oo

Li®prM — LM — Lo®@r M 0

also has exact rows. The induction hypothesis implies that 8 and § are injec-
tive, and ¢ is injective because L is a direct factor of L. (If the composition
Ly ——~ L —2+ L, is the identity, then (p ® 1y7) 0 (i ® 1) = 11, 05M-)
Therefore Lemma B1.1 (a) implies that « is injective.

Now suppose that L is free, but not necessarily of finite rank, and that
{litier is a basis. Any z € K ®g M is a finite sum }_, k; ® m;, and each k;
is a linear combination of the ¢;, so there is a finite Iy C I such that z is in
the image of (K N Ly) ®p M — K ®pr M, where Ly is the submodule of L
generated by {¥;}icr,. From above we know that (K NLy) ®gr M — Lo®@r M
is injective, and Lo®@r M — L ®pr M is injective because Lg is a direct factor,
so if « goes to zero in L ® g M, then 0 is its only preimage in (K N Ly) @p M.

Now let L be arbitrary, and let 0 - Z — F' — L — 0 be exact, where F
is free. (For example F' could have the elements of L as its set of generators.)
Let £ C F be the preimage of K. There is a commutative diagram with exact
rows which, when tensored with M, gives

ZRIrM — EQp M — K®r M 0
| d |
Z®RM—>F®RM—>L®RM 0.
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The rows here are also exact, « is the identity, and g is injective, so (after
adding a pair of zeros on the right) the five lemma implies that v is injective.
O

There is also a characterization of flatness in terms of what we thought
algebra was when we were in high school. A relation ), rym; = 0in M is trivial
if there are m/,...,m;, € M and ring elements a;; such that z; = Zj al-jm;
for all 4 and ), rja;; = 0 for all j.

Proposition B9.3 (Equational Criterion for Flatness). M is flat if and only
if every relation in M is trivial.

Proof. Suppose that M is flat, so I ® g M — R ®r M is injective for every
ideal I. Let Y ;" ; rym; = 0 be a relation. Let I = (r1,...,7y), let e,..., e,
be generators for R", let R™ — I be the map taking each e; to r;. and let K
be the kernel. Then 0 - K — R™ — I — 0 is exact. Since ), r; ® m; maps
to zero in R®@r M = M, it is zero in I ®p M, so Y, e; ® m; maps to zero
in I ®g M, and consequently there is a Zj k; ® m;» € K ®r M that maps to
> e ®@my. Setting kj =), ajje;, the equations of triviality are satisfied.

Now suppose that every relation in M is trivial. In view of the last result
it suffices to show that for a given ideal I the map I ®p M - RQp M = M
is injective. Let >, 7; ® m; be an element of I ® g M that goes to zero. This
means that >, 7;m; = 0, so there are m/,...,m;, € M and ring elements a;;
such that z; = Zj aijm;- for all ¢ and ), ra;; = 0 for all j. Now

Zm@mi :Zm@) <Za1‘jm9) :Z (Zmaij) ®m;» =0.
i i j i

J
U

The main result that will be carried forward from the remainder of this
section is that a finitely presented flat R-module is projective. (Recall (Propo-
sition B7.4) that any projective R-module is flat.) The tool used to prove this
has quite general interest and significance.

Let G and H be abelian groups, and let « : G — H be a homomorphism. In
general, a character of G is a homomorphism from G to the circle group R/Z.
We will restrict attention to characters that take values in Q/Z. In a nutshell,
Pontryagin duality is the additive contravariant functor Homz(-,Q/Z). Let
G* = Homz(G,Q/Z) and o* = Homz(«,Q/Z) : H* — G*.

Lemma B9.4. G* =0 if and only if G =0, and o* =0 if and only if « = 0.

Proof. Of course G* = 0 if G = 0 and o = 0 if « = 0, because Pontryagin
duality is an additive functor. Suppose 0 # g € G. If the order of g is finite,
we can induce a nonzero map from Zg to Q/Z by mapping g to any element of
the same order, while if the order of g is infinite, then for any nonzero element
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of Q/Z there is a homomorphism Zg — Q/Z taking g to that element. Since

Q/Z is injective, this homomorphism extends to a nonzero element of G*.
Saying that a* # 0 whenever a # 0 amounts to a rephrasing of the injec-

tivity of Q/Z. O

Now let 8 : H — I be a second homomorphism.
Lemma B9.5. Ker(8) C Im(a) if and only if Ker(a™) C Im(5%).

Proof. Suppose that Ker(f) C Im(a). If ¢ € Ker(a*), which is to say that
Im(«) C Ker(yp), then Ker(3) C Ker(y), so there is a v : Im(8) — Q/Z such
that ¢ =~ o 3. Since Q/Z is injective, 4 has an extension v : I — Q/Z, and
@ = [*(7y). Thus Ker(o*) C Im(8*).

If g € Ker(f) \ Im(«), there is a homomorphism +' : H/Im(a) — Q/Z
with 7/(g 4+ Im(a)) # 0. If  is the composition H — H/Im(a) —— I, then
v € Ker(a*) \ Im(8*). O

Combining these two results, we have:

Proposition B9.6. The sequence G —*+H g, 1 is exact if and only if
g G* is exact.

This can be applied to 0 — G —— H — Coker(a) — 0 when « is injective,
and to 0 — Ker(a) = G —— H — 0 when « is surjective, so:

Corollary B9.7. A homomorphism o : G — H is injective (surjective) if
and only if a* is surjective (injective).

For any R-module M we can endow M™* with a scalar multiplication, so
that M* is an R-module, by letting rf be m +— f(rm). If 5: M — N is an
R-module homomorphism, then £* is in fact an R-module homomorphism: if
g € N*, then

B*(rg)m = (rg)(B(m)) = g(rB(m)) = g(B(rm))

= B*(g)rm = r(B"(g)m) = (rB8*(g))m,

so 8*(rg) = rf*(g). In this sense we may regard the Pontryagin dual as a
covariant functor from the category of R-modules to itself.
For any R-modules M and N there is a homomorphism

oNy M ®@g N* — Homp(M, N)*

given by letting o7 n)(m @ g) be the map that takes a € Homg(M, N) to
g(a(m)).

Proposition B9.8. The system of homomorphisms oy ny s a natural trans-
formation of bifunctors.
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Proof. That the relevant diagrams commute is shown just by using the defi-
nitions to evaluate the two compositions. If ¢ : M — M’ is a homomorphism,
then oy vy (p(m) ® g) is the map taking o’ € Homg(M', N) to g(a’(¢(m))).
On the other hand

Homp(p, N)*(o(ur.n) (m @ g)) = Homz (Homp(p, N),Q/Z) (o5 (m @ g))
= ou,n)(m ® g) o Hompg(p, N) = (= g(a(m))) o (& = o' 0 ).
Thus the diagram
M@pN* —2— M @rN*
o | [
Hompg (M, N)* —2— Hompg(M', N)*

commutes.
If 4p : N — N’ is a homomorphism, then

oorny(m @ (g") = 0wy (m @ Homz (v, Q/Z)g") = o, ny(m @ (g' 0 9))

is the map a — ¢'((a(m))), and

Hompg (M, ¥)*(oar,ny(m ® g') = Homg (Homp (M, ¢), Q/Z) (o (ar,ny(m ® ¢'))
= oy (m @ g') o Homp(M, ¥) = (a = ¢'(a(m))) o (a = Yo a).

Thus the diagram

MopN* — % MogrN*

U(MyN’)l lU(M,N)
Homp(M, N')* —%— Homp(M, N)*
commutes. O
We will also need the following simple fact

Lemma B9.9. For any R-modules My, My, and N,

O(My®Ma,N) = O(My,N) D O(asy,N)-

Proof. By definition, oy, gan,n((m1,m2) @ g) is the map taking o = oy @
as € Homp(M; & My, N) to g(a(mi,ms)) = g(ai(my)) + glaz(msz)). O

Recall that an R-module M is finitely presented if, for some integers m
and n, there is a short exact sequence R™ — R™ — M — 0. That is, M is
finitely generated, and for some system of generators the module of relations
Ker(R"™ — M) is also finitely generated.
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Proposition B9.10. If M and N are R-modules and M is finitely presented,
then oy Ny s an isomorphism.

Proof. This is true when M = R because g € N* is mapped to 1 ® g by
the isomorphism between N* and R ®g N*, then to a — g(a(1)) by o(r n),
then back to g by the isomorphism between Hom (R, N)* and N*. In view of
Lemma B9.9 it is also true when M = R™.

Now let R™ — R™ — M — 0 be exact, and consider the diagram

R™ ®pr N* R"®r N* M ®r N* —0

I(R™,N) l I(R",N) l I(M,N) l
Hompg(R™, N)* — Homp(R", N)* — Hompr(M,N)* — 0.

This diagram commutes because of the last result. The first row is exact
because — ®pr N* is a right exact functor. The second row is exact because
Hom(—, V) is left exact and the Pontryagin dual is exact. We have shown that
the first two vertical maps are isomorphisms, so adding another pair of zeros
on the right, then applying the five lemma, gives the result. O

Theorem B9.11. A flat finitely presented R-module is projective.

Proof. Suppose that M is flat. We wish to show that Hompg (M, —) is exact, and
since it is always left exact, this amounts to Hompg(M, N) — Hompg(M, N')
being surjective whenever N — N’ is surjective. If N — N’ is surjective, then
N" — N* is injective (Corollary B9.7) and since M is flat, M @r N'* —
M ®gr N* is injective. The diagram

M@RN/* e M®RN*

U(ZM,N’)l J/U(JVI,N)

Homp(M,N')* —— Hompg(M,N)*

commutes because the oy ) are natural, and both vertical homomorphisms
are isomorphisms, so it follows that Hompg (M, N')* — Hompg(M, N)* is in-
jective. Now Corollary B9.7 implies that Homp(M, N) — Hompg(M,N') is
surjective. ]



Chapter C

Univariate Derived Functors

The failure of a functor to be exact can be “measured” by a sequence of derived
functors. The result of applying these functors to an R-module will be defined
as the homology of the application of the functor to projective and injective
resolutions of the module. (Later there will be axiomatic characterizations of
the derived functors, but such concrete calculations will continue to dominate
our reasoning concerning derived functors.) Naturally we will need to show
that the choice of resolution does not affect the result. Our first task is to
show that projective and injective resolutions exist.

C1 Projective Resolutions

If M is an R-module, a left complex over M is a chain complex

s Xy I X s X e Xy = M 0.

This complex will often be denoted simply by X. There is also the truncated

complex

ds da di

= X3 X5 X1

Xo—0

which will be denoted by the corresponding bold faced letter, in this case X.
We say that X is projective (free, flat) if Xo, X1,... are projective (free, flat).
If it is both projective (free, flat) and acyclic, it is a projective (free, flat)
resolution of M. Since a free module is projective (Proposition B7.2) and a
projective module is flat (Proposition B7.4) a free resolution is a projective
resolution and a projective resolution is a flat resolution.

Usually we think of M as the given object, and for this reason it is intuitive
to state results in terms that highlight it. However, many of the arguments,
both here and later, use a different system of notation, called homogeneous
notation, obtained by setting X_; = M, X; = 0 for all j < =1, dy = € :
Xo = X_q,and dj =0 : X; — X, for all j < 0. This will spare us a
certain amount of redundancy arising from special treatments of the initial
step in inductive arguments and constructions. Almost always the only thing
distinctive about the initial case is that more things are zero, which does not
impair the logic of the general case.

Lemma C1.1. Every R-module M has o free resolution.

91
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Proof. The construction is inductive. Suppose that d,, : X;, — X,,_1 is given
or has already been constructed. (This may be d—y : X_1 = M — 0.) We
let X, 11 be the free module whose generators are a set of generators of the
kernel of d,, and we let d,,+1 : X,+1 — Kerd, be the homomorphism taking
each generator to itself. O

Sometimes one would like resolutions with additional properties.

Proposition C1.2. If R is Noetherian and M is a finitely generated R-
module, then M has a free resolution whose modules are all finitely generated.

Proof. As in the proof of C1.1, the construction is inductive. Suppose that
dp @ X, — X,,_1 is given or has already been constructed, with X,, free and
finitely generated. Then X,, is Noetherian (Proposition A4.6) so Kerd, is
finitely generated. Let X,i;1 be the free module on some finite system of
generators, and let dy1 : Xp+1 — X, be the homomorphism taking each
generator to itself. O

C2 Injective Resolutions
Let M be an R-module. A right complex over M is a cochain complex
0 n
0_>M_n>IOL.Il_>_>InL>In+1_> .

Our notational conventions are the same as for left complexes: this complex
will often be denoted simply by I, and the truncated complex

0 1 2
0— 1y ¢ I d I d I3 — ---

will be denoted by I. In arguments using induction we will frequently use
homogeneous notation, setting I_; = M and d~' = 1.

We say that [ is injective if Iy, I1, . .. are injective. If I is both injective and
acyclic, it is an injective resolution of M. Our constructions will be based on
selecting an injective resolution of each R-module, and their validity depends
on each R-module having at least one injective resolution. We would like to
construct one inductively, so suppose that we have already constructed

0 m—1
0oM v s, Y,

We can continue the construction if there is an injection I, /Tm(d" ') — 11
with I, 11 injective. The category of R-modules is said to have enough injec-
tives because of the following result.

Theorem C2.1. Any R-module can be embedded in an injective R-module.
Consequently every R-module has an injective resolution.
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This terminology makes sense for any abelian category, and in fact one of
the major accomplishments of Grothendieck’s Tohoku paper was to show that
the category of sheaves over a topological space has enough injectives.

Curiously, the proof of Theorem C2.1 is a bootstrap, first establishing the
case R =7.

Lemma C2.2. Any abelian group G can be embedded in a divisible abelian
group.

Proof. Let I' be a system of generators for G. Then G is isomorphic to the
quotient F'/K of the free abelian group F on I' by the kernel K of F' — G.
The map ¢ : f — f®1 embeds F' in F ®zQ, which is a direct sum of divisible
groups and consequently divisible itself. There is an induced embedding of G
in (F ®zQ)/p(K), and the latter group is divisible by Proposition B8.3. [

Thus the additive group of any R-module can be embedded in a divisible
abelian group. Things now get a bit magical. For an R-module M there is a
map « : M — Homz(R, M) taking each m to a,, : a — am. An embedding
@ : M — G of the additive group of M in a divisible group G induces a map

B = Homgz(R, ¢) : Homy (R, M) — Homz(R, G).

Obviously « and 8 are embeddings. The trick is to endow Homy(R, M) and
Homyz (R, G) with R-module structures, so that o« is an injective R-module
homomorphism, and to show that Homgz(R, G) is injective.

In order to fully capture the generality of certain aspects of the construc-
tion we now assume that R is an Q-algebra. Specifically, @) is another com-
mutative ring with unit and there is a homomorphism () — R taking 1 — 1.
For the sake of less cumbersome notation we treat () as a subset of R, even
though @ — R need not be injective; careful examination of the argument
below shows that it does not make use of this implicit injectivity.

Let N be an Q-module. If ¢ € Homg(R, N) and r € R, there is a Q-
module homomorphism r¢ € Homg(R, N) given by a — ¢(ra), and it is easy
to verify that this scalar multiplication makes Homg (R, N) into an R-module.
Note that the Q-module structure of Homg(R, N) induced by this R-module
structure agrees with the usual Q-module structure because p(qa) = qp(a).

Lemma C2.3. Suppose that M is an R-module, N is a Q-module, and 1 :
M — N is a Q-module homomorphism. For m € M let ¥, : R — N be the
function 1y, (a) = ¥(am). Then 1, € Homg (R, N), and the map m +— 1y, is
an R-module homomorphism when Homg(R, N) has the R-module structure
described above.

Proof. 1t is easy to verify that ¢, € Homg(R, N):

Ym(a+0) = ¢((a+b)m) = P(am) + (bm) = Pm(a) + Ym(b);
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VYm(qa) = P(gam) = qp(am) = qpp(a).

It is equally easy to show that m +— v, is an R-module homomorphism:
U (@) = Y(a(m +m')) = Y(am) + Y (am’) = Pm(a) + Y (a);

Yrm(a) = p(ram) = pm(ra) = (rim)(a).
O

Lemma C2.4. If J is an injective Q-module, then Homg(R, J) is an injective
R-module.

Proof. Suppose that M is an R-module, L is a submodule, and ¢ : L —
Homg(R,J) is an R-module homomorphism. We will extend ¢ to an R-
module homomorphism v : M — Homg(R, J).

It will work well to write ¢y in place of ¢(¢). Let ¢ : L — J be the map
0 — @y(1). Then:

G+ L) = e (1) = po(1) + o (1) = 5(€) + (¢);

P(ql) = pqu(1) = (qpe)(1) = q(pe(1)) = g (L)

(The first and last equalities are from the definition of ¢, the second is from
the R-module structure of ¢, and the third is from the point emphasized
above.) Therefore ¢ is an -module homomorphism, so it extends to a Q-
module homomorphism ¥ : M — J. Form € M let ¢, : R — J be the

function ¢ (a) = ¢(am). The last result implies that m — ¢, is an R-
module homomorphism, and it extends ¢ because ¢ extends ¢:

Pe(a) = P(al) = 3(al) = par(1) = (ape)(1) = pola).
O

Proof of Theorem C2.1. Let M be an R-module. Lemma C2.2 implies that
there is an injective Z-module homomorphism ¢ : M — G, where G is a divis-
ible abelian group. Let o and 3 be as described above; of course these maps
are injective. Lemma C2.3 implies that « is an R-module homomorphism. If

¢ € Homgz(R, M) and a,r € R, then

Blre) am o((re)(a) = e(e(ra)) = (rB(y))(a).

so B(re) = rB(p). Therefore B and 5o« are R-module homomorphisms. The
last result implies that Homy (R, G) is an injective R-module. O

We can now develop another useful characterization of injective modules.

Proposition C2.5. An R-module J is injective if and only if each short exact
sequence 0 — J M- NS0 splits.
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Proof. Suppose that J is injective. Applying (b) of Proposition B8.1 with
f=1; and g = ¢ gives a homomorphism j : M — J such that joi=1;.
Now suppose that each short exact sequence splits. Theorem C2.1 implies
that J can be embedded in an injective module, which is to say that there
is such a sequence in which M is injective. Since the sequence splits, J is a
direct factor of M, and now Lemma BS&8.2 implies that J is injective. O

(C3 Univariate Left Derived Functors

Taking a projective resolution of a module is a form of analysis: we provide
a representation of the module in terms of simpler objects, combined in a
standard and (in some sense) elementary way. The method described in this
section extracts additional information from this decomposition, examining
how it is “deformed” by a functor.

Suppose we are given an additive covariant functor 7' from R-modules
to @-modules, where @) is now a second commutative ring with unit. Let
X be a projective resolution of M. We would like to define a sequence of
functors LoT, LT, LT, . .. by specifying that (L, T)M is H,(TX). Suppose
f: M — N is an R-homomorphism, Y is projective resolution of N, and there
is a chain map f : X — Y extending the given f. Compounding our abuse of
notation, let f also denote the truncated chain map from X to Y. We would
like to define

(L,T)f : (L,T)M — (L,T)N

tobe Hy(Tf: X —=Y).

One may certainly wonder why one might wish to do this. There is no
quick or easy answer to this question; on the contrary, the entire subject can
be regarded as a (possibly incomplete) response to this query. But prior to
that one must first ask whether the wishes expressed above can be fulfilled at
all in any sensible way.

In order for it to be possible to define (L, T') f there must exist an extension
of the given f to a chain map.

Lemma C3.1. Suppose that

%Xni'anlééXli’XO—e’M%O

and 5 5

are left complexes over M and N respectively, with the first projective and
the second exact. Then any homomorphism f : M — N extends to a chain
map given by homomorphisms f, : X, — Y,. Any two extensions are chain
homotopic.
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Proof. We use homogeneous notation, and in addition set f_y = f. For
n > —1 suppose that f, is given or has already been defined. We have
On frndn+1 = fn—1dndp+1 = 0, so the image of f,,d,, 41 is contained in Ker(9,,) =
Im(0p41). Since X, 41 is projective, there is an f,+1 : Xp+1 — Y41 such that
Ont1fni1 = fndna1. Thus the first claim follows by induction.

The second claim is one of the two cases of the following result. O

Lemma C3.2. Suppose that in the diagram

d d d

P L X, 2 X, L . X, - 0
f2l92 filon folgo

) ) B

Y, SE U LI 74 0

the rows are chain complexes, the second of which is exact, {fn} and {gn} are
chain maps, and X1, Xo, ... are projective. If fo = go, or if Xo is projective,
then the two chain maps are homotopic.

Proof. Let hyy, = fn — gn- Let s-1 = 0 : 0 — Yy5. For n > 0 suppose
that for —1 < i < n we have already defined s; : X; — Y;+1 such that
h; = 0;118; + s;i_1d;. The computation

8n(hn - Sn—ldn) = (hn—l - ansn—l)dn = Sn—an—ldn =0

shows that the image of h,, — sp,_1d, is contained in Ker(9d,) = Im(0p41).

Since X,, is projective (or because hy = 0) there is an R-homomorphism
Sp ¢ Xn — Yu41 such that 0,418, = hy — Sp—1d,. Thus the existence of a
suitable homotopy follows by induction. O

These results at least makes it possible to get our project off the ground.
The point of view we adopt is that we have chosen “once and for all” a projec-
tive resolution of each R-module, and for each homomorphism f : M — N we
have chosen an extension f : X — Y where X and Y are the chosen projective
resolutions of M and N. The aspirations announced at the beginning of the
section are now tangible definitions: (a) if X is the chosen projective resolu-
tion of M, then, for each n = 0,1,2,..., (L,T)M is defined to be H,(TX);
(b) if in addition f: M — N is an R-homomorphism, Y is the chosen projec-
tive resolution of N, and f : X — Y is the chosen extension with truncation
f:X =Y, then (L,T)f is defined to be H,(Tf : X = Y).

A problem arises when we try to show that each L,T is a functor. Sup-
pose that g : N — P is a second homomorphism, Z is the chosen projective
resolution of P, and g : Y — Z is the chosen extension of g. If it happened
to be the case that go f : X — Z was the chosen extension of go f : M — P,
we could use the fact that T and H,, are functors to infer that

(LnT)(g © f) = (LnT)g 0 (LnT)f,
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but there is no reason to expect that we have been this lucky.

The way to circumvent this problem is to show that our choices don’t
matter. Specifically, we will show that if we have some second system of
choices, say X’ for the projective resolution of M, Y’ for N, f': X’ — Y’ as
the extension of f, and so forth, and we use these choices to define (L), T)M
for each M and (L T)f for each f, then there is a system of isomorphisms
WM (L, TYM — (L, T)M that are natural in the sense that all diagrams

(Lor)M LD m)N

| [ (%)

v D5 N
commute. Now we can prove that (L, T)(gof) = (L,T)go(L,T)f by appealing
to the fact that (L, T)(go f) = (L,,T)go (L, T)f if the second system is chosen
in such a way that (go f) = ¢’ o f/, as is certainly possible. Moreover, in this
way we see that, at least up to natural isomorphism, the choices really don’t
matter, which should certainly contribute to our sense that these definitions
are well founded and potentially interesting.

This style of reasoning may well strike you as a bit suspicious. Although
the choices of projective resolutions and extending chain maps were initially
thought of as “fixed forever,” ex post we are in effect freely pretending that
the choices were whatever we would now happen to find convenient. But there
is actually nothing wrong with this, and in fact it seems not at all unnatural
provided you understand a fundamental feature of homological algebra: the
industry standard for “sameness” is natural isomorphism, not literal equality.
Put another way, we are really dealing with natural isomorphism classes of
functors, rather than individual functors, but our language systematically fails
to distinguish between an equivalence class and one of its representatives.
That is, we speak of “the derived functor L, T” rather that “one of the many
possible naturally isomorphic functors L, T.” Not explicitly acknowledging
this rather minor sleight of hand almost never gives rise to problems, so this is
a very useful convention, and it quickly becomes second nature, to the point
where most authors don’t mention it at all.

We now explain the details of this maneuver. Suppose, as above, that we
have two systems of choices, with X and X’ the two projective resolutions of
M, and so forth. For each R-module M we choose a chain map i™ : X — X’
that extends the identity function on M. In connection with a homomorphism
f: M — N, it need not be the case that the diagram

x L,y

| |

x Ly
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commutes, but Lemma C3.2 does imply that f’oi™ and i" o f are homotopic.
However, this turns out to irrelevant. The key point is that Lemma C3.2

implies that the diagram

x 1, v

Z']Ml lZN
x Ly
of truncated chain complexes and chain maps commutes up to homotopy, sim-
ply because everything in sight is projective. Since T is additive, it preserves

the equation defining chain homotopy, so the diagram

T(X) T(f)

T(iM)l lT(iN)
o,

T(Y)

T(X') T(Y')

also commutes up to homotopy. Applying the homology functor H, and
setting M = H,,(T(iM)), we see that diagram (*) above commutes, as desired.
We are now justified in calling (the natural isomorphism class of) L, T the n'*
left derived functor of T.

There is a second sort of left derived functor that will not play any role
in our analysis of Hompg(—,—) or — ®g —, but which is worth developing, if
only because otherwise the subsequent material will be contorted due to its
lack of an obvious symmetry. Its development involves the injective analogs
of Lemmas C3.1 and C3.2.

Lemma C3.3. Suppose that

n do dn
O-M-—I>5L—5L— =1, — 41—

and
K a0 on
ON—J— 1 = = Jy — Jpy1 = -
are cochain complexes, the first of which is exact, and Jy, J1, Ja, ... are injec-

tive. Then any homomorphism f : M — N extends to a chain map given by
homomorphisms f" : I, — Jy.

Proof. We use homogeneous notation. Supposing that, for some n > —1,
f*~Yand f™ are given or have already been defined, by induction it suffices
to find a suitable f"*1. We have Im(d" 1) C Ker(9"f,) because 9" f"d" ! =
onrontfm=t =0, so 9" f™ induces a map from I, /ITm(d" ') = Im(d™) to J,41.
Since J,41 is injective this extends to a homomorphism frtl Iny1 — Jnta
such that f*Hidr = onfm. O
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Lemma C3.4. Suppose that in the diagram

P L
0 i I, I 0
fog° gt * g
a0 ol
0 Jo - J . J - 0

the rows are cochain complexes, {f™} and {g"} are chain maps, and Jy, Ja, . ..
are injective. If fO = ¢°, or if Jy is injective, then the two chain maps are
homotopic.

Proof. Let h* = f*—¢". Let s~ :I_; — J_o and s° : Iy — J_; both be zero.
By induction, it suffices to show that if we have already defined s’ : I; — J;_;
such that hi=! = 9?7251 4 sid"~! for all i < n, then we can also define a
satisfactory s"*1. The computation

(hn _ an—lsn)dn—l _ an—l(hn—l _ Sndn—l) _ an—lan—an—l =0

shows that Ker(d") = Im(d" ') C Ker(h"—9" 1s"). Therefore we may regard
h™ — 0"~ 15" as a map defined on I,,/Ker(d™) = Im(d"). Since .J, is injective
(or h® = 0) there is an s"*!: I, 1 — J, such that s"*1d" = h7 —9""1s”. O

Let U be an additive contravariant functor from the category of R-modules
to the category of ()-modules. Suppose that we have chosen an injective
resolution of each R-module, and for each homomorphism f : M — N we
have chosen an extension f : I — J where I and J are the chosen injective
resolutions of M and N. If I is the chosen injective resolution of M, then,
for each n =0,1,2,..., (L, U)M is defined to be H,(UI), and if f: M — N
is an R-homomorphism, J is an injective resolution of N, and f : I — J is
the chosen extension with truncation f :I — J, then (L, U)f is defined to be
H,(Uf:J—1).

Suppose, as above, that we have two systems of choices, with I and I’
the two projective resolutions of M, and so forth. For each R-module M we
choose a chain map ™ : I — I’ that extends the identity function on M. In
connection with a homomorhism f : M — N, Lemma C3.4 implies that the
diagram

) AN

| v

(AR |

of truncated chain complexes and chain maps commutes up to homotopy be-
cause all the modules are injective. Since U is additive, it preserves the equa-
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tion defining chain homotopy, so the diagram

v@) =5 u)

U(iM)l JU(@'N)
v 22 u
also commutes up to homotopy. Applying the homology functor H, and
setting (M = H,(U(i™)), we see that for each n the diagram

(N LD iy m

| | (%)
(L U)N D p oy

commutes. This implies that (L, U)(gof) = (LyU)fo(L,U)g wheng : M — P
is a second homomorphism, because we can choose a system of resolutions and
extensions with the extension of go f equal to the composition of the extension
of f with the extension of g. That is, L,U is a contravariant functor. And
of course it also implies that, up to natural isomorphism, the definition of
L, U does not depend on the chosen resolutions and extensions. We call (the
natural isomorphism class of) L, U the n'? left derived functor of U.

Let T and U be as above. It turns out that when these are exact, the left
derived functors don’t give anything new. When they are right exact, LoT
and LoU are the identity, but it can still be the case that the higher order
derived functors are nontrivial.

Proposition C3.5. If T is exact, then L,T =0 for all n > 1. If T is right
exact, then T and LoT are naturally isomorphic. If U is exact, then L,U =0
for allm > 1. If U is right exact, then U and LoU are naturally isomorphic.

Proof. Suppose

dn d
o Xy e Xy X X —— M — 0
is the chosen projective resolution of M. If T is exact, then the truncated

sequence

s TXy LB rx, I Xy S0

is exact everywhere except at T'Xj.
Now suppose that T is only right exact. Then

Tx, 28 rx, L% TM =0

is exact, and T'e induces an isomorphism

Te: (LoT)M = T Xo/Im(Tdy) — TM.
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To establish naturality, suppose that suppose that f : M — N is a homomor-
phism, let

be the chosen projective resolution of N, and let {f, : X,, — ¥} be a chain
map extending f, as per Lemma C3.1. Then T f; maps Im(7'd;) into Im(70; )
because T'0y o T'f1 =T fo o T'dy, so we can pass to a commutative diagram

(LoT)M = TXo/Im(Td;) —s TM

(LOT)f:TfOJ/ JTf
(LoT)N = TY,/Im(Td,) —— TN.

The proofs of the assertions for L, U follow the same pattern, with injective
rather than projective resolutions. U

C4  Univariate Right Derived Functors

The material in this section is dual to what we did in the previous section.
We assume that an injective resolution

n do dn
0> M —"wTyg—sTy == I~ Ty —

and a projective resolution

---%Xnﬁ»Xn_l—%--—)Xli»X0—€>M—>O

have been assigned to each object M in the category of R-modules. For
each homomorphism f : M — N we assume that a particular chain map
F : X — Y extending f has been chosen, where X and Y are the chosen
projective resolutions of M and N. We also assume that a particular cochain
map f : I — J extending f has been chosen, where I and J are the chosen
injective resolutions of M and N.

Suppose we are given an additive covariant functor 7' and an additive
contravariant functor U from R-modules to @-modules. For n > 0 we define
(R"T)M to be the n' cohomology group of the truncated sequence

Tdo Tdm
0—-TIp —ThH — - =TI, — Tl41 — .
and we define (R"U)M to be the n'" cohomology group of the truncated
sequence

05UXo 2B UXy = - 5 UXy 25 UXpyr — -+
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Suppose f : M — N is an R-homomorphism, and let J and Y be the
chosen injective and projective resolutions of N, and let f : X — Y and
f : I — J be the chosen extensions of f. These can be truncated to a chain
map f: X — Y and a cochain map f: I —J. Forn=0,1,2,... let

(R"T)f = H™(Tf : T — TJ) : (R"T)M — (R"T)N

and
(R*U)f=H"(Uf:UY - UX): (R"U)N — (R"U)M.
The methods we used earlier to show that L,, T and L, U are functors can now
be used to show that R, T and R"U are functors.
Suppose that there is a second system of choices of injective resolutions,
with I’ the resolution of M, J’ the resolution of IV, etc. Suppose also that for

each homomorphism f : M — N we have chosen an extension to a cochain
map f': I — J. Let (R”T)M = H™*(TT'), and let

(RV"T)f =H™(Tf : T - TJ)): (RYT)M — (R"T)N.

Also, for each M we choose a cochain map ™ : I — I’ extending the iden-
tity. Since all the modules involved are injective, Lemma C3.4 implies that
f'oiM and i o f are homotopic. Since T is additive, it preserves the equa-
tions expressing homotopy, so T'(f') o T(i™) and T(i"V) o T'(f) are homotopic.
Applying the functor H™, we find that the diagram

(R"T)f

(R"T)M (R"T)N

H™(TiN) H™(TiM)
| |

(RVT)M 4>(RMT)J[

(RVT)N
commutes.

This shows that R™T is, in fact, a covariant functor, because if g : N — P
is a second homomorphism, K is the chosen injective resolution of P, and g
is also the extension of g to a cochain map, then it could be the case that
go f: I — K is the chosen extension of go f : M — P. In addition, it shows
that, up to natural isomorphism, its definition does not depend on the choices
of injective resolutions and extensions to cochain maps. It should be obvious
that the methods used to show that L, T is a functor, and independent of
choices, work equally well for R"U, so we regard these results as established.
We are now justified in calling R, T and R"U the n'* right derived functors
of T"and U.

There is the following analog of Proposition C3.5. The reader is invited to
check for herself that the ideas used in the proof of that result, with obvious
modifications, work equally well for right derived functors.

Proposition C4.1. If T is exact, then R"T' = 0 for alln > 1. IfT is left
exact, then T and R°T are naturally isomorphic. If U is exact, then R"U = 0
for allm > 1. If U is left exact, then U and ROU are naturally isomorphic.
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C5 Short Exact Sequences of Resolutions

In order to derive long exact sequences of derived functors, the settings of
Propositions B4.3 and B4.4 must be attained. The results that do this are, un-
fortunately and unavoidably, technical and computational in character. This
section is devoted to them.

Lemma C5.1. Suppose we are given a diagram

0 X, .y Pz 0
d 4 4
0 Xo—2 Ly, 22, 7, 0
do do do
0 AP .0 0
0 0 0

in which0 = A ——~ B —2+ C = 0 is a short exact sequence of R-modules, X
and Z are left complexes over A and C, and for alln > 0 we have Y, = X, ®Z,
with in(x) = (2,0) and py(x,z) = z. Then (with respect to homogeneous
notation):

(a) For each n it is the case that dy, i, = in—10d, and d, o p, = pp—10d,
if and only if there is a homomorphism ny, : Z, — X,_1 such that

dn (2, 2) = (dn(2) + N (2), dn(2)). (*)

(b) If this is the case for all n, then, for eachn, 0 =d,_10dy,:Y, = Y,_2
if and only if
O=dp10ony+nu-10dy: Zp — Xy o.

Proof. Taking compositions of d,, : Y, — Y,_1 with the projections gives
homomorphisms ¢,, and 1, such that

dn (2, 2) = (Pn (2, 2), ¥n(z, 2)).

If pp—1 0d, = dy, © pp, then ¥, (x,z) = dp(z), and if i1 0 dy, = dp—1 © in,
then d,(x) = ¢, (x,0), so setting 1, (2) = ¢, (0, z) gives (). Conversely, if, for
some homomorphism 7, : Z,, - X,,_1, we define d,, : Y;, — Y,,_1 by setting

dn(7,2) = (dn(x) + Un(z)’dn(z)),
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then p,_10d, = d, op, and i,,_1 o d, = d, o i, follow automatically.
Now (b) follows from a simple and straightforward calculation:

dn(z))
dn(x +77n( ) +Wn—l(dn(z))adn—l(dn(z)))
(dn(z)),O).

dp—1(dp(z,

(dn 1(
(dn 1(77n Z + "h—1

O

The following is known as the horseshoe lemma, in accord with the diagram
of its given elements.

Lemma C5.2. Suppose we are given a short exact sequence
0-A—>B-L+C=0

of R-modules, an acyclic left complex X over A, and a projective left complex
Z over C. Then there exists a left complex Y over B and extensions of i and
p to chain maps such that the sequence

05X =y L+ 7250
s a short exact sequence of left complexes over 0 - A — B — C — 0.

Proof. For each n > 0, let Y,, = X,, ® Z,,, and let i, : X,, — Y, and p, :
Y, — Z, be the functions i,(z) = (2,0) and p,(z,z) = z. Of course 0 —

X, i, Y, P, Zn — 0 is exact, so the remaining step is the construction
of suitable homomorphisms d,, : Y, — Y,,_1.

In view of the last result, it suffices to construct homomorphisms 7, :
Zyn — Xp—1 such that d, o 9,41 + 0y © dpy1 = 0 for all n, with respect to
homogeneous notation. Setting 7, = 0 for all n < 0, it is clear that this
equation holds whenever n < —1. Fixing n > —1, suppose that n; has already
been defined for all j < n in such a way that this equation holds with n
replaced by any j < n. In particular, d,_1 o9, = —np—1 0 d,,, SO

dp—10Mp0dpy1 = —Np—10dy 0dyy1 =0,
and consequently the image of 7, o d,11 is contained in the kernel of d,,_;.
Since X is acyclic, the kernel of d,,_1 is the image of d,,, which is of course

also the image of —d,,. Since Z, 1 is projective, it follows that there is an
N1 such that —d, o1 =1 o dpy1. O

In the last result stronger assumptions give stronger conclusions.
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Lemma C5.3. Suppose we are given a short exact sequence
0-X v -2.z50

of left complexes over a short exact sequence
0sA—"+B-LeC—0

of R-modules. If X and Z are acyclic, then so isY, if X and Z are projective,
then so is Y, and if X and Z are free, then so is Y.

Proof. If X and Z are acyclic, then (with respect to homogeneous notation)
H,(X) =0 and H,(Z) = 0 for all n. In this circumstance the long exact
sequence for homology implies that H,(Y) = 0 for all n.

Suppose that X and Z are projective. For each n > 0 the sequence 0 —
X, =Y, = Z, = 0isexact. Since Z, is projective, this sequence splits: there
is a gy : Z, — Y, such that p, o g, is the identity, so that up to isomorphism
we have Y,, = X, ® Z,,, in(x) = (x,0), and p,(x,z) = 2. Since X,, is also
projective, Y, is a direct sum of two direct summands of free modules, so it is
itself a direct summand of a free module. Of course if X and Z are free, this
argument shows that Y is free. O

The following result is one of the main points of the various constructions
above:

Proposition C5.4. For any short exact sequence 0 — A B2 050

of R-modules there is a short exact sequence 0 — X .y, z50 of
left complexes over the given sequence with X, Y, and Z free resolutions of
A, B, and C respectively.

Proof. Lemma C1.1 implies that there are free resolutions X and Z of A and
C. Lemma C5.2 implies that there is a left complex Y over B and extensions

of i and p to chain maps such that 0 — X — vy 2.7 5 0is a short

exact sequence of left complexes over 0 — A —+ B—2+C = 0. The last
result implies that Y is acyclic and free, hence a free resolution of Y. U

In the obvious way one can define a category of short exact sequences of
left complexes. The next result shows how to complete the construction of a
morphism in this category when some of the data is given.

Lemma C5.5. Let

0 A— "' p_ P ¢ - 0
/ g h
-/ /
0 At g P o 0
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be a commutative diagram of R-modules and homomorphisms, let
05X -V 22250 and 05X V' 227/ 50

be short exact sequences of left complexes over its rows, and let f : X — X'

and h : Z — Z' be chain maps extending f : A — A" and h : C — C'. If

Z and Z' are projective and X' is acyclic, there is a chain map g : Y — Y’

extending g : B — B’ such that the diagram of chain maps

0 X Y A 0
f l g h
Z'/ p/
0 X' Y’ -7 ~ 0
commutes.

Proof. We use homogeneous notation, and, to save space, we drop the symbol
for composition, writing this operation multiplicatively. Our objective is to
construct a sequence of functions g, : Y, — Y,/ where g_; agrees with the
given g : B — B’, such that for all n we have:

(a) i fr = Gnin;
(b) p;Lgn = NuDn;
(C) d/ngn = gnfldn-

If we set g1 = g and g, = 0 for all n < —1, then these conditions hold for
all n < —1. By way of induction, suppose that n > —1, and that we have
already constructed satisfactory go,...,g,. We need to show that a suitable
Gn+1 €Xists.

Since Z, is projective, the sequence 0 — X, i, Y, BN Z, — 0 splits,
and similarly for Z/,, so up to isomorphism we have

Y,=X,®Z, and Y =X.&Z
with
./ /

Zn(x) - (1‘,0), pn(.%',z) =z, Zn(x,) = (1_/’0)’ p;z(xlvz/) =z

We have p),(9,(0,2)) = hp(pn(0,2)) = hn(z), so there is a homomorphism
Oy, : Z, — X], such that

9gn(0,2) = (0n(2), hn(2))-

We also have

gn(2,0) = gn(in(x)) = in(fn(2)) = (fa(x),0).
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Conversely, if g,+1 is defined by setting

Int+1(7, 2) = (frr1(2) + Ont1(2), hnt1(2))

for some homomorphism 6,41 : Z,4+1 — X],;, then it is automatically the
case that 4,1 fnt1 = Gns1int1 and P 1Gnr1 = hpy1Ppy1. Our problem is
reduced to finding 6,11 such that d;;+1gn+1 = gndp+1-

Now recall that Lemma C5.1 gives homomorphisms »,, : Z, — X,,_1 and
n, : Z), — X! | for all n such that

dn (2, 2) = (dn (@) + 70 (2),dn(2)),  dy(x,2) = (d(2) +17(2), 41, (),

dpMni1 + Mudpg1 =0, Ay 1 + dy g = 0.

Combining these with the equation above, we find that
d/nJrl(gn-i-l(x? z)) = d;1+1(fn+1($) + On+1(2), hnt1(2))

= (dp 1 (fns1 (@) + dip g1 (On41.(2)) + 1 (1 (2)), dip 1 (o (2))

and
Inldnt1(2,2)) = gn(dn41(@) + Npt1(2), dny1(2))

= (fn(dn—i—l(x)) + fa(ny1(2)) + On(dni1(2)), hn(dn-i-l(z)))-
Since f and h are chain maps, d), |, ;gn4+1 = gndn41 reduces to
d/n+16n+1 = fnnn—i—l + andn-i-l - 77;L+1h77/+1'

Since Z,,4+1 is projective, a suitable 6,41 exists if the image of the right hand
side is contained in the image of d;, , ; which is the same (because X' is acyclic)
as the kernel of d/,. The induction hypothesis implies that d,, g, = gn—1dn, s0
this equation holds with n in place of n + 1, and consequently

d;lendnJrl = (fnflnn + 0p—1dy, — néhn)dnJrl = (fnflnn - n;lhn)dnJrl
Using the fact that f and h are chain maps, we now have
d%(fnnn+1+9ndn+1—77%+1hn+1) = d;z(fnnn—l—l_77;L+1hn+1)+(fn—177n_77;zhn)dn+1

= fn—l(dnnn-i-l + nndn—I—l) - (d;177;z+1 + n;d;wrl)hn-i-l =0.
]

Again, the important point results from combining the particular construc-
tive results.
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Proposition C5.6. If

0 A B

C 0
/ g h
2‘/ p/
0 - A - B’ e 0

is a commutative diagram of R-modules and homomorphisms, then there is a
commutative diagram

0 X ’ y—2 Lz 0
fl g h
/ 2‘/ ! p/ !
0 X Y . 7 - 0

of left complexes in which X,Y, Z, X', Y', and Z' are free resolutions of A,
B, C, A", B, and C'" and each chain map extends the corresponding given
homomorphism.

Proof. Proposition C5.4 gives short exact sequences 0 — X ey -2z

0and 0 —» X' ——~Y' 2+ 7 5 0 of free resolutions over the two given

short exact sequences of R-modules. Lemma C3.1 implies that f and h can

be extended to chain maps X N X' and Z SN 7', after which Lemma

C5.5 implies that there is a chain map Y —2 + Y’ such that the diagram
commutes. U

Now we are going to repeat everything above for the case of injective
resolutions. The reader will quickly realize that everything is dual to what we
did above, and was written by copying it, then making required modifications.
Most readers will want to pass over it lightly, and will not miss much by doing
S0.

Lemma C5.7. Suppose we are given a diagram

0 L g Pk 0
do do do

0 I — ., g P g, 0
d_y d_, d_y

0 Al .p_P & 0
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in which0 - A ——~ B —2+ C = 0 is a short ezact sequence of R-modules, 1
and K are right complexes over A and C, and for all n > 0 we have J, = I, ®
K, and iy(x) = (2,0) and p,(x,z) = z. Then (with respect to homogeneous
notation):

(a) For each n it is the case that dy, 0, = iny10d, and dy 0 py, = ppy10dy,
if and only if there is a homomorphism n, : K, — I,411 such that

dn (i, k) = (dn (i) + 10 (F), dn (k). (%)

(b) If this is the case for all n, then, for eachn, 0 = dp410dy : Iy — Jni2
if and only if
O=dpr10Mn +Npugy10dy : Ky — Inyo.

Proof. Taking compositions of d,, : J, — J,_1 with the projections gives
homomorphisms ¢,, and ¥,, such that

dn(i’ k) = (Qpn(ia k)’ T;Z)n (i’ k))

If pp41 0 dy = dy, © pp, then ¢, (i, k) = d,(k), and if i, 41 o d,, = d, 0 iy, then
©n(i,0) = d,(7), so setting 1, (k) = ©n(0, k) gives (x). Conversely, if, for some
homomorphism 7, : K,, = I,+1, we define d,, : J, — Jp41 by setting

dn(i k) = (dn(i) + mn(k), dn(K)),

then py110d, = d, op, and iy 41 o d,, = dy, 04y follow automatically.
Now (b) follows from a straightforward calculation:

dni1(dn (i, k) = dny1(dn (i) +n0(k), dn(K))
= (dnt1(dn(3) + 10 (k) + Mt 1(dn(k)), dnt1(dn(k)))
= (dnt1(Mn (k) + Mnt1(dn(k)), 0).

Lemma C5.8. Suppose we are given a short exact sequence
0A—+B-L+C—0

of R-modules, an injective right complex I over A, and an acyclic left complex
K over C'. Then there exists a right complex J over B and extensions of i
and p to chain maps such that the sequence

0T —wJ-PvK 50

is a short exact sequence of left complexes over 0 - A — B — C — 0 and for
each n > 0 the sequence 0 — I, i, Jn P, K, — 0 splits.
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Proof. For each n > 0, let
Jp =1In @ Kna

and let 4, : I,, — J, and p, : J, = K, be the functions
in(i) = (4,0) and p,(i,k) = k.

Then 0 — I, —> J,, -2+ K,, — 0 is obviously exact, and it splits.

The remaining step is the construction of suitable homomorphisms d,, :
Jn — Jn—1. In view of the last result, it suffices to construct homomorphisms
M + Ky — Iny1 such that (with respect to homogeneous notation)

dny10Mn +Mpgp10d, =0

for all n. Setting n, = 0 for all n < 0, it is clear that this equation holds
whenever n < —1. Fixing n > —1, suppose that 7; has already been defined
for all j < n in such a way that this equation holds with n replaced by any
J < m. Since 1,19 is is injective, to show that a suitable 7,1 exists it suffices
(by (c) of Proposition B8.1) to show that the kernel of d,,+1 o 7, contains
the kernel of d,, which (since K is acyclic) is the image of d,—;. But since
N 0dp—1 = —dy 011 We have

_dn-l—l O1n © dp—1 = dn+1 odyo Mn—1 = 0.

Lemma C5.9. Suppose we are given a short exact sequence
0T —J—2e K0

of right complexes over a short exact sequence
05A4A—+B-L2.C50

of R-modules. If I and K are acyclic, then so is J. If I and K are injective,

and each sequence 0 — I, i, Jn, Pn, K,, — 0 splits, then J is injective.

Proof. If I and K are acyclic, then (with respect to homogeneous notation)
H™(I) = 0 and H"(K) = 0 for all n. In this circumstance the long exact
sequence for cohomology implies that H"(J) = 0 for all n.

The second claim follows from the fact that finite direct sums of injective
modules are injective, which is easily derived from condition (b) of Proposition
BS8.1. O
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Proposition C5.10. For any short exact sequence 0 — A —.B >
0 of R-modules there is a short exact sequence 0 — I g2 K =

0 of right complexes over 0 — A ‘'~ B—2+0C = 0 with I, J, and
K injective resolutions of A, B, and C respectively, such that each 0 —

I, . Jn L, K, — 0 splits.

Proof. Lemma C1.1 implies that there are free resolutions I and K of A and
C. Lemma C5.2 implies that there is a left complex J over B and extensions

of ¢ and p to chain maps such that 0 — I —Z> J —2+ K —5 0 is a short exact
sequence of left complexes over 0 — A . B-.Cc— 0, such that each

0—1I, . Jn P, K, — 0 splits. The last result implies that J is acyclic
and injective, hence an injective resolution of J. U

Lemma C5.11. Let

0 A - B C - 0
f g h
-/ /
0 A g -0

be a commutative diagram of R-modules and homomorphisms, let

0l —+J-Pv K50 and 05T —— 7 P K 0

be short exact sequences of left complexes over its rows such that each 0 —
I, — J, 2+ K,, — 0 and each 0 — I, —~ J —2"s K/ — 0 splits,
and let f: I —I' and h : K — K’ be chain maps extending f : A — A’ and
h:C — C'. If K and K' are projective and I' is acyclic, there is a chain map

g:J — J extending g : B — B’ such that the diagram of chain maps

0 i - J K >0
fl g hl
Z'/ p/
0 I J K’ 0
commutes.

Proof. We use homogeneous notation, and, to save space we drop the symbol
for composition, writing this operation multiplicatively. Our objective is to
construct a sequence of functions g, : J, — J),, where g_; agrees with the
given g : B — B’, such that for all n we have:

(a) infn = gnin;
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(b) Phgn = hnpn;
(C) dizgn = gn+1dn-

If we set g_1 = g and g, = 0 for all n < —1, then these conditions hold for
all n < —1. By way of induction, suppose that n > —1, and that we have
already constructed satisfactory go,...,g,. We need to show that a suitable
Jn+1 exists.

By hypothesis, up to isomorphism we have

Jn =1, K, and J,Q:I;L@K,'@
with
in(i) = (4,0), pn(i,k) =k, Z;L(Z/) = (z",O)7 p;(i',k') =k

We have p),(g,(0,k)) = hyp(pn(0,k)) = hn(k), so there is a homomorphism
0, : K, — I, such that

gn(07 k) = (en(k)a hn(k))

We also have

gn(i,O) = gn(zn(z)) = Z;L(fn(z)) = (fn(l)’o)

Conversely, if g,11 is defined by setting

In+1(8, k) = (fa41(2) + Ony1(k), A1 (k)

for some homomorphism 6,41 : K,11 — I, then it is automatically the

case that i, | fu41 = gnt1ins1 and py1gnt1 = Apgr1Ppg1. Our problem is
reduced to finding 6,11 such that g,+1d, = d,,gn.

Now recall that Lemma C5.7 gives homomorphisms 7, : K,, — I,+1 and
ny, : K, — I, for all n such that

dn(i,k) = (dn (@) + 10 (), dn(K)),  dy(i, k) = (3, (0) + my, (K), d, (K)),
dn+177n + 77n+1dn =0, d;1+177111 + U;LJrld;m =0.
Combining these with the equation above, we find that
In+1(dn (i, k) = gnt1(dn (i) + nn(k), dn(k))

= (fn+1(dn(l)) + fn+1(77n(k)) + 9n+1(dn(k))’ hn+1(dn(k)))
and

= (dp,(fa (D)) + dp, (00 (k) + )y (R (k) dy, (B (K))) -
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Since f and h are chain maps, gn4+1d, = d,,g, reduces to

9n+1dn = d On + nn fn+177n

Since I}, ; is injective, it suffices (by (c) of Proposition B8.1) to show that
Ker(d,) C Ker(d,,0,, + 1,k — fnt1mm), and Ker(d,,) = Im(d,,—1) because K is
acyclic.

The induction hypothesis implies that the equation above holds with all
subscripts reduced by one, so

dlnandn—l = d/n(n;flhn—l — fn77n—1)'

Using the fact that f and h are chain maps, we have
(d0n + Mo — fr1mn)dn—1 = dy (1,1 hn—1 = fatin—1) + (b — frp17m)dn—1

(d, 77n 1T Undn 1)h fnJrl(dnnnfl + nndnfl) =0.

Proposition C5.12. If

0 A—" ,p— P ¢ 0
f g h
-/ /
0 A g -0

is a commutative diagram of R-modules and homomorphisms, then there is a
commutative diagram

0 I ’ Jg—Pr K 0
fl g hl
! Z" ! p/ !

0 ] . J - K - 0

of left complezes in which I, J, K, I', J', and K' are free resolutions of A,
B, C, A, B', and C' and each chain map extends the corresponding given
homomorphism.

Proof. Propomtlon C5. 4 glves short exact sequences 0 — 1 L AN
0and 0 — I’ —
exact sequences of R—modules such that each 0 — I, e, Jn P, K, —0
and each 0 — I in —» J —» K| — 0 splits. Lemma C3.1 implies that

J' 2+ K’ — 0 of free resolutions over the two given short

f and h can be extended to chain maps I 7 and K K', after

which Lemma C5.5 implies that there is a chain map J —2, J' such that the
diagram commutes. U
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C6 The Long Exact Sequences of Derived Functors

Let T be an additive covariant functor from the category of R-modules to the
category of @Q-modules, and let U be an additive contravariant functor from
the category of R-modules to the category of Q-modules.

Proposition C6.1. For each n € Z and each short exact sequence
05A—+B-LsC0
of R-modules there are R-module homomorphisms
dp, : (L,T)C — (L,—1T)A, On : (LyU)A — (L,,—1U)C,
" : (R"T)C — (R"M1T)A, d": (R"U)A — (R"1U)C,
such that the sequences
e (L T)A — (LaT)B —2 (LT)C ~Le (Ly  T)A —— -
e (LaU)C — e (LaU)B —2 (LyU)A -2 (L, UNC —— -
i (R"T)A — (R"T)B —2+ (R"T)C L (R™'T)A — ...

e (RnU)C_i> (R"U)B -~ (R"U)A _, (RMUYC — -

are exact and, for any morphism

0 A B C 0
f g h
0 - A - B - ' 0

of short exact sequences of R-modules, all diagrams

(L ,T)C —% (L, 1T)A (LoU)A =2 (L, U)C"
(LnT)hl l(Ln,lT)f (LnU)fl l(Ln,lU)h
(L T)C" —%s (L, \T)A’ (LyU)A =2 (L,_,U)C
(R'TYC —2 (R™'T)A (RU)A —L— (R1U)C!
(rron | |@ons @y | @ rom
(R'T)C" —Ly (RMHIT) A (RrA - (RPH1U)C

commute.
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Proof. Proposition C5.4 gives a short exact sequence
05X vy 2o z50

of chain maps, where X, Y, and Z are projective resolutions of A, B, and C
respectively. Since each Z,, is projective, (c) of Proposition B7.2 implies that
each short exact sequence 0 — X,, — Y,, — Z,, — 0 splits, so Proposition B5.2
implies that 0 — TX,, — TY,, — TZ, — 0 is exact (and actually splits, not
that it matters here). Applying Proposition B4.3 to the exact sequence 0 —

TX ——~ TY 2+ TZ — 0 gives homomorphisms dy, : (L,T)C = (L,_1T)A
such that the sequence

i e (LaT)A — (LuT)B —2+ (LnT)C —" (L i TVA —— ...

is exact.

If
0 A B C 0

f
0 Al B o -0

9

is a morphism of short exact sequences of R-modules, Proposition C5.6 gives
a morphism

0 X Y Z 0
fl g h
0 - X' Y’ A ~ 0

of short exact sequences of chain maps, with X, Y, Z, X', Y’, and Z’ projective
resolutions of A, B, C, A, B’, and C’ respectively. Applying Proposition B4.3
to the morphism

0 X Y Z 0
0 X/ Y’ A >0

of short exact sequences of truncated chain complexes shows that the diagram

(L T)C —2 (L,1T)A

(LnT)hl l(Ln—lT)f

(L T)C" —2s (L, 1 T)A’
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comimutes.

The arguments for L,U, R™T', and R"U follow the same general pattern,
with obvious modifications (in particular, note the role of Proposition C2.5)
so we regard the proof as complete. ]

In order to save a bit of space, and to focus on what is new, the statement
of the result above has a somewhat narrow and technical flavor, and it is
important to understand its real significance. Specifically, there is a functor

from the category of short exact sequences 0 — A e B-2eC 5 00f
R-modules to the category of exact sequences of ()-modules with the following
properties:

(a) The image of the sequence above is the long exact sequence
o e (LyT)A —+ (LyT)B L+ (LyT)C 2 (Ly i T)A —— -

(b) The functor maps a morphism

[ p

0 - A - B . C - 0
el ]
0 - R e 0

of short exact sequences to the chain map

dn,
— (LyT)A —— (Ly,T)B —— (L,T)C — (L,_1T)A —

R
— (LyT)A' —> (L,T)B' — (L,T)C' =% (L,_1T)A' —

Of course similar statements hold for the left derived functors of U and the
right derived functors.

When T is right exact these properties amount to an axiomatic character-
ization of the left derived functors:

Theorem C6.2. If T is a right exact functor from the ring of R-modules
to the ring of Q-modules, then there are functors L,T (n € 7Z) that take
R-modules to QQ-modules, and connecting homomorphisms

dy i (LnT)M" = (Ln1T)M’

for short exact sequences 0 — M’ — M — M" — 0, with the following
properties:

(a) (L,T)M =0 for alln < 0.
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(b) LoT is naturally isomorphic to T.
(c) If M is projective, then (L,T)M =0 for all n > 0.
(d) For all short exact sequences 0 — M' — M — M" — 0 the sequence
oo o (L TYM' = (LpyT)YM — (L T)YM" —2 (L, T)YM' — ---
18 exact.

(e) The connecting homomorphisms are natural: for any morphism

0 M’ M M — 0
fl l fl f// l
0 M’ M M — 0

of short exact sequences the diagram

(LaT)YM" —%s (L,_T)M’
Ln)s | | @y
dn ~

(L,T)M" —=— (Lp,_1T)M’
commutes.

These properties determine the functors L,T and the connecting homomor-
phisms uniquely up to natural isomorphism.

Proof. Prior to this point we have not defined L,T for n < 0, so we can
do so now using (a). That the functors L, T have the asserted properties is
simply a summary of our work up to this point, specifically the definition and
Propositions C3.5 and C6.1.

The real work is proving uniqueness. Suppose that there are two different
systems of functors and connecting homomorphisms with these properties,
say {Fy,,d,} and {Fn,dn} We will show that for each n, F, is naturally
isomorphic to F),, and that this system of isomorphisms is natural with respect
to the connecting homomorphisms. By symmetry, the same claim holds with
the roles of the two variables reversed, and the result follows.

For any R-module M there is a short exact sequence 0 -+ K - P —- M —
0 with P projective. (For example we can take P to be the free module on a set
of generators of M.) We are given that Fy and F} are naturally isomorphic to
T, hence to each other, and F} P and F} P vanish by (c), so there is a diagram

00— FM —— F(]K F(]P

| =|

0—>F1M—> FQK F(]P
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with exact rows. Let [pK and foK be the images of F{ M — FyK and M —
FOK . Exactness implies that the image of [pK in FOK is contained in the
kernel of FyK — FyP, which is ) K. By symmetry the reverse inclusion also
holds, so the isomorphism between Fy K and FyK restricts to an isomorphism
between IoK and IpK. There is now an isomorphism between F; M and M
induced by requiring that the diagram

M —= LK

L

FlM i} I~0K

commutes. We would like to use this procedure to define a canonical isomor-
phism between Fy M and M , but for this we must show that the definition is
independent of choices, and then we will need to show that these isomorphisms
constitute a natural isomorphism of F; and Fy.

Let f: M — M’ be a homomorphism, and let 0 - K’ — P’ — M’ — 0
be a short exact sequence with P’ projective. There is a morphism

0 K P M 0
]
0 K’ P M’ 0

of short exact sequences because, since P is projective, we can choose a map
P — P’ such that the right hand square commutes, after which exactness
implies the existence of a map K — K’ making the left hand square commute.
Taking long exact sequences, and applying the naturality of the connecting
homomorphism, gives a commutative diagram

0 - M —— K FyP

o

M —— FyK' — FyP'

0

with exact rows. Since the kernel of Fy K — FyP is mapped to the kernel of
FyK' — FyP’, we find that the diagram

M — I()K

! !

FlM/ Em— I(]K,

comimutes.
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Now consider the diagram

a
1K 1K'
X /
d /
M M
e f\ \g h
FM— v B M
Y4
K

I > InK'

in which f and g are defined by requiring that the left and right hand quadri-
laterals commute. The diagonal maps are isomorphisms. We have just seen
that the upper and lower quadrilateral are commutative. The diagram

[OK E— IQK/ F()K R F()K/
l l commutes because l l
joK R iQK/ F()K R F()K/

commutes zimd the lEernel of Fy K — FyP is mapped to the kernels of Fy K/ —
EOP’ and Fo K — FpP, while the latter kernels are mapped to the kernel of
FyK' — FyP'. These facts justify the calculation

if =k i f =k Yeb =k 'hab =k ‘hed = kkgd = gd

which shows that the inner square commutes.

If M' = M and f is the identity, this amounts to the definition of the
isomorphism Fy M — Fy M being independent of the choice of the short exact
sequence 0 - K — P — M — 0. The general case amounts to this system of
isomorphisms being a natural transformation between F; and F).

To show that this natural isomorphism between Fj; and Fl is also nat-
ural with respect to the connecting homomorphisms, consider a short exact
sequence 0 - M’ — M — M" — 0. Let 0 - K — P —+ M" — 0 be a short
exact sequence with P projective. As before, since P is projective there are
maps P — M and K — M’ such that

0 K P M —0

I

0 M’ M M — 0
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commutes. Applying naturality of the connecting homomorphism gives the
commutative diagram

0 M —— [ K —— FyP

]

M —— B M —— FoM' —— FyM.

Thus dy : F{M" — FyM' is the composition FiM" — FyK — FyM’'. In the
diagram

M R K FoM'
M K FoM’

the left hand square commutes because the isomorphism between FyM"” and
FyM" was defined by requiring that this be the case. The right hand square
commutes because Fy and Fy are naturally isomorphic. Thus the diagram

M 2y RyM

T

M 2 ByM

commutes, as desired.

We now proceed by induction. Suppose, for some n > 1, that we have
already shown that Fj,_; and F,_; are naturally isomorphic, and that the
connecting homomorphisms are natural with respect to this system of iso-
morphisms. Essentially the same argument as above—simplified somewhat
because F,_1P = 0 = F,_1P when P is projective—shows that F;, and F,
are naturally isomorphic, with naturality with respect to d,, and d,,. The proof
is complete. ]

There are similar characterizations of R™1T when T is left exact, and of L, U
and R™U when U is a contravariant functor, and when this result is cited later
it will be understood as encompassing those claims. After all we have done to
get here, it is certainly nice to know that this phase of our work is complete, in
this sense that we have a set of properties that completely characterizes derived
functors. However, subsequent analysis will not be based exclusively on these
properties, since it will often be convenient to use the concrete definitions.



Chapter D

Derived Bifunctors

For R-modules M and N, the methods of the last chapter can be applied to
M ®p -, —®r N, Homgr(M,-), and Hompg(—, N). Double complexes will be
introduced and used to show that the functors derived from M ®g— and —Qr N
are the same, as are the functors derived from Hompg(M,—) and Hompg(—, N).
In this way we obtain bifunctors Tor®(-,-) and Ext(~,~) for n > 0. After
summarizing the properties of these bifunctors axiomatically, we introduce the
technique of “dimension shifting” and apply it to the study of various notions
of dimension for R-modules that are defined in terms of the minimal lengths
of various types of resolution.

D1 Left Derived Bifunctors

Our agenda now is to apply the method of derived functors to — ®p — in this
section and Hompg(—,—) in the next. To emphasize the properties of — ®@p —
that matter, in this section we work with an additive bifunctor F(—,—) from
pairs of R-modules to (Q-modules that is covariant in both variables. It is
interesting to note that the analysis in this section does not require that F' be
half exact.

For any R-module N, F'(—, N) is an additive covariant univariate functor,
and has left derived functors. We will show that these combine across the
various N to form a system of derived bivariate functors. Symmetrically, we
can combine the derived functors of the various F(M,—) to form a second
system of derived bifunctors. There is also a third system of derived functors
obtained by resolving both variables simultaneously. We will show that if
F(X,-) and F'(-,Y) are exact functors whenever X and Y is projective, then
these three systems of derived functors are naturally isomorphic.

As before, we fix a system of projective resolutions for all R-modules. We
also fix a system of chain maps f : X — Y extending the various homomor-
phisms f : M — N, where X and Y are the chosen resolutions of M and
N.

If X is the chosen resolution of M and N is an R-module, there is a chain
complex

F(d2,N) F(di,N)
_ _

-o = F(X3,N) F(X1,N) F(Xo,N) = 0

121
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that we denote by F(X, N). The n'® left derived functor of F|(—, N) evaluated
at M is, by definition, H,,(F (X, N)), and is denoted by F}(M, N). If f : M —
M’ is a homomorphism with chosen extension f : X — X', then F!(f, N) is,
by definition, H,(F(f, N)). For each N have defined functors F}! (-, N).

For any g : N — N’ there is a chain map

F(X,g9): F(X,N) = F(X,N)
whose n'"" component is F'(X,,, g), and it is easy to see that F(X, ) is a functor
from the category of R-modules to the category of chain complexes. For each
n=20,1,2,... let

F,y(M,g) = Hy(F(X,g)) : Fy(M,N) = F,(M,N').

For each M we have defined functors F!(M,-).

We need to check that F!(—,~) is a bifunctor. Let M’ be another R-module
with chosen resolution X', and let f : M — M’ be a homomorphism. Because
F' is a bifunctor the diagram of chain complexes

F(f,N)

F(X,N) F(X',N)

F(X,g)l JF(X’,Q)

F(f,N")

F(X,N') F(X/,N')

commutes, so applying the functor H,, gives the desired commutativity:
Fr%(M,’g) OFé(f’N) = Fé(f,N/) OF%(M’Q)'

As in our work with univariate derived functors, there is the task of check-
ing that the definition of F!(—,~) does not depend (up to natural isomorphism)
on the choices of resolutions and extensions of homomorphisms of chain maps.
Consider a second system of choices of resolutions X’ for each M and exten-
sions f' : X’ — Y’ for each homomorphism f : M — N. Let F! denote
the bifunctors derived from this system of resolutions and extensions. Fix a
system of chain maps i : X — X’ where each i™ extends the identity on M.
In view of our work with univariate derived functors, we already know that
for each f: M — M’ and N, the diagram

1
Fiv, Ny LD,

FYM',N)
Hn(F(iM,N))l J/Hn(F(iM, N))

FY(#.N
n (f,N)

FY (M, N) FY/(M',N)

comimutes.
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Fix a homomorphism g : N — N’. There is a diagram of chain maps

FX,N) 229 px, N
F(iM,N)J lF(iM,N’)

F(X'g
(X',9)

F(X',N) F(X!,N')

which is commutative simply because F' is a bifunctor. Applying the functor
H,, gives the commutative diagram

1
FAX,N)) 28D piag v
Hn(F(iM,N))J JH,L(F(iM,N’))
FY'(M,g)

FY(M,N) —=——2, (X' N').

Thus the maps H,(F(i™, N)) constitute a natural isomorphism between the
bifunctor F} and F'.

Of course we can define a second system of derived bifunctors F?(-,-)
by resolving the second variable instead of the first. This gives rise to the
problem of showing that the two constructions give the same result, up to
natural isomorphism. This aspect requires a rather elaborate construction
and some new ideas.

A double complex Z is a diagram

l D12 l 022 l

Z02 Z12 Za
do2 di2 da2
0 0
Zo1 1 Z11 21 Za1
dor di1 da
o Oop
Zyo = Z10 = Za0 =

that is anticommutative in the sense that
0;j—10dij = —di—1,5 0 0y
for all 4, j, and that also satisfies
0i—1,;00;; =0 and d;j_10d;; =0

for all i and j. (We extend Z by setting Z;; = 0if ¢ < 0 or j < 0, so the range
of i and j in this and similar conditions below is all of Z.) If Z’ is a second
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double complex defined by modules Z;; and homomorphisms d;; and 9;;, a
chain map from Z to Z' is a system of homomorphisms g;; : Z;; — Zlfj such
that (%j © gij = gi—1,j © 0;; and d;j © gij = gij—1 o di; for all i and j. Evidently
there is a category of double complexes and chain maps.

Now let ¥(Z) be the chain complex

e ea(Z) 2% 5 (2) BN 3(2) = 0

where, for each n, ¥,(Z) = @, ,;_, Zi; and A, (which is sometimes denoted
by A,(Z)) is the homomorphism given by

An(zij) = 045(2i5) + dij(zif).
The computation
Ap—1(An(zij)) = 05103 (2i5)) +di j-1(0ij (2i5)) +0i-1,j(dij (2i))+di-1,j(dij (2i5))

= di j-1(03j(2i5)) + Oi-1,5(dij(2i5)) = 0
shows that ¥(Z) is indeed a chain complex.

If g: Z — Z' is a chain map of double complexes, then we define homo-
morphisms 3,,(9) : £,(Z) — X,(Z’) by setting

2n(9)(z0n + -+ + 2n0) = gon(20n) + -+ + gno(zno)-
It is simple to verify
An(Z') 0 En(g) = Zu-1(9) 0 An(2)
for all n, so these homomorphisms constitute a chain map
Y(g): 2(Z2) = 2(Z").

Clearly X is a covariant functor from the category of double complexes to the
category of chain complexes.
The algebraic principle underlying our work is:

Proposition D1.1. Suppose the double complex Z is expanded to the diagram

y €2 ' O12 ' 0o '

0« Wy < Zp2 ~ AP Zgp +——
do do2 d12 doo
0 Wy 1 Zo1 on Z1 O Zy ~——
dy do1 diy da1
£0 010 020
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in which -+ — Wy @, Wy Wy — 0 is a chain complex W, d, o

€n = En—1 0 don for all n, and every row is exact. Then the homomorphisms
En : Xn(Z) = W, given by

dy

5n(z(]n + -+ Zn(]) = 6n(ZOn)

define a chain map € : X(Z) — W, and each H,(€) : H,(3(Z)) — H,(W) 1is
an isomorphism.

Proof. The verification that € is a chain map is a calculation in which the
third equality is from exactness of the rows:

En_1 (An(z()n +t ZnO))
= &n—1(don(20n) + dn-1,1(2n-1,1) + 4+ O1,n—1(21,0-1) + o(2n0))
= en—1(don(20n) + 01,n-1(21,n-1))
= en—1(don(z0n)) = dn(en(z0n)) = dn(Enlzon + - + 2n0))-

The calculation above implies that &, maps cycles and boundaries in ¥, (Z)
to cycles and boundaries in W,,. We will show that &,, maps the cycles in ¥,,(Z)
onto the cycles in W,,, and that if a preimage of a boundary in W,, is a cycle
in ¥,,(Z), then it is a boundary. These facts imply that H, (&) is surjective
and injective, respectively.

Let w, € W, be a cycle. Since row n is exact we can choose zy, € Zy,
with &, (20n) = wy,. Since

En—l(dOn(ZOn)) = dn(En(ZOn)) = dn(wn) =0

and row n — 1 is exact, there is 21,1 € Z; 1 such that 01 ,-1(21p-1) =
—don(zon). To see that there is a 22,2 € Zy 2 such that 0a,,-2(22n—2) =
_dl,n—l(zlm—l) we combine the exactness of row n — 2 with the computation

O1n—2(din-1(z10-1)) = don—1(01,n—1(21,n-1)) = —do,n—1(don(20n)) = 0.

Continuing in this manner eventually produces a cycle zg, + - - -+ zp0 € 2 (Z2)
such that &, (zon + -+ + 2n0) = Wy

Now suppose that w,, = d;,+1(wp41) is a boundary and zg, + -+ - + 2,0 is a
cycle in 3, (Z) with &,(z0n + -+ + 2n0) = wy,. Since row n + 1 is exact there
is 20n4+1 € Zont1 such that y,11(20,n4+1) = Wny1. Now

en(2on — dont1(20,n+1)) = €n(2on) — dnt1(ent1(20,n+1)) =0,

so the exactness of row n implies that there is z1,, € Z1,, such that 01, (21,) =
2on — don+1(20,n+1). Anticommutativity implies that

O1n—1(21,n-1 — din(21n)) = O1,n—1(21,n-1) + don (010 (21n))

= 01,n—1(21,n—1) + don(20n — dont1(20,n+1))
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= al,n—l(zl,n—l) + dOn(ZOn) =0

because zg, + - - - + 2o is a cycle. Therefore the exactness of row n — 1 implies
the existence of 22,1 € Z2,,—1 such that 02 ,,-1(2, 2p,—1) = 21n—1 — din(21n)-
Continuing in this manner eventually produces zp n414- -+ 2n+1,0 € Lnt1(2)
such that

An+1(207n+1 + .4 Zn+1,0) = 20n + -+ Zno-
U

Proposition D1.2. In addition to the hypotheses of the last result, suppose
that we have a second diagram of this form, with primes attached to all sym-
bols, and that we have a chain map f = (fn) : W — W' and a chain map of
double complexes ¢ = (pij) : Z — Z' such that all diagrams

Z(]n £on ? Z(,]n
ok

fn /
W, —"s W'

commute. Then for each n we have f, o0&, = &, 0%, (), so that the following
diagram is commutative:

H,(3(2)) B9 [ (5(27))

Hn(é)l lHn(é’)
oWy D g,

Proof. This is a straightforward calculation:
fn(én(ZOn +-+ ZnO)) = fn(en(z(]n)) = 621(900n(20n))

O
We can now proceed as follows. Suppose that X is the chosen projective

resolution of M and Y is the chosen projective resolution of N. Let F(X,Y)
be the double complex defined by setting:

Fij(X,Y) = F(X;,Y)), dij = F(Xi,d;), 8 = (=1)'F(d;, Y5).
Define
F:(M’ N) = Hn(E(F(X’Y)))

If f: M — M and g : N — N’ are homomorphisms, X’ and Y’ are the chosen
resolutions of M’ and N’, and as usual f and g also denote the extensions to
chain maps f : X — X' and g : Y — Y’, we let F(f,g) denote the map of
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double complexes whose ij-component is F(fi,g;) : F(Xi,Y;) — F(X],Y]),
and we set

Fy(f,9) = Ho(3(F(f.9))) : Fy(M,N) — F}(M',N').

A natural approach at this point would be to show that the F} are bifunc-
tors that are naturally isomorphic to the F! and (by symmetry) the F?2. It
turns out that showing that the F} are bifunctors is unnecessary, since the fol-
lowing result is enough to show that the F! and F? are naturally isomorphic,
which is our ultimate concern. (As it happens, that F™* is in fact a bifunctor
also follows directly from the next result.)

Proposition D1.3. If F(X, -) and F(-Y) are exact whenever X andY are
projective, then there is a system of homomorphisms vy ny @ Fy(M,N) —
FY(M,N) such that the diagram

Ex(M,N) 2D g, )

L(M,N)l JL(M/,N/)

1
ENM,N) YD g )

commutes.

Proof. Consider the diagram

\ - ' Ji ¥ g1

0 F(XhN)‘—F(X17YO)<—F(X1,Y1)<—
€0 dOl d02

0 F(XO’N)<—F(XO,YE))‘—F(X0,Y1)< ........

The rows are exact because each F(X;,—) is an exact functor. Therefore
Proposition D1.1 gives isomorphisms ¢,z @ Fy, (M, N) — F}(M,N), and,
by virtue of two applications of Proposition D1.2, the diagrams

Fy(M'.g)

Fr (0, N) 0 pe () Fy (', N) 0 (0, N
L(JVI,N)l lL(]M/,N) and L(M’,N)l lL(Aﬂ,N’)
1 1 /
Fr v, Ny 28N pge ) P, Ny L29 p e
commute. The claim is obtained by combining these. O

Summarizing, we started with an additive bifunctor F' that is covariant in
each variable, and we defined three sequences of derived bifunctors F}, F2, and
E}. The last result implies that these are naturally isomorphic if F'(X,-) and
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F(-,Y) are exact whenever X and Y are projective. Now recall (Proposition
B7.4) that a projective module is flat, so X®@p—and —~®prY are exact whenever
X and Y are projective. Therefore we can apply the method described above
to define a sequence of derived bifunctors, which are denoted by Tor’f(-,-).
These may be computed from — ® g — by resolving either variable.

D2 Right Derived Bifunctors

Our task in this section is to define bifunctors derived from Homp(—,—). Let
M and N be R-modules. Recall that Hompg(M,—) is covariant and left exact,
so if J is an injective resolution of N, then we can take the cohomology of
the sequence Homp(M,J). On the other hand Homp(—, V) is contravariant
and left exact, so if X is a projective resolution of M, then we can take the
cohomology of Homp (X, N). The overall plan is to do both, then show that
the resulting derived bifunctors are naturally isomorphic. To a large extent
the work parallels what we did in the last section, but, because of the mixed
variances, things are in some ways a bit different.

Let F' be an additive bifunctor taking pairs of R-modules to Q-modules
that (like Homp(—,—)) is contravariant in its first variable and covariant in its
second variable. For the time being there is no need to assume that F' is half
exact. Also, note that our terminology of “left” and “right” derived bifunctors
is at least a bit misleading, because there are various possibilities in addition
to those considered here and in the last section.

We retain the system of projective resolutions and chain maps between
them that we fixed in the last section, and we now suppose that a system of
injective resolutions and cochain maps have been selected.

We first define bifunctors F7* for n = 0,1,2,.... For each /N the univariate
functor Fy'(—,N) is given by the version of R"F(—, N) resulting from the
chosen projective resolutions. Concretely, FI'(M,N) = H"(F(X,N)) and if
f:M — M, then

FY'(f,N) = H"(F(f,N)) : F{'(M',N) — F{"(M, N).

If X is the chosen projective resolution of M and g : N — N’ is a homomor-
phism, there is a chain map

F(X,9): FX,N) - F(X,N)

th

whose n'" component is F(X,, g), and we set

F['(M,g) = H"(F(X,g)) : F'(M,N) — F{'(M,N').
As before we must show that the we have defined bifunctors insofar as

FY'(f,N') o F{'(M', g) = F{'(M, g) o F{'(f, N)
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for all homomorphisms f : M — M’ and g : N — N’, and we must show
that (up to natural isomorphism) nothing depends on the chosen resolutions.
The arguments follow the patterns laid out in our discussion of left derived
bifunctors, with slight and obvious modifications, so we will not write them
out here.

We now define a second system of bifunctors F3'. For each M the univariate
functor FJ'(M,-) is given by the version of R™F(M,—) resulting from the
chosen injective resolutions. If J is the chosen injective resolution of N, then
F}(M,N)=H"(F(M,J)), and if g : N = N’ is a homomorphism, then

F3(M,g) = H"(F(M,g)) : F5'(M,N) — F3'(M,N").
If f: M — M, then
Fy(f,N)=H"(F(f,J)) : F3(M',N) — F3'(M, N).

Again, we omit the verification that nothing depends on the choices of reso-
lutions, and that

F3(f,N') o F3(M', g) = F5'(M, g) o F5'(f, N)

for all homomorphisms f: M — M and g : N — N'.

We need to show that if F' shares certain properties of Hompg(—,—), then
F* and F3' are naturally isomorphic; we will prove this by constructing an
intermediate bifunctor that is naturally isomorphic to each.

A codouble complexr A is a diagram

T T

02 12
A02 9 A12 0 A22 N
dOl dll d21
01 11
AOl 9 All 9 A21 N
dOO le d20
00 10
AOO 0 AlO 0 AQO N
that is anticommutative in the sense that
it o 9if — _ghd+l o gii

for all 7, j, and that also satisfies

0099 =0 and dYtod¥ =0
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for all i and j. (We extend A by setting AY =0if i <0or j <0.) If A is
a second codouble complex defined by modules A"/ and homomorphisms d’*’
and 0’, a chain map from A to A’ is a system of homomorphisms ¢ : A% —
A" guch that &'V o g = gt1i 0 99 and d'V o g9 = giit1 o did for all i and
j. Evidently there is a category of codouble complexes and chain maps.

Now let ¥(A) be the cochain complex

0 1
0 20(4) 2 B1(A) 2k 32(4)

where, for each n, X"(4) = @, ;_, A% and A" (which is sometimes denoted
by A"(A)) is the homomorphism given by

A™(a) = 9" (a) + dV (a™).
The computation
AMTLAM (@) = §FYI (97 (09))4-d 1 (919 (al9)) 48T () +-dP L (d ()
= @Y (@) + 9 @ (a)) = 0
shows that ¥(A) is indeed a cochain complex.

If g: A — A’ is a chain map of codouble complexes, then we define
homomorphisms X" (g) : ¥"(A) — X" (A’) by setting

(g (@ - ") = g (@) + - "),
It is simple to verify
A™M(A) 0 X"(g) = X" (g) 0 A™(A)
for all n, so these homomorphisms constitute a chain map
Y(g) : B(A) — B(A").

Clearly X is a covariant functor from the category of codouble complexes to
the category of cochain complexes.
As in the last section, we now need to attend to the underlying algebra.

Proposition D2.1. Suppose the codouble complex A is expanded to the dia-

gram
0 Ctz UK Atm 0% AEQ o' AEQ .
dl J01 i 2
0 . O! n' . A0 o . Al ot CoA2
dok dook dlok 20
0 o 7’ 400 0% A10 01 A0
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d° d!
in which 0 — C! —— C! —— C° — ... is a chain complex C, d"° on" =
n"tLod® for all n, and every row is exact. When each 0™ is regarded as a

homomorphism from C™ to ¥"(A), these homomorphisms constitute a cochain
map, and each H™(n) : H*(C) — H™(X(A)) is an isomorphism.

Proof. That 7 is a cochain map follows easily from the exactness of the rows:
A" () = d™ (" (")) + (" () = dM (" (")) = (A ().

This calculation also shows that 1™ takes cocycles to cocycles and cobound-
aries to coboundaries. We will show if the image of a cocycle ¢ € C" is a
coboundary, then ¢" is itself a coboundary, and that any cocycle in ¥,,(A) is
the sum of the image of a cocycle C,, and a coboundary in ¥,,(C). These facts
imply that H"(n) is injective and surjective respectively.

Suppose that ¢* € O™ is a cocycle, and that a" = (") € A" is a
coboundary. When n = 0 this means that a’” = 0, in which case we much
have ¢® = 0 because 7° is injective. Otherwise a”" is a coboundary when
regarded as an element of ¥"(A). Of the various preimages a®" !+ ..4+q"~1.0
of a® in "~ 1(A), choose one that is minimal for the k such that a®"%=1 =

=10 — 0. Aiming at a contradiction, suppose that k > 1. Since
k—2n—k

=

ak—l,n—k(ak—l,n—k)

= 0 and row n — k is exact, there is some a such

that a*—1n=k = g=2n=k(gk=2n=F) Evidently
aO,nfl NN akfl,nfk: _ An72(ak72,nfk)

is also mapped to a™ by A"~!, which contradicts the minimality of k. There-
fore k = 1, which is to say that there is some %"~ € A%"~1 with d®"~1(a%"~1) =
a” and 9%"1(a®"~1) = 0. The latter fact implies that it has a preimage
1t e C" 1 Since

nn(cn) —q" = dO,n—l(nn_l(cn—l)) _ nn(dn—l(cn—l))’

the injectivity of " implies that d"~!(c"~!) = ", so ¢" is a coboundary.
Now suppose that a” + --- 4+ a®""F is a cocycle. We may suppose that,
among the various cocycles that represent the same element of H™(n), this one
minimizes k. If k& > 0, then, since 9*"~*(a*"=*) = 0 and row n — k is exact,
there is some a*~1"=* such that a®"~* = gk=Ln=k(gk=1n=k) Eyidently

a® .. ghnk An—l(ak—l,n—k)

is another representative of the cohomology class that contradicts the min-
imality of k. Therefore K = 0, which means that the cohomology class is
represented by some a”* € A", Since 9""(a") = 0 and row n is exact, a”"
has a preimage ¢ € C™. Since a” is in the kernel of d%, n"*1(d"(c")) =
d"(n™(c")) = 0, and since ™! is injective, it follows that ¢” is a cocycle. [
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Proposition D2.2. In addition to the hypotheses of the last result, suppose
that we have a second diagram of this form, with primes attached to all sym-
bols, and that we have a chain map f = (f") : C — C' and a chain map of
double complexes p = (¢¥) : A — A’ such that all diagrams

Cn fn Cln

T

A(]n SOO” AIOn
commute. Then for each n we have n'" o f* = X" (p)on™, so that the following
diagram is commutative:

ey D geen
) | | e
H™(3(4)) 2 B2 (4)).
Proof. This is a straightforward consequence of the fact that ¢ on™ =7/ o
fm. O

We apply these concepts to F' as follows. Suppose that X is the chosen
projective resolution of M and J is the chosen projective resolution of V. Let
F(X,J) be the codouble complex defined by setting:

FI(X,J) = F(X;,J;), 089 =F(@d™J), d7=(-1)"F(X;,d).

If f: M — M and g : N — N’ are homomorphisms, X’ and J’ are the chosen
resolutions of M’ and N’, and as usual f and g also denote the extensions to
chain maps f : X’ = X and g : J — J', we let F(f,g) denote the map of
codouble complexes whose ij-component is F(f;, g;) : F(X;, J;) = F(X], JJ’)
Define
Fr(M, N) = H'(S(F(X,3)),
and set
FI(f,9) = H"(X(F(f,9))) : F'(M,N) — F!(M',N').

Proposition D2.3. If F(X, -) is exact whenever X is projective and F(— 1)
is exact whenever I is injective, then there is a system of homomorphisms
JMN) - Fr (M, N) — FPY(M, N) such that the diagram

Fp,N) 2 e, N

L(M,N)l L(MCN’)

Fr(M,N) S0, Froa, )

commutes.
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Proof. We apply Proposition D2.1 to the diagram

T 771 T 310 T 311
0 F(X{,N) —— F(X1,Jo) —— F(X1,J;) —
dl‘ dOO‘ dOl‘
0 (:)00 301
0 F(X07N) L’ F(X07J0) - F(X07J1) -

to obtain isomorphisms (™) F'(M,N) — F(M,N). Two applications of
the last result imply that the diagrams

Fr(f,N Fr (M,
rrow, Ny S mponny Fron ) SRS mrn N
L(JVI,N)l lL(]M,N) and L(]M,N)l L(M,N/)
FrM, Ny Y e, ) Fr(M,N) 9 par, N
commute, and the claim is obtained by combining these. O

In the last section the situation was entirely symmetric, so that the ana-
logue of the last result could be taken also as a proof that the functors F?2
were naturally isomorphic to the F;;. In this case we do not have complete
symmetry, but in fact one can prove that the functors F3' and F}' are natu-
rally isomorphic in the same way. Instead of belaboring the details we simply
mention that in this case the critical diagram is

T 771 T dOl T dll
0 F(M, Jy) F(Xo,J1) — F(X1,h) —
dl‘ 600‘ 610‘
770 dOO dOl
0 F(M, Jy) F(Xo, Jo) — F(Xy,Jo) —

We originally defined projective and injective modules by specifying that
X is projective if Homp (X, -) is exact and J is injective if Hompg(—, J) is exact,
so we can apply the method described above to define a sequence of derived
bifunctors, which are denoted by Ext':(—,~). These may be computed from
Hompg(—,—) by resolving the first variable projectively or the second variable
injectively.

D3 Axiomatic Characterizations of Tor and Ext

With the spade work complete, we can now “officially” define the bifunctors
TorZ(~,-) and Ext’(—, ) to be the derived bifunctors of ~®g— and Hompg(—, )
respectively. Suppose that X and Y are projective resolutions of R-modules
M and N. Then Torf(M,N) is the homology in dimension n of X @ N,



134 CHAPTER D. DERIVED BIFUNCTORS

and also the homology in dimension n of M ®r Y, and Ext; (M, N) is the
cohomology in dimension n of Hompg(X, N). If J is an injective resultion of
Y, then Ext% (M, N) is also the cohomology in dimension n of Homp (M, J).

The next result summarizes the properties of Tor®(—, ) that were estab-
lished during its construction. It turns out that these properties suffice to
characterize this system of bifunctors completely.

Theorem D3.1. Tor?(-,-) (n € 7Z) that take pairs of R-modules to R-
modules, with Tor*(M,-) and Tor® (-, N) covariant, and connecting homo-
morphisms

dy : Tor®(M" N) — Tor® | (M',N) and d,, : Torl(M,N") — Tor®® | (M, N’)

for short exact sequences 0 — M' — M — M" — 0 and 0 - N — N —
N" — 0, with the following properties:

(a) Torl*(M,N) =0 for all n < 0.
(b) Torl (-, -) is naturally isomorphic to ~®p -
(c) If either M or N is projective, then TorZ(M,N) =0 for all n > 0.

(d) For all short exact sequences 0 — M' — M — M"” — 0 and 0 — N’ —
N — N” — 0 the sequences

- — Tor®(M’',N) — Tor*(M, N) — Tor®(M",N) — Tor® (M',N) —
and

- — Tor (M, N") — Torf*(M, N) — Tor®(M, N") — Tort |(M,N’) —
are eract.

(e) The connecting homomorphisms are natural: for any morphism

0 M’ M M" 0
fl l f l f/l l
0 M’ M M" 0

of short exact sequences the diagram

Tor}(M", N) SLTEN Torl | (M', N)

Torf(f”,N)l lTorfﬂ(f'vN)
TorZ(M”, N) SLTEN Tor? | (M', N)

commutes, and similarly for the second variable.
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These properties determine the functors Tor(-, -) and the connecting homo-
morphisms uniquely up to natural isomorphism.

Proof. Prior to this point we have not defined TorZ(—,~) for n < 0, so we can
do so now using (a). In view of our definition of TorZ(M,-) and TorZ(-, N)
as right derived functors of M ® p— and —®pg N, properties (d) and (e) follow
immediately from the long exact sequence for right derived functors. Since
— ®p — is right exact, and M ®r — and —®pr N are exact when M and N are
projective, (b) and (c) follow from Proposition C3.5. The uniqueness assertion
of Theorem C6.2 implies the uniqueness asserted here. ]

There is a similar characterization of Ext’y(—, ). As in the last result, the
proof that these functors have the indicated properties is just a review our
work to this point. We use (a) to define Ext’z(—,—) for n < 0. Properties
(d) and (e) follow immediately from the long exact sequence for left derived
functors. Since Hompg(—, ) is left exact, and Homp (M, ) is exact when M is
projective while Hompg(—, N) is exact when N is injective, (b) and (c) follow
from Proposition C4.1. The uniqueness asserted in the next result follows from
the uniqueness assertion of Theorem C6.2, when it is construed as applying
to both variances and both left and right derived functors. Thus:

Theorem D3.2. There are bifunctors Extl(—, ) (n € Z) that take pairs
of R-modules to R-modules, with Ext (M, ) covariant and Ext(—, N) con-
travariant, and connecting homomorphisms

dy : Exth(M',N) — Exts™ (M",N) and d, : Exth(M,N") — Ext’s™ (M, N')

for short exact sequences 0 — M’ — M — M"” — 0 and 0 - N' - N —
N" — 0, with the following properties:

(a) Ext(M,N) =0 for all n < 0.
(b) Ext%(—, ) is naturally isomorphic to Hompg(-, -).

(c) If M is projective, or if N is injective, then Extz(M,N) = 0 for all
n > 0.

(d) For all short exact sequences 0 — M' — M — M"” — 0 and 0 — N’ —
N — N” — 0 the sequences

o= Exth(M",N) = Exth(M,N) — Exth(M',N) — ExtHH(M",N) — -
and
-+ — Exth (M, N') — Ext(M,N) — Ext}t(M,N") — Ext;H (M, N') — - -

are exact.
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(e) The connecting homomorphisms are natural: for any morphism

0 M - M - M" 0
f’l f{ f"l
0 M’ - M - M" 0

of short exact sequences the diagram

Ext (M, N) —2s Bxt™H!(M”, N)
(7. | ESRES
Ext (M, N) —2s Bxt?H(M”, N)

commutes, and similarly for the second variable.

These properties determine the functors Ext’h(—, -) and the connecting homo-
morphisms uniquely up to natural isomorphism.

D4 The Iterated Connecting Homomorphism

There is a computational device that is used in the application of derived
functors to exact sequences that are not short. The starting point of the
discussion is a rather cumbersome definition that abstracts the properties of
derived functors that make it work. A connected sequence of covariant functors
is a system

T={.. 727,771, 1% . .}

of covariant functors from R-modules to Q-modules, together with connecting
homomorphisms

T(C) = T 1(A)
for all short exact sequences 0 - A — B — C' — 0 and all n, such that:
(a) The composition of any two maps in the sequence
ce s TVHC) 5 T(A) - T(B) - TC) - TV 1 A) = -+ (%)
is zero.

(b) For any morphism

0 A - B C 0

f
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of short exact sequences all of the diagrams

™) —— T"1(4)

l |

Tn(cl) Tn—l(A/)
commute.

We say that T is ezact if the long sequence (x) is always exact.

Intuitively, one may think of a connected sequence of functors as a functor
from the category of short exact sequences to the category of “generalized
cochain complexes” of the sort appearing in long exact sequences. Homological
algebra doesn’t have standard terminology for the latter category, which is why
the definition above is a bit bulky.

Let

0—=A, A, 1+ —Ag—A 10

be an exact sequence. For i = —1,0,...,p let Z; be the kernel of A; — A;_1.
Then Z_1 = A_; and we can identify Z,_ with A,.

For each ¢ = 0,...,p — 1 there is a short exact sequence 0 — Z; —
A; — Z;_1 — 0 that gives rise to connecting homomorphisms 7"P~4(Z;_1) —
THP=i=1(Z.). The iterated connecting homomorphism

cr  T"P(A_y) — T"(A,)
is the composition
T P(Z 1) — TP N Zy) — - = TN Z,9) = T™(Zp1).

Now let T = {T™} be a second connected sequence of functors. A natural
transformation from T to T'is a collection of homomorphisms 7 : T7"(A4) —
T™(A) that are natural, in the sense that for any homomorphism A — B the

diagrams
T"(A) —— T™(B)

n’jl Jng
T”(A) — T”(B)

commute, and are also natural with respect to the connecting homomorphisms,
so that for every short sequence 0 -+ A — B — C — 0 the diagram

T™(C) —— T"1(A)

| L

T"(C) —— T 1(A)

commutes.
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Lemma D4.1. If {4} is a natural transformation from T to T, then the
iterated connecting homomorphism is natural in the sense that for any exact
sequence 0 — A, = --- — Ag — 0 all diagrams

TP (Ag) _r T (A,
| s
TrHp(Ag) —21—y Tr+1(A,)
commute.
Proof. By assumption every square in the diagram

TH(Z) — T(Z) e TZy) — T (Z)

| |

T"+p+1(Z_1) . T"‘”’(ZO) T

comimutes. O

We are particularly concerned with a situation that arises in connection
with resolutions that are “almost projective” or “almost flat.” An R-module
X is a T-module if T,,(X) = 0 for all n > 0. The isomorphisms given by the
following result are often described as dimension shifting.

Proposition D4.2. Suppose that T is exact. If
0O—-M-—=X,1—-—=>Xo—A—=0

exact and X,_1,...,Xo are T-modules, then there is an evact sequence
0— TP(A) =L TO(M) — T°(X, 1),

and for each n > 0 the connecting homomorphism cp : TPT"(A) — T™(M) is
an isomorphism.

Proof. For each n > 0and i =0,...,p — 1 the exact sequence
Tnerfi(Xi) N Tnerfi(Ziil) N Tn+p7i71(Zi) N Tn+p7i71(Xi)

is a portion of (¥). When n > 0 or i < p — 1 the hypotheses imply that the
outer modules vanish, so that the inner map is an isomorphism. When n = 0
and ¢ = p — 1 the sequence is

0—TYZ, 2) = T%Zy_1) = TY(X,_1).

Thus the iterated connecting homomorphism is an isomorphism when n > 0,
and when n = 0 it is the isomorphism T?(Z_1) — T%(Z,—2) composed with
TY(Zy—2) — T°(Zy—1). Of course Z_1 = A and Z,_1 = M. O
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The technique developed in this section can also be applied when the
connected sequence of functors is contravariant and/or the connecting homo-
morphisms increase dimension. Thus there are four cases, and we regard the
discussion to this point as establishing the relevant result in the other three
as well.

For ease of reference we now describe one other particular situation that
will arise later. Consider an exact connected sequence T' = {...,T1,Tp,T1,...}
that is covariant and whose boundary homomorphisms go from 7, to 7,1,
with T,,(I) = 0 whenever [ is injective and n > 0. Suppose we are given an
exact sequence

O=-N—=Ip—-—I, 1 —>X—=0

with Io,...,I,—1 injective. For i =0,...,p — 2 let Z; be the kernel of X; —
Xit1 (so N = Zy) let Z,_1 be the kernel of I,_; — X, and let Z, = X.
For each integer n there is an iterated connecting homomorphism 7, (X) —
Ty+4p(INV) given by the composition

Tn(Zp) = To1(Zp—1) = -+ = Togp—1(Z1) = Toyp(Z0)

where each T,4i(Zp—i) = Thntit1(Zp—i—1) is the central homomorphism of the
exact sequence

TotiIp—i-1) = Tnti(Zp—i) = Toyiv1(Zp—i—1) = Tnyiv1(Ip—i—1)

obtained by applying 7" to the short exact sequence 0 — Z,_;_1 — [,—;—1 —
Zp—i — 0. When n > 0 the outer modules vanish for all i = 0,...,p — 1, so
the iterated connecting homomorphism is an isomorphism. When n = 0 and
i = 0 the sequence is To(Ip—1) = To(Zp) = T1(Zp—1) — 0, so there is an exact
sequence

To(I,—1) = To(X) —+ T,(N) — 0.

D5 Projective and Weak Dimension

Let M be an R-module. The projective dimension of M, denoted by pdz M,
is the smallest n such that there is a projective resolution

=2 02Xy 2 Xy =2 =2 X1 > X2 M =0

with X,, 41 = 0. If, in the definition above, we replaced “projective” with “flat”
or “free,” we arrive at the notions of flat dimension and free dimension. Since
free modules are projective and projective modules are flat, the flat dimension
is not larger than the projective dimension, which is in turn not larger than
the free dimension. The injective dimension of M is defined in the same way
using injective resolutions.

If pdr M = 0, then there is a projective resolution X of M such that

X1 =0, so that 0 - Xg - M — 0 is exact and M is projective because it
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is isomorphic to Xy. On the other hand, if M is projective, then 0 - M —
M — 0 is a projective resolution, so pdp M = 0. Therefore if M # 0, then
M is projective if and only if pdp M = 0. With suitable adjustments, this
argument shows that M is injective (free, flat) if and only if its injective (free,
flat) dimension is zero.

The weak dimension of M, denoted by wdgr M, is the largest n for which
there is some R-module N such that Tor*(M, N) # 0. Due to the asymmetric
nature of Ext%, there are also two notions of dimension than can be defined
using these bifunctors, but these receive less attention. Since a projective
resolution of M can be used to compute TorZ(M, N), the weak dimension
of M is never greater than the projective dimension. Below we will show
that flat resolutions of M can be used to compute TorZ (M, N), so the weak
dimension is also not greater than the flat dimension. One of the main results
of this section is that if R is Noetherian and M is finitely generated, then
wdr M = pdr M. Under a wide variety of conditions the free dimension is
not greater than the projective dimension.

We begin by showing that Tor® gives a characterization of flatness. Later
we will see that, similarly, Extr characterizes projectivity and injectivity.

Proposition D5.1. The following are equivalent:
(a) M is flat.
(b) Tor®(M,N) =0 for all R-modules N and all n > 0.
(c) Torl (M, N) = 0 for all R-modules N.

Proof. If M isflatand X : --- — X7 — X9 — N — 01is a projective resolution
of N, then Tor(M,N) = H,(M ®r X) = 0 for all n > 0 because M ®@p —
is an exact functor. Thus (a) implies (b), which automatically implies (c).
Suppose (c¢) holds. If 0 - N’ —+ N — N” — 0 is a short exact sequence, then

0>MN - MerN—->MerN" =0
is exact because it is
Torf* (M, N") — Torl{(M, N') — Torl{(M, N) — Torf(M,N") — 0.
Thus M ®p — is exact, so we have shown that (c) implies (a). O

Proposition D5.2. If R is a local ring and M is a finitely generated flat
R-module, then every finite set of generators has a subset that generates M
freely, so M is free.

Proof. The images of a finite set of generators of M map to a set that spans
M /m and consequently has a subset that is a basis. Therefore it suffices to
show that z1,...,x, generate M freely whenever their images in M/mM are
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a basis of this vector space. By Nakayama’s lemma, x1,...,x, is a set of
generators for M, so we need to show that they are R-linearly independent.

We argue by induction on n. If rz; = 0 for some nonzero r, then the
euational criterion for flatness gives y; € M and a; € R such that x = ) ; @5Y;
and raj; = 0 for all j. But ¢ mM, so at least one a; must be a unit, which
implies that r = 0.

Now suppose that n > 1, and let ), ryz; = 0. Since z1,...,2, goes to
a basis of M/mM, each r; goes to zero in k, i.e., 7, € m. The equational
criterion for flatness gives y; and a;; such that z; = Zj a;;y; for all 4 and
> ;T = 0 for all 4. There is some h such that a,; that is not in m and is

consequently a unit, so r, = — Z:-L;Ol ri(ain/anp). The relation can be written
as Z;le ri(zi — (ain/ann)rn) = 0. Since the z; — (a;n/ann)r, map to n — 1
linearly independent elements of M /mM, r; = --- =r,_1 =0, and it follows
that r, = 0. O

The following is Theorem VIIIL.6.1" of CE.

Theorem D5.3. If R is a Noetherian local ring, M is finitely generated, and
Torf (M, k) = 0, then M is free, and every finite set of generators contains a
base.

Proof. Since Proposition D5.1 implies that M is flat, this follows from the last
result. O

Flat resolutions can be used to compute Tor’.

Theorem D5.4. If F:--- — Fy — Fy - M — 0 is a flat resolution of M,
then Tor (M, N) = H,(F @ N) for all R-modules N and all n.

Proof. Since —®pg N is right exact, the sequence
FLer N - Fop@pr N - M r N — 0
is exact (recall Lemma B5.3) which gives
Torl{(M,N) = M @ N = Ho(F @ N).

Let K be the kernel of Fy — M, and let F/ : -+ — F, - F} - K — 0
be the derived flat resolution of K. In view of the last result, the long exact
sequence for 0 — K — Fy — M — 0 ends with

0 — TorB(M,N) - K®@pr N = Fy ®r N — M @r N — 0.

Right exactness of — ®pr N applied to Fo — F; — K — 0 gives the second
equality in the computation

Fy

Tor® (M, N) = K <—
or (M, N) = Ker| ¢ =

®RN—>F0®RN)
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Fy ®r N
Im(F2 ®RN—)F1 ®RN)

:Ker( —>F0®RN>

B Kel“(Fl ®Xr N — Iy ®RN)
- Im(F,®r N — [} @ N)

= H{(F ®p N).
Now induction on n > 2 gives
Tor®(M,N) = Tor® (K,N) = H,_1(F' ®r N) = H,(F @ N),

where the first equality comes from the last result applied to the earlier por-
tions of the long exact sequence above. U

Generalizing Proposition D5.1, the next result gives a characterization of
flat dimension in terms of Tor’*. Later we will see analogous characterizations
of projective and injective dimension in terms of Extg.

Proposition D5.5. For any integer n the following are equivalent:

(a) wdr M < n.

(b) Tor®(M,N) =0 for all R-modules N and all i > n.

(¢) Torll, |(M,N) =0 for all R-modules N.

(d) Whenever

0—=F,—-F,1—=--—=F—-M=0
is exact and F,,_+,...,Fy are flat, I}, is also flat.

Proof. Recall (c.f. the discussion at the beginning of chapter C) that M
has a flat resolution. Suppose F,,_ 1 — --- = Fy — M — 0 is part of a
flat resolution of M and F,, is the kernel of F,,_y — F,_o. If (d) holds,
then the last result implies that 0 — F,, — --- — Fyp — 0 may be used to
compute Tor®(M,-). Thus (d) implies (a). Since M has a flat resolution, (a)
implies (b), from which (c) follows automatically. Let an exact sequence as
in (d) be given. For any N we apply the theory of the iterated connecting
homomorphism to the connected sequence Tor®(-, N) = {TorZ(-, N)}. Flat
modules are Tor?(-, N)-modules, so Proposition D4.2 (“dimension shifting”)

gives Tor{(F,,, N) = Torf,,(M,N) = 0, and the last result implies that F}, is
flat. O

Much of our work up to this point has been aimed at the following result.
Theorem D5.6. If R is Noetherian and M 1is finitely generated, then

wdr M = pdp M.
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Proof. Let d =wdgr M. We already know that d < pdr M. Proposition C1.2
gives a projective resolution of M whose modules are all finitely generated, so
there is an exact sequence

0=>Xg—=Xg1—>—=>Xo—>M—=0

where Xy_1,..., X are projective and finitely generated, and X is the kernel
of Xgq_1 — Xg4_o. Projective modules are flat, so if d = wdg M, then the
last result implies that X is flat. Since finitely generated R-modules are
Noetherian (Proposition A4.6) X, is finitely generated, hence Noetherian,
hence finitely presented. Now Theorem B9.11 implies that X is projective,
so pdp M < d. O

Proposition D5.7. If S is a multiplicatively closed subset of R, then for any
R-modules M and N,

TorS B(S71M,S™'N) = S~ (TorB(M, N)).

Proof. Let X be a projective resolution of M. Each module in ST'R®@r X =
S~1X (recall Lemma A6.6) is projective (Proposition B7.3) and S™!R is a flat
R-module (Proposition A6.8) so S~'X is a projective resolution of S~'M. We
have

S™HTor (M, N)) = STH(H, (X ®@r N)) = H,(S"HX @r N))

= Ho(S7'X ®g-15 STIN) = TorS B(S~'M,S7IN).

The second equality is the fact that localization commutes with homology
(Proposition A5.5) and the third is the fact that localization commutes with
tensor products (Proposition A6.5). O

The following is Exercise VII.11 in CE.
Theorem D5.8. For any R-module M,
wdr M = sup wdg,, Mny

where the supremum is over all maximal ideals m C R. If R is Noetherian
and M is finitely generated, then

pdr M = sup pdg, Mp.

Proof. For any maximal ideal m and any Ry-module N we have Ny, = N ®p,,
Ry = N, so for every n Proposition D5.7 gives

Torf“‘(Mm,N) = Torﬁ‘“(Mm,Nm) = (Torff(M, N))m.

It follows that
wdr M > sup wdgr, Mn.
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On the other hand the last result implies that if Torl(M, N) # 0, then
(Torf*(M, N))y is nonzero for some m. Therefore

wdr M < sup wdg,, Mn.

Any system of generators for M is a system of generators of each My, so if
M is finitely generated, then so is each My,. If, in addition, R is Noetherian,
then so is each Ry, and Theorem D5.6 gives wdr M = pdyp M and wdg,, My =
pdg,, My for all m. O

D6 Ext and Dimension

We now provide analogues of Propositions D5.1 and D5.5 for projective and
injective modules. Their proofs follow the same pattern as above.

Proposition D6.1. The following are equivalent:
(a) M is projective.
(b) Ext}h(M,N) =0 for all R-modules N and all n > 0.
(c) Exth(M,N) =0 for all R-modules N.

Proof. If M is projective and X : --- — X7 — Xo =& N — 0 is a projective
resolution of N, then Ext%(M,N) = H,(Homg(M,X)) = 0 for all n > 0
because Homp(M,-) is an exact functor. Thus (a) implies (b), which auto-
matically implies (c). Suppose (c) holds. If 0 - N - N — N” — 0 is a
short exact sequence, then

0 — Hompg (M, N’) — Hompg(M, N) — Hompg(M,N") = 0
is exact because it is
0 — BExt% (M, N') = Ext%(M, N) — Ext%(M, N") — Extk(M, N").

Thus Homp (M, -) is exact, so we have shown that (c) implies (a). O
Proposition D6.2. For any integer n the following are equivalent:

(a) pdp M <n.

(b) Extly(M,N) =0 for all R-modules N and all i > n.

(¢) Exts™(M,N) =0 for all R-modules N.

(d) Whenever
0—-X, - X 1= =Xo—>M—=0

is exact and X,_1,...,Xo are projective, X,, is also projective.
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Proof. Let --- - X7 — Xg =& M — 0 be a projective resolution of M, and
let X,, be the kernel of X,,_1 — X,,_2. If (d) holds, then 0 —» X,, — --- —
Xo - M — 0 is a projective resolution, so (d) implies (a). Of course (a)
implies (b) (logically the only issue is the existence of projective resolutions)
from which (c) follows automatically. Let an exact sequence as in (d) be
given. For any N the connected sequence Extg (-, N) = {Ext';(-, N)} is exact,
and projective modules are Extpg(-, N)-modules, so Proposition D4.2 gives
Ext}h(X,, N) = Extl™ (M, N) = 0. Now the last result implies that X, is
projective. ]

The last result has the following consequence.

Corollary D6.3. Suppose that 0 — M’ — M — M" — 0 is exzact and M is
projective. If pdg M’ > 0, then pdg M" = pdy M’ + 1, and if pdg M’ = 0,
then pdp M" < 1.

Proof. For any R module N the long exact sequence
- — BExth(M, N) — Exth(M',N) — Ext%™ (M",N) — Ext%™ (M,N) — - -

implies that Ext(M’, N) and Ext};™(M”, N) are isomorphic for all n > 0,
so this follows from the equivalence of (a) and (b) in the last result. O

Serre applies the following variant of Proposition D6.2.

Proposition D6.4. If R is Noetherian and M is finitely generated, then for
any integer n the following are equivalent:

(a) pdrg M < n.
(b) Ext%H(M,N) = 0 for all finitely generated R-modules N.

(¢) Exth(M,N') — Exth(M,N) — Ext}(M,N") — 0 is ezact whenever
0— N — N — N” — 0 is a short exact sequence of finitely generated
R-modules.

(d) Whenever
0—-X, - X 1= —=>Xg—>M—=0

is exact and Xp,_1,...,Xo are projective and finitely generated, X,, is
also projective.

Proof. Proposition C1.2 implies that there is a sequence with the properties
required in (d), so (d) implies (a). We already know that (a) implies (more
than) (b). In view of the exact sequence

Ext(M,N') — Ext} (M, N) — Ext}h(M,N") — Exts" (M, N')

(b) and (c) are equivalent.
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Suppose (b) holds, and let an exact sequence as in (d) be given. The argu-
ment in the last proof shows that for any finitely generated N, Exth(X,,, N) =
0. If0 -+ N — N — N’ — 0is exact and N, N”, and N” are finitely gen-
erated, then

0 — Hompg(X,, N') — Hompg(X,, N) — Homg(X,, N") = 0 (%)
is exact because it is
0 — BExt%(X,, N') = Ext%(X,,, N) = Ext%(X,,, N") — Exth(X,, N').

We need to show that Hom(X,,, ) is exact. Since it is left exact, this
boils down to Hompg(X,,, N) — Hompg(X,, N”) being surjective even when
N’, N, and N” need not be finitely generated. Aiming at a contradiction,
suppose that o : X,, — N” is not in the image. Insofar as X, is isomorphic
to a submodule of the finitely generated module X,,_1, and R is Noetherian,
Proposition A4.7 implies that it is finitely generated. Let N” be the image
of a. Since it is finitely generated, it is the image of a finitely generated
submodule N ¢ N. Proposition A4.7 implies that the kernel of N — N” is
finitely generated, and of course it is isomorphic to its preimage N’ C N'.
Now 0 — N’ — N — N” — 0 is a short exact sequence of finitely generated
R-modules, but a is not in the image of Homg(X,, N) — Hompg(X,, N"),
contrary to what has already been shown. U

Finally we handle injective modules. There are no surprises.
Proposition D6.5. The following are equivalent:
(a) M is injective.
(b) Ext}(N, M) =0 for all R-modules N and all n > 0.
(c) Exth(M,N) =0 for all R-modules N.

Proof. If M is injective and X : 0 - N — Iy — I} — --- is an injective reso-
lution of N, then Exti (N, M) = H"(Hompg(I,M)) = 0 for all n > 0 because
Hompg(-, M) is an exact functor. Thus (a) implies (b), which automatically
implies (c¢). Suppose (¢) holds. If 0 = N" - N — N” — 0 is a short exact
sequence, then

0 — Hompg(N", M) — Homp (N, M) — Hompg(N', M) — 0
is exact because it is
0 — Ext%(N", M) — Ext%(N, M) — Ext%G(N’, M) — ExtL(N", M).

Thus Hompg(+, M) is exact, so we have shown that (c) implies (a). O
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Proposition D6.6. For any integer n the following are equivalent:
(a) the injective dimension of M is < n.
(b) Ext(N, M) =0 for all R-modules N and all i > n.
(¢) Exts™ (N, M) =0 for all R-modules N.

(d) Whenever
O—-M-—-Ihy— =11 —=>1,—0

is exact and Iy, ..., I,_1 are injective, I, is also injective.

Proof. Let 0 - M — Iy — I; — --- be an injective resolution of M, and
let I,, be the cokernel of I,,_1 — I,—5. If (d) holds, then the sequence 0 —
M—-1y— - — I,y = I, - 0 (where I,,_; — I, is the quotient map)
is an injective resolution which may be used to compute Extg(-, M), so (d)
implies (a). Of course (a) implies (b) (since we know that M has injective
resolutions) from which (c) follows automatically. Let an exact sequence as in
(d) be given. For any N the connected sequence Extg(N,-) = {Extk(N,-)}
is exact, and injective modules are Extg(-, NV)-modules, so the contravariant
variant of Proposition D4.2 gives Exth(N, I,,) = Ext%Jrl(N, M) = 0. Now the
last result implies that I,, is injective. U






Chapter E

Derived Rings and Modules, and Completions

Let G be an abelian topological group, whose group operation is written ad-
ditively. That is, G is an abelian group endowed with a topology such that
addition and negation are continuous. We will always assume that G is first
countable, i.e., 0 has a countable neighborhood basis. For much of what we
do this is not strictly necessary, insofar as the concepts and results can be
suitably generalized, but it avoids considerable complications, and we have
no interest in groups that are not first countable. A Cauchy sequence is a
sequence ¢gi, g2, - . . in G such that for every neighborhood U of 0, g; — g € U
for all sufficiently large 7 and i'. Two sequences g1, ga,... and ¢}, g5, ... are
equivalent if, for every neighborhood U of 0, g; — g, € U for sufficiently large
i. (Since the group operation is continuous, for any such U there is a neigh-
borhood V' of 0 with V +V C U. Using this fact, it is easy to see that
equivalence is transitive, and it is obviously reflexive and symmetric, so it
is indeed an equivalence relation.) The set of equivalence classes of Cauchy
sequences can be endowed with an abelian group operation and a topology in
a natural manner that generalizes the passage from Q to R, and parallels the
completion of a metric space. We will begin by studying the basic properties
of this construction.
A descending chain

G:GODGlDGQD"'

of subgroups of G is a filtration of G. We denote such a filtration by (Gy,).
We may define a topology on G by taking the various g + G,, to be a base of
the collection of open sets. (To show that finite intersections of open sets are
open observe that if ¢” € (¢ + G,) N (¢’ + Gyr), and n' > n, then ¢’ + G, C
(9 4+ Gn) N (¢ + Gy).) This is the Krull topology defined by (G,,). Since
G, + G, C G, and —G,, = G,,, addition and negation are continuous.

In general an inverse system of abelian groups is a diagram

H:Hy<« H +< Hy + ---

of abelian groups and homomorphisms. For example, for the filtration (G,,)
there is an inverse system given by the natural homomorphisms G/Gp4+1 —
G/Gy,. The inverse limit lim H,, is the set of sequences {h,}, where each h,
is an element of H,,, such that for all m < n, the image of h,, in H,, is h,.

149



150 CHAPTER E. DERIVED RINGS AND MODULES, AND COMPLETIONS

Among the numerous possibilities for deriving new groups from (G,,), we
will be particularly interested in

On>0Gn,  On20Gn/Gny1, and  NImG/Gy.
In particular, let I be an ideal of R. Then there are the derived rings
R* = ®u>0 1", Gi(R) = @pxo I"/I""", and R =lmR/I".

The ring R is the I-adic completion of R. A filtration (M,) of an R-module
M is an I-filtration if IM,, C My, for all n. We will study the modules

M* = @50Mp,  G(M) = @,50My/Mpy1, and M = lim M/I" M.

The work of this chapter has a somewhat miscellaneous character, insofar
as it studies only a few of the many possibilities presented by these con-
structions, and it is further restricted to the development of the results used
to prove that the I-adic completion of a Noetherian ring is Noetherian, and
other results that will be needed later.

E1 Completing a Topological Group

Let G be an abelian topological group. Since the topology is invariant under
translation, it is determined by the neighborhoods of 0. A set S C G is
balanced if S = —S. If U is a neighborhood of 0, then so is U N —U, so
every neighborhood of 0 contains a balanced neighborhood. Let Kg be the
intersection of the neighborhoods of 0.

Lemma E1.1. K¢ is a balanced subgroup of G that is the closure of {0}, and
G is Hausdorff if and only if Ko = {0}.

Proof. For any neighborhood U of 0 the continuity of addition gives neighbor-
hoods V and W of 0 such that Kg + Kg C V+W c U, so Kg+ Kg C Kg.
Since K¢ is the intersection of all balanced neighborhoods of 0, K¢ = —Kg.
Thus K¢ is a balanced subgroup.

We have g € K¢ if and only if g is an element of every neighborhood of 0,
and this is true if and only if 0 is in every neighborhood of g, which is to say
that g is an element of the closure of {0}.

Distinct elements of Kg do not have disjoint neighborhoods, so G is not
Hausdorff if K has multiple elements. On the other hand suppose that
K¢ = {0}. Let g and ¢’ be distinct elements of G, and let U be a neighborhood
of 0 that does not contain ¢’ — g. Since addition is continuous, there are
neighborhoods V., W of 0 such that V + W C U. It is easily checked that
g —V and g + W are disjoint neighborhoods of ¢’ and g. U

We endow G/ K with the quotient topology induced by the quotient ho-
momorphism kg : G — G/Kg.
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Lemma E1.2. kg is an open map.

Proof. We need to show that if U C G is open, then kg (U) is open, which is
the same as nal(n(;(U )) being open. But from the definition of K¢ we have
U+ Kg=U,so kg (kg(U)) =U. O

The completion of G, denoted by G, is the set of equivalence classes of
Cauchy sequences in G. The equivalence class of the componentwise sum of
two sequences is easily shown to depend only on the equivalence classes of the
sequences, so this operation induces a binary operation on G, and the axioms
for an abelian group are easily verified.

There is a map ¢ : G — G that takes each g to the equivalence class of
the constant sequence with value g.

Lemma E1.3. If g € G, § € G, and {gi} is a representative of g, then
g =1c(g) if and only if g;i — g. Therefore Kq is the kernel of iq.

Proof. By definition § = t¢(g) if and only if {g;} is equivalent to the constant
sequence with value g, and this is the case if and only {g; — g} is eventually
insider each neighborhood of 0, which is in turn the case if and only if {g;} is
eventually inside each neighborhood of g. U

In view of this result there is a homomorphism \¢ : G/K¢g — G that is defined
implicitly by requiring that )\G °oKG = LG-

For an open U C G let U be the set of § € G for which there is a repre-
sentative {g;} and an neighborhood V' of the origin such that g; + V' C U for
all sufficiently large i.

Lemma E1.4. The collection of sets U is a base of a topology for G with
respect to which G is an abelian topological group, and v and Ag are contin-
UOUS.

Proof. In order to be a base of a topology, a collection of sets needs to cover
the space (here G is in the base because G is open) and the intersection of
any two base elements must be a union of base elements. We will show that
if U and U’ are open, then UNU’ = Unu. Obviously UNnU' cUNU. To
verify the reverse inclusion suppose that g € UNU’. Take representatives {g; }
and {g.} of § and neighborhoods V" and V" of the origin such that g; +V C U
and g, +V’ C U’ for large i. Let W be a neighborhood of the origin such that
W+W cVnV'. Of course g; + W C U for large 7. In addition, for large i
we have g; — ¢/ GWandthusgl%—Wng—i—W—FWCU’ Thus g € unu.

For any open U we have U= ~U, so negation is continuous. If g+¢' € U,
then the techniques illustrated in the argument above can easily be used to
construct open V and V' with g e V, § € V', and V +V’ c U. Thus G is an
abelian topological group.

Evidently L&l(U) = U, so g is continuous, and )\(_;1((7) = kg (U) is open
because k¢ is an open map, so Ag is continuous. O
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Whenever V is open, V contains tc(g) for all g € V, so:
Lemma E1.5. 1(G) is dense in G.
Lemma E1.6. G is Hausdorff.

Proof. 1f {g;} is a representative of § € K 4, then g; is eventually in every open
U containing the origin, which means that {g;} is equivalent to the constant
sequence with value 0, and thus § =0 € G. O

If f: G — @G is a continuous homomorphism, f maps Cauchy sequences to
Cauchy sequences, and it maps equivalent sequences to equivalent sequences.
Therefore f induces a map

f:G=d
taking each equivalence class of Cauchy sequences to the equivalence class of
any of its elements. This is easily shown to be a continuous homomorphism.
Because G is dense in G, it is in fact the unique continuous extension of f.
If f': G — G” is a second continuous homomorphism, then ﬁ = f'o f.
Thus completion is a functor from the category of abelian topological groups
to itself.

It is an immediate consequence of the definitions that if f : G — G’ is a
continuous homomorphism, then the diagram

a 1@

l |

G 1 ¢
commutes. This simple fact can be dressed up as abstract nonsense:

Lemma E1.7. The system of maps tq constitute a natural transformation
from the identity functor, for the category of abelian topological groups, to the
completion functor.

If 1 is surjective we say that G is complete. In view of Lemma E1.3, G is
complete if and only if each Cauchy sequence has a limit in G. This section’s
most intricate result provides some justification of our terminology.

Proposition E1.8. G is complete.

Proof. At this point we use the assumption that there is a countable neigh-
borhood basis Uy, Us,Us, ... at 0. We can replace U, with Uy N...NU,, so
we may assume that Uy D Uy D Uz D ---. For each n choose an open V,,
containing 0 such that V,, +V,, + V,, + V,, + V,, C U,. Again, we may assume
that V1 D Vo D ---.
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We need to show that a given Cauchy sequence {§"} in G has a limit in
G. For each h choose a representative {g} of §".

For each n choose an h,, such that gh — gh’ € Vn for all h,h' > h,,. This
property is preserved if we replace each h, with the maximum of hq,..., hy,
so we may assume that h; < ho < ---. For each h and n choose an iy, such
that glh — ggf €V, for all i,7 > ip,. As above, we may assume that i, is
weakly increasing in h and n.

For eachi=1,2,...let g; = glhhlz If 4,4" > n, then for all sufficiently large
7 we have l

hi h; h; hi hi h; h; hy
9i = 97 = Yy, — gih:,i’ = (gihii —gp) + (g5 — gi///) + (gi/// - gih;,i’)

eVi+V,+Vy CU,.

Therefore {g;} is Cauchy. Let § be its equivalence class.
For each n, if h > h,, i > n, and 7 and 7' are sufficiently large, then

h h h h hn hn h; hi hi
9 —9i =9 —92) + (9 —9;") + (95" = 9") + (95" — g5, ,)

EVitVat+ Vi +ViC Vo + Vi + Vi + Vi,

SO glh — gi +V,, C Uy,. Therefore " — g € U, for sufficiently large h. This is
true for all n, so §" — §. O

Now suppose that R is a topological ring, so R is a ring with a topology
with respect to which addition, negation, and multiplication are continuous,
and 0 has a countable neighborhood base. In the following discussion does not
need to be commutative and need not have a unit. The completion R of R
is its completion as a topological group. We check that R has a well defined
and well behaved multiplication.

Lemma E1.9. If {r;} and {s;} are Cauchy sequences, then {r;s;} is Cauchy.
It {r}} and {s}} are Cauchy sequences that are equivalent to {r;} and {s;}
respectively, then {r,s.} is equivalent to {r;s;}.

Proof. Fix a neighborhood U of 0. Choose a neighborhood V' of 0 such that
V+4+V4+V+V CU, and choose a neighborhood W of 0 such that W-W C V.
There is an 4 such that r; — ry,s; — s, € W for all j,k > 4. The continuity
of multiplication implies that for sufficiently large j and k we have r;(s; —
sk), (rj; — ri)s; € V, so that

rjS; — TSk = rj(sj — Sk) + (V“j - rk)sk

= ri(sj — Sk) + (Tj — ri)(sj — Sk) + (V“j — Tk)(sk — Si) + (V“j — Tk)si e U.

Thus {r;s;} is Cauchy.



154 CHAPTER E. DERIVED RINGS AND MODULES, AND COMPLETIONS

. / i L ! . I
Now choose an ¢ such that Ty =TT = Ty ;= 85,85 — S € W whenever
/

j»k > . If j is sufficiently large, then (r}; —r;)s;, (s} — s;) € V, so that

rysy —risg = (rj —rj)sy +1i(s) = s5)

= (15 —1)8; + (r; — ;) (sy — si) 4 (rj — i) (s — 55) +ri(s; — s5) € U.

Thus {r}s;} and {r;s;} are equivalent. O

We may now define multiplication in R by specifying that if {ri} and {s;}
are representatives of 7 and §, then {r;s;} is a representative of 73. Of course
R is commutative if R is commutative, and if R has a unit, its image is a unit
for R.

Lemma E1.10. Multiplication in R is continuous.

Proof. Suppose that 75 € U, where U C R is open. Choose a neighborhood V'
of 0 € R such that r;s; +V +V C U for all large i. Let W be a neighborhood
of 0 such that W +W + W 4+ W C V, and let Z be a neighborhood of 0 such
that Z - Z C W. Suppose that # € # 4+ Z and § € 8+ Z, and {r}} and {s/}
are representatives. Choose ¢ such the r; — ’I“k,S;- — s, € Z for all j,k > i.
Then for all sufficiently large j we have (r; — r;)s}, 7i(sj — s;) € Z, because
multiplication is continuous, and 7“;. -1y, s;» — 8j € Z because the sequences

are Cauchy. The second calculation of the last proof now gives r}-s;- —rjs; €V
for large j, which implies that /s’ +V C U, so 78’ € U. O

E2 The Completion of a Filtered Group

Let G be an abelian group, and let (G,) be a given filtration. We endow
G with the Krull topology induced by this filtration, and we let G be the
completion of G with respect to this topology. Lemma E1.4 implies that:

Lemma E2.1. If G has the Krull topology, then the topology of G coincides
with the Krull topology induced by the filtration G = Gy D G1 D Gg D - - .

We adopt the following notation. For m < n let 0, : G/G,, - G/Gp, be
the natural map. An element of lim G /Gy, is a sequence {g, } with g, € G/G,,}
such that 67 (Gn) = Gm for all m < n. Let

O - U0 G /Gy — G /G

be the projection {g,} — Gm.

Suppose {g;} is a Cauchy sequence in G. For each n, g; — gy for all
sufficiently large ¢ and i’, which is to say that the sequence {g; + G, } in G/G,,
stabilizes; let g, be its terminal value. Clearly 67 (g,) = Gm for all m < n.
Moreover, equivalent Cauchy sequences induce the same terminal elements in
each G/G,, and thus the same element of l'&lG /G, so there is a map from
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G to @ G/Gy,. This map is obviously a homomorphism, and it is easily seen
to be injective. It is in fact an isomorphism because for any {§"} € lim G /G,
there is a preimage, namely the equivalence class of any sequence {g,} in
which each g, is an element of the coset §,. Thus we can identify G with
@1 G/Gy.

The concrete representation of G given by the inverse limit is very useful.
First of all, there is the flexibility provided by the following result.

Lemma E2.2. Suppose that G = Gy D G} D G4 D --- is a second filtration
of G such that for each m there is some n with G, C G, and for each n
there is some m such that G,, C G). Then

hm GGy, = yLnG/G’n.
Proof. Choose strictly increasing functions a, 8 : N — N such that Gg,,) C
;(m) C Gy, for all m. The natural projections induce homomorphisms
§m G/Gpny = W G /Gy = T G/ G
It is easy to see that this composition is an isomorphism, and for the same

. ! ~ 1: I
reason Im G/G . = lim G/G,,. O

We now apply homological methods to the study of inverse systems. Let
A:Ay+ A+ - and B : By « By < --- be inverse systems. A homo-
morphism ¢ : A — B of inverse systems is a collection of homomorphisms
¢+ Ay — By, such that each diagram

An—l m) Bn—l

T g

A4, - B,

commutes. In the obvious way such a homomorphism induces a homomor-
phism qAS : @An — lim B,,, and it is easy to see that passage to the inverse
limit is a covariant functor from the category of inverse systems to the category
of groups.

The inverse system A is surjective if each homomorphism A,, — A,_1 is
surjective, in which case the natural homomorphism l&l A, — A,, is surjective
for each m.

Proposition E2.3. Passage to inverse limits is a left exact functor: if 0 —
A — B — C — 0 is an exact sequence of inverse systems, then

O—)%iLnAn —>£iLan —>£1LnCn
is exact. If A is surjective, then
0 = lim A, — lim B, — lim €, — 0

18 exact.
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Proof. Let A = I[,, A,. Denote the homomorphism A, — A,_; by 6]_,
and let d* : A — A be ‘the homomorphism with n™ component d?(a) =
an — 07 (an41). Define B, dB, C, and d© similarly. There is a diagram

0-A - B - C—0

at| a4} o]

0—-A - B - C—0
that commutes because each diagram () commutes. The snake lemma gives
an exact sequence

0 — Kerd? — Kerd? — Kerd® — Coker d* — Coker d® — Coker d.

(The sequence given by Lemma B1.3 is supplemented here with the observa-
tion that Ker d* — Ker d” is injective because it is the restriction of A — B to
Ker dA.) Since Ker d4 = @1 A, and similarly for B and C, the first assertion
follows.

Supposing now that A is surjective, we need to show that Coker d* = 0,
i.e., d? is surjective. Concretely, for a given 2 € A we need to find a € A such
that x,, —a, = 9,’1‘+1(an+1) for all n. Since A is surjective, for any choice of ag
a solution of this system of equations can be constructed inductively. O

Corollary E2.4. Suppose that 0 — G' — G — G"” — 0 is exact. For each n
let G, be the preimage of Gy, in G', and let G be the image of Gy, in G”. Let
G'=1lmG'/G), and G" =lim G" /Gy . Then the sequence

0-G -G—=G"—0
1s exact.

Proof. We first show that for each n, the sequence 0 — G'/G!, — G/G,, —
G"/G! — 0 is exact. Clearly G'/G), — G/G,, is injective, G/G,, — G" /Gl is
surjective, and their composition is zero. If an element g + G,, of G/G,, goes
to zero in G” /G, then the image of g is in G/, and is consequently equal to
the image of some § € GG,,. Since g — g maps to zero, it is the image of some
¢ € G', and the image of ¢’ + G}, in G/G,, is g + Gy,

For each n the diagram

0> GGy — G)Grpy — G" /G — 0
0= GG, —— G/Gy —— G"/G" =0

commutes, obviously. The inverse system 0 <+ G'/G} + G'/G, + -+ is
surjective, so the claim follows from the last result. O

Corollary E2.5. If G, C G’ for some n, then G/G' = G/G'.

Proof. The last result gives G/G' = G, and G = l'&l(G/Gn)/(G’/Gn) =
a/q. 0
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E3 The Associated Graded Group

Let (G,) be a filtration of G. We now turn our attention to the associated
graded group
G(G) = Dply Gn/Gny1.

Suppose H is a second group with filtration (H,,). A filtered homomorphism
from G to H is a homomorphism ¢ : G — H such that ¢(G,) C H, for all
n. Let G(¢) : G(G) — G(H) be the graded homomorphism with compo-
nent homomorphisms G, (¢) : G,,/Gpy1 — Hy/Hyq given by g, + Gyl —
&(gn) + Hp41. Simple verifications demonstrate that we can understand G(-)
as a covariant functor from the category of filtered groups and filtered homo-
morphisms to the category of graded groups and graded homomorphisms.

There is no clear or obvious relationship between G(G) and G. Neverthe-
less there is two interesting implications.

Lemma E3.1. If G and H have filtrations (Gy,) and (H,) and ¢ : G — H is
a filtered homomorphism, then:

(a) if G(¢) is injective, then ¢ is injective;
(b) if G(¢) is surjective, then b is surjective.

Proof. For each n there is diagram

0— Gn/Gn+1

0— Hn/HnJrl _— H/HnJrl

G/Gn+1 G/Gn —0

H/H, —0

which commutes and has exact rows. Applying the snake lemma (Lemma
B1.3) gives an exact sequence

Ker G,,(¢) — Ker ¢,,11 — Ker ¢,, — Coker G,,(¢) — Coker ¢,,+1 — Coker ¢,.

Since G/Go = 0 = H/Hy, ¢o has null kernel and cokernel. If G(¢) is injective,
then the first half of this sequence implies (by induction) that Ker ¢,, = 0 for
all n. Since G is a subgroup of [[>°  G/G,, it follows that gb is injective.

If G(¢) is surjective, then the second half of the sequence implies that
Coker ¢, = 0 for all n. Thus the rows of the diagram

0— Kerdnis — G/Gpin Fnt1, H/Hn1 —0

| |,

0— Kero, G/Gy, H/H, —0
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are exact. This diagram commutes because the diagram above commutes and
the left hand vertical map is the restriction of the central vertical map. In
addition, since Coker ¢, = 0, the sequence above implies that Ker ¢,11 —
Ker ¢y, is surjective. Therefore (b) follows from Proposition E2.3. O

E4  Derived Graded Rings

A graded ring is a graded group S = @®,>0 5, that is also a ring, with the
multiplication satisfying S,,S, C Spyn for all m,n > 0. Elements of 5, are
said to be homogeneous of degree n. Since Sy is closed under addition and
multiplication, it is a subring. Let S = ®©,>15,. Evidently S is an ideal,
and Sy = S/S;.

Let R be an ungraded ring, and let I be an ideal. Then (I™) is a filtration,
so there is a derived graded ring

G](R) — @nzo In/InJrl’

which is a specific instance of the derived group G(G) seen in the last section.
Another derived graded ring is

R* = @nZO I".

Our agenda in this section is to study when these derived rings are Noetherian.
We begin with a generalization of the Hilbert basis theorem.

Proposition E4.1. A graded ring S = ®,>0 Sy, is Noetherian if and only Sy
is Noetherian and S is finitely generated as an Sp-algebra.

Proof. First suppose that Sy is Noetherian and S is finitely generated as an
So-algebra, say S = Sp[z1,...,2,]. Of course Sy[X1,...,X,] is Noetherian
(Hilbert basis theorem) and the image of a surjective ring homomorphism is
Noetherian if the domain is Noetherian. There is an obvious such surjection
from Sy[X1,...,X,] to S, so S is Noetherian.

Now suppose that S is Noetherian. Then Sy = S/S, is Noetherian.

Let 1,...,z, be a system of generators for the ideal S, and let S’ =
Solx1,...,x,]. We will show, by induction, that S, C S’ for all n. This is
obviously the case for n = 0. Each z; is a sum of homogeneous elements of
degree > 1, and may be replaced by them in the list of generators, so we may
assume that each x; is homogeneous, say of degree d; > 1. Then any element
of S, has the form aiz1 + - - - + a,x, where each a; is homogeneous of degree
n — d;. By induction, each a; is in S/, so a1z1 + -+ + a,z, € S'. d

There are now two results concerning G7(R) and R* respectively.

Lemma E4.2. If R is Noetherian, then Gr(R) is Noetherian.
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Proof. Since R is Noetherian, [ is finitely generated, say by x1,...,z,, and
R/I is Noetherian. Now (R/I)[X1,...,X,] is Noetherian by the Hilbert basis
theorem, and there is a surjective homomorphism from this ring to Gj(R)
that takes each X{'--- X2 to the image of z{*---x% in I%/I*"l where

a=a;+ -+ a. ]
Lemma E4.3. R* is Noetherian if and only if R is Noetherian.

Proof. There is a bijection between the ideals J of R and the ideals of R*
of the form J ® I & I?> @ ---, so R is Noetherian if R* is Noetherian. If R
is Noetherian and z1,...,z, generate I, then they also generate R* as an
R-algebra, so R* is Noetherian by Proposition E4.1. O

E5 Filtered Modules and the Artin-Rees Lemma

Let M be an R-module, and let (M,,) and (M]) be filtrations. If, for each n’,
there is some n such that M, C M],, and, for each n, there is some n’ such
that M/, C M,, then the two filtrations induce the same Krull topology on
M, and Lemma F2.2 implies that the two completions are isomorphic. We will
be interested in a stronger condition: the filtrations have bounded difference
if there is a nonnegative integer ng such that M, ,, C M), and M, ., C M,
for all n.

In general, if S = ®,>05, is a graded ring, a graded S-module is an S
module N = @,>0N,, such that S, N,, C Ny,4p, for all m and n. Fix an ideal
I. The filtration (M,) is an I-filtration if IM, C M, for all n. If this is the
case, then M* = @,>¢ M, is a graded R*-module with scalar multiplication

(o, 71, -+ ) (Mo, ma, ...) = (romo, romy + rimo, . . .).
An [-filtration (M,,) is stable if IM, = M, for all sufficiently large n.

Lemma E5.1. If R is Noetherian, I is an ideal, M is a finitely generated
R-module, and (M,) is an I-filtration, then M™* is finitely generated as an
R*-module if and only if (M,) is stable.

Proof. For each n > 0 let
M =My®- - @M, IM, @ I*M, ®--- .

This is a submodule of M* that is finitely generated because My ® --- ® M,
is a finitely generated R-module. The M, are an increasing sequence whose
union is M*, and M* is finitely generated as an R*-module if and only if the
sequence stabilizes, i.e., there is some ng such that M;; = M*, which is to say
that M, 4; = I'My, for all i > 0. O

Lemma E5.2. If (M,,) and (M]) are both stable I-filtrations of M, then they
have bounded difference.
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Proof. Since having bounded difference is an equivalence relation, it suffices
to prove the claim when M/ = I"M. We have I"M C M, by induction:
"M = I(I"M) C IM,, C My,y. If IM, = M, for all n > ng, then
Myiny C I™"M for all n. ]

We now have some rather famous results.

Theorem E5.3 (Artin-Rees Lemma). If R is Noetherian, M is a finitely
generated R-module, (M) is a stable I-filtration of M, and M’ is a submodule
of M, then (M' N M,) is a stable I-filtration of M’.

Proof. Since [(M'NM,) =IM'NIM, C M'N M,y for each n, (M'NM,) is
an [-filtration of M’. Therefore M'* = &,>9oM’' N M, is a submodule of M*.
Since (M,,) is stable, Lemma E5.1 implies that M* is finitely generated, so
M’ is finitely generated, and a second application of Lemma E5.1 gives the
desired conclusion. O

Since (I™M') is automatically a stable I-filtration of M’, the last result
and Lemma E5.2 give:

Corollary E5.4. If R is Noetherian, M is a finitely generated R-module,
(M) is a stable I-filtration of M, and M’ is a submodule of M, then (I"M'")
and (M' N M,,) have bounded difference.

Theorem E5.5 (Krull Intersection Theorem). If R is Noetherian and M is a
finitely generated R-module, then there isr € I such that (1—r)(,"oI"M =
0. If R is either a local ring or an integral domain, then (2, 1™ = 0.

Proof. We apply the Artin-Rees lemma with M,, = I"M and M’ = (72, I" M,
finding that (M’ M,,) is stable, so M’ = M'NI" "M = I[(M'NI"M) = IM’,
for large n. Now Corollary A3.2 gives the desired 7.

For the second assertion we apply the first with M = R. Since [ is proper,
r # 1, and the claim follows immediately if R is an integral domain. If R is
a local ring, then I is contained in the maximal ideal, so 1 — 7 is not in the
maximal ideal and is consequently a unit. U

Corollary E5.6. If R is Noetherian and local and Gr(R) is an integral do-
main, then R is an integral domain.

Proof. For r € R let «(r) € G;(R) be the image of r in G,, = I"/I""! if n
is the largest integer such that r € I"™, and let «(r) = 0 if there is no such
n. Proposition E5.5 implies that :=1(0) = 0. Suppose that 0 # r,s € R.
Then 0 # «(r) € Gy, and 0 # 1(s) € G, for some m and n. Since G;(R) is an
integral domain, ¢(r)c(s) # 0, but ¢(r)c(s) is the image of rs in [™+7\ [+l
so rs # 0. O
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Let (M,,) be an I-filtration of M. Recall that G(M) = @p,>0 G, (M) where
Gn(M) = M, /M, +1. The scalar multiplication

(¢ + I7") (mp + Myg1) = igmp + Myynia

(where ip € T tand m,, € M,,) is easily seen to be independent of the choice of
representatives, and makes G(M) into a graded G(R)-module.

Lemma E5.7. If R is Noetherian, M is a finitely generated R-module, and
(M) is a stable I-filtration, then G(M) is a finitely generated G(R)-module.

Proof. Each G,,(M) = M, /M, is finitely generated as an R module, and
it is annihilated by I, so it may be understood as a finitely generated R/I-
module. There is an ng such that My 4+, = I"M,, for all » > 0, so G(M)
is generated as a G(R)-module by &% | G,,(M). Now @&.° G, (M) is finitely
generated as an R/I-module, and R/I = Gy(R), so G(M) is finitely generated
as a G(R)-module. O

E6 Completions of Rings and Modules

Now that some required tools have been developed, we turn to the more
specific types of completions we are interested in. Let I be an ideal of R. The
Krull topology induced by the filtration R € I C I? D --- is called the I-adic
topology. We have seen the completion of R with respect to this topology is a
ring R that is isomorphic to @R/ I and whose multiplication is continuous
(Lemma E1.10).

More generally, recall that if M is an R-module, then the completion M
of M is an R-module that is isomorphic to l&lM J/I""M. If R is Noetherian,
then for finitely generated R-modules the I-adic completion functor is exact:

Lemma E6.1. If 0 — M’ —— M —2+ M” — 0 is an ezact sequence of
R-modules, then M — M" = 0 is an ezact sequence of R-modules. If, in
addition, R is Noetherian and M is finitely generated, then 0 — M — M —
M" = 0 is ezact.

Proof. Let A, = M'/i~Y(I"M), B, = M/I"M, and C,, = M"/p(I"M),
regarded as inverse systems. Since the first of these is surjective, Proposition
E2.3 implies that

0 = lim A, — lim B, — lim €, — 0

is exact. We have lim B, = M and Wm Cy = M" because p(I"M) = I"p(M) =
I™"M", which establishes the first assertion.

Now suppose that R is Noetherian. Regarding M’ as a submodule of M,
Theorem E5.3 implies that (M’ N I™"M) is a stable I-filtration of M’, after
which Lemma E5.2 implies that the filtrations (M’ N I™"M) and (I"M’) have
bounded difference. In view of Lemma E2.2, @An = M. O
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Let tp: R — Rand . M M — M be the natural homomorphisms. This
first of these makes R into an R- algebra so there is an R-module R ®p M,
and LM, T induces a map R QKr M — R®R M. In turn tr,7 induces a map
RopM = R®; P M = M.

Proposition E6.2. If M is finitely generated, the composition
R@RM%R®RM—>R®RM:M

is surjective. If, in addition, R is Noetherian, then this composition is an

isomorphism.

Proof. First consider an R-module homomorphism M — N. The first square
in the diagram

R@RM—>R®RM—>}?®RM
l l |

}?®RN e }?®R]\7 — f?@RN
commutes because the maps ¢ 7 constitute a natural transformation (Lemma
E1.7). To see that the second square commutes consider that for 7 ®@p m the
two paths around the square are, by definition,
P RRrM— P @y — @5 f(0) and F @1 — F @g f(0) = F @p f(0).

Insofar as M is finitely generated, there is an exact sequence 0 — K —
F — M — 0 where F' = R" for some n. There is a diagram

ﬁ@RK—>R®RF—>ﬁ®RM 0
a| 8| 7
0 K F M 0

that commutes by virtue of the argument above. The top row is exact because
R®pr—is a right exact functor, and the last result 1mphes that F — M —
0 is exact. The composition R ®Xr R — R RR R > R ®p R = R takes
7 RrpT =7r ®r 1 to 7r. Since it is the n-fold cartesian product of this, 3 is
an isomorphism. Consequently ~y is surjective.

If R is Noetherian, then the last result implies that the bottom row is
exact. In addition K is finitely generated, so « is surjective by virtue of what
we have established so far. To show that v is injective, suppose that v(m) = 0,
choose a preimage fin R® r F, choose a preimage k of 8 ( f ) in K, and choose
a preimage k of kin R®p K. Since the diagram commutes and [ is an
isomorphism, f must be the image of k, and consequently m = 0. U

We are particularly interested in applying the results above to ideals of R,
and to [ itself.
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Proposition E6.3. If R is Noetherian and J is an ideal, then:
(a) J= RorJ=JR;
(b) Jn = Jjn;
(¢) if I" C J for some n, then J"/Jntt e g/ o+l
(d) I is contained in the Jacobson radical of R.

Proof Since R is Noetherian, J is finitely generated, so the last result 1mphes
J =~ R®pr J, and the definition of the tensor product gives RerJ=JR, so
(a) holds. To prove (b) note that (a) allows the computation

Jn=J"R=J'R"= (JR)" = J".

For (c) there is now J"/J"t! = 57‘/(71?1 = J*/J"" where the second
equality is from Corollary E2.5.

For & € I consider the sequence of sums 1+ 2 + - - -+ 2". This is a Cauchy
sequence, and (Proposition E1.8 and Lemma FE2.1) R is complete, so it has
a limit 2. Because multiplication is continuous we have (1 — %)z = 1. More
generally, for any g € R we have Ty € I,so1- 2y is a unit. Therefore Z is in
the Jacobson radical (Proposition A2.11). O

Theorem E6.4. If R is Noetherian and local, and R is its m-adic completion,
then R is local with mazimal ideal m.

Proof. By (c) above we have R/th = R/m, so R/t is a field and i is maximal.
Now (d) implies that m is contained in the Jacobson radical, and thus in every
maximal ideal, so it is the unique maximal ideal. O

E7 Noetherian Completions

Fix an ideal I. The main result in this section is that if R is Noetherian, then
so is its [-adic completion R. Due to its implications for complex analysis,
functions of several complex variables, complex algebraic geometry, and p-
adic analysis, this is one of the major contributions of commutative algebra
to mathematics as a whole.

The argument is based on a careful analysis of the derived ring G;(R) =
@2, I"/I"L. We have already seen (Lemma E4.2) that this ring is Noethe-
rian whenever R is Noetherian. The following basic fact is an immediate
consequence of Proposition E6.3(c).

Lemma E7.1. If R is Noetherian, then Gr(R) and Gf(]fi) are isomorphic as
graded rings.

The bulk of the section’s work goes into proving the following.
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Proposition E7.2. Suppose that R is complete in the I-adic topology and M
is an R-module with I-filtration (M,) such that (), My = {0}. (That is, the
Krull topology of the filtration is Hausdorff.)

(a) If G(M) is a finitely generated G1(R)-module, then M is a finitely gen-
erated R-module.

(b) If G(M) is a Noetherian Gr(R)-module, then M is a Noetherian R-
module.

We first explain how this implies the desired result.
Theorem E7.3. If R is Noetherian, then R is Noetherian.

N

Proof. By Lemma E4.2 G7(R) is Noetherian, so G;(R) is Noetherian because
it is isomorphic to Gy(R). Since R is Hausdorff (Lemma E1.6) (1" = 0. The

desired conclusion is obtained from Proposition E7.2(b) with R in place of R
and M. O

Proof of Proposition E7.2. Let &1,...,& be a system of generators of G(M).
We can decompose these into their homogeneous components, so we may
assume that each &; is homogeneous, say of degree n(i), and is consequently
the image in M,,(;)/Mp ()41 of some z; € My ;). Let F' = @®r_, F'" where each
F; is R. Mapping the generator 1 of each F; to x; induces a homomorphism
¢ : F — M. There is a filtration (F,) of F with F,, = &7_, F!, where F! = R
if i < n(i) and F! = """ if n > n(i). Since (M,) is an I-filtration, ¢ is
a filtered homomorphism. If (0,...,1,...,0) has its 1 in the i*" component,
then it is contained in F},;), and (0,...,1,...,0) + Fy,;)41 is mapped to & by
G(¢). Thus G(¢) is surjective.

That the diagram

F—2 M

LF,Il le

F =2
commutes is a straigthforward consequence of the definitions. The map g 1 is
the r-fold cartesian product of g r, which is surjective because R is complete.
Thus g s is surjective. Since G(¢) is surjective, Lemma E3.1(b) implies that
¢ is surjective. The assumption that N, M, = {0} implies (Lemma E1.3)
that ¢ps is injective. We can now conclude that ¢ is a surjection, so z1,..., T,
generate M as an R-module.

To prove (b) it suffices (Lemma A4.1) to show that a given submodule M’
is finitely generated. We accomplish this by verifying that M’ satisfies the
hypotheses of part (a). Setting M) = M'N M, defines an [-filtration (M),) of
M’ and M), C () M,, = 0. The inclusions M), C M, give rise to injections
M), /M), ., — M, /M,;1, and thus to an injection G(M') — G(M). Since
G(M) is Noetherian, G(M’) is finitely generated. O



Chapter F

Initial Perspectives on Dimension

Once one advances beyond linear algebra, for many fields of mathematics
dimension is a concept that is simultaneously fundamental and complex. For
example, it is possible to understand the advances in topology related to the
Brouwer fixed point theorem, invariance of domain, the Jordan curve theorem,
and so on, as coming from a conceptual breakthrough that was ultimately a
matter of finding the correct machinery for expressing dimension in the context
of the concepts that eventually evolved into algebraic topology.

Algebraic geometry studies objects that are less general, and more struc-
tured, than those studied in topology or differential geometry. For this reason
one should expect that the notions related to dimension appearing in related
fields will still be relevant in algebraic geometry, and that entirely new per-
spectives may also become available. Relatedly, we should emphasize at the
outset that the study of dimension in commutative algebra and algebraic ge-
ometry is not a matter of finding the one true and correct definition, then
pursuing its properties and consequences. Instead, there are many definitions
that express intutions concerning aspects of dimension, and the analytic sub-
stance of the theory is in large part a matter of showing that they relate to
each other as expected in the settings of interest.

This chapter begins our study of dimension by laying out that portion
of the theory that does not depend on “heavy” homological methods. This
distinction is not entirely precise—some elementary aspects do creep into the
discussion—but in the subsequent chapters the deeper aspects of homological
algebra will be applied frequently.

F1  Two Basic Definitions

Dimension is a local property. That is, an affine variety has a dimension at
each of its points, which is the dimension of arbitrarily small neighborhoods
of the point. The dimension of the variety is then the maximum of these local
dimensions.

As before, and throughout the remainder, we work with a fixed commuta-
tive ring with unit R. In principle the dimension of a variety at a point should
be a property of the local ring of the variety at that point, and consequently
many of the definitions and results in dimension theory concern local rings.
We remind the reader of our convention concerning local rings: whenever R

165
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is local, it is automatically the case that m is its maximal ideal and k = R/m
is its residue field.

There is a basic point that will come up repeatedly. Suppose that R is local
and @ is an ideal. If m is minimal over @, then rad(Q) = m, because rad(Q)
is the intersection of the ideals that are minimal over (). In turn Proposition
A12.5 implies that any ideal @ such that rad(Q) = m is m-primary, and of
course if @) is m-primary, then rad(Q)) = m, so that m is minimal over Q. In
short, m is a minimal prime over @ if and only if rad(Q) = m if and only if Q
is m-primary.

For any R, the Krull dimension of R, denoted by dim R, is the maximal
length n of a chain of prime ideals Py D --- D F,. Insofar as the alge-
braic variety associated with a prime ideal of K[Xj,...,X,] is irreducible,
this definition is based on the idea that passing to a proper subvariety of an
irreducible variety reduces dimension by at least one, and that it is always
possible to find a subvariety of codimension one. The codimension codim P
of a prime ideal P is the supremum of the lengths of chains of prime ideals
Pyc P C---CPFP,=P. In view of the bijection between prime ideals of Rp
and prime ideals of R contained in P (Proposition A5.6) codim P = dim Rp.
In particular, if R is local, then the codimension of m is dim R. The codimen-
sion of an arbitrary ideal I is the minimum of the codimensions of the primes
containing I.

A different perspective on dimension comes from the intuition that the
dimension of a space can be understood in terms of the number of “coor-
dinates” required to specify a point. If the ideal (z1,...,x5) generated by
Z1,...,Ts € R is m-primary, then z1,...,z is said to be a system of param-
eters for R. Let §(R) be the minimal number of elements of such a system.
We will now show that §(R) < dim R.

The induction step in the proof of our target result is perhaps best viewed
in isolation.

Lemma F1.1. Suppose R is Noetherian and local, and I is an ideal that is
contained in a prime other than m. Then there is x such that the ideal J
generated by I and x is proper, and the least codimension of a prime that
is minimal over J is greater than the least codimension of a prime that is
minimal over I.

Proof. By Propositions A2.5 and A4.10 the set {Py, ..., P.} of primes that are
minimal over I is nonempty and finite. By hypothesis m is not one of them,
so prime avoidance gives an = € m'\ U§:1 P;. The ideal J generated by I and
x is proper because it is contained in m. Any prime that is minimal over J
properly contains a prime P that is minimal over I, and its codimension is
greater than the codimension of P. O

Proposition F1.2. If R is Noetherian and local, then 6(R) < dim R.
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Proof. Applying the last result inductively, there are z1,...,xs such that m
is minimal over (z1,...,z,) and s < codimm = dim R. U

Actually 6(R) = dim R, but proving that §(R) > dim R will be much
harder. There is a third number measuring the dimension of R, the degree
d(R) of the Hilbert polynomial, that will be defined and analyzed over the
course of the next several sections, and we will see that 6(R) > d(R) and
d(R) > dim R. If we view k[X1,...,X,] as a graded ring, then the dimension
of the vector space of homogeneous polynomials of degree n is a polyomial
function of n of degree r — 1, and we may think of such a polynomial as deter-
mining a hypersurface in (r — 1)-dimensional projective space. The coordinate
ring of a projective variety is k[ X1, ..., X,]/I, where I is a homogeneous ideal.
It is also a graded ring S = @,.5,, and each S, is a vector space. One may
suspect that the rate of growth of the dimension of \S,, measures the dimension
of the variety, and the theory of the Hilbert polynomial validates this guess.
In this case, and much more generally, the dimension of S, agrees with a
polynomial function of n when n is large, and the degree of this polynomial is
the measure of dimension, which becomes d(R) in the context of a local ring
R.

If the minimal number 6(R) of generators of an m-primary ideal is a good
measure of the dimension of a local ring R with maximal ideal m, what about
the minimal number of elements required to generate m itself? A local ring R
is regular if m can be generated by dim R elements. This turns out to be an
extremely important concept because regularity of the local ring of a point in
a variety is the correct indicator, in the widest range of settings, of whether
the point is nonsingular. (The terms “smooth,” “simple,” and “regular” are
also used to describe such points.) Regular local rings will be one of our main
concerns throughout the remainder. Later in this chapter we describe certain
aspects of the theory that do not require heavy homological algebra.

The equation 22 + y? = z defines a 2-dimensional subset of R?, and when
we add the additional equation z = 0 the dimension collapses to zero. Such
perversities should not arise when working over an algebraically complete field:
adding one more equation should reduce the dimension by at most one. Per-
haps the main result fulfilling this intuition is the Krull principle ideal theorem,
which asserts that if R is Noetherian, z1,...,zs € R, and P is minimal over
(1,...,xs), then codim P < s. Geometrically, any of the irreducible compo-
nents of the algebraic variety defined by s equations has codimension at most
s. In this chapter’s final section we present this result and a few of its simpler
consequences.

F2 The Hilbert-Poincaré Series

The Hilbert-Poincaré series is a technical device which provides quite a bit of
important information. Its main properties are its primary motivation, and
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before these have been established there is not much to say.

Let R = @,>0 Ry, be a Noetherian graded ring with Ry Artinian. Let C be
a class of Rg-modules that contains every submodule of any of its elements,
and every quotient of any of its elements by a submodule. An additive function
for C is a function A from C to the nonnegative integers that satisfies:

(a) A(M) =0 if and only if M =0, and

(b) AM(M') = AX(M) + A(M") = 0 whenever 0 - M' - M — M"”" — 0is a
short exact sequence.

Note that setting M” = 0 in (b) shows that A\(M) = A(M’) whenever M
and M’ are isomorphic. That is, A is really a function defined on a class of
isomorphism classes of Rg-modules. Also, condition (b) extends to arbitrary
finite exact sequences:

Lemma F2.1. If 0 - M; — --- — M, — 0 s an exact sequence of Ry-
modules, then > 1 (—1)*A(M;) = 0.

Proof. The cases n =1 and n = 3 are (a) and (b), and n = 2 was just noted.
Proceeding inductively, let I,,_1 be the image of M, _o — M,_1. Applying
the induction hypothesis to 0 - M; — -+ — M,,_o — I,_1 — 0 and (b) to
0—1I1, 11— M, 1— M, — 0 gives

n—2
Z(—1)@'A(Mi) + (=D \(I,_1) = 0 and A(I,_1) — A(M,_1) + A\(M,,) = 0,

i=1
from which the result follows easily. O

Henceforth C will be the class of finitely generated Rg-modules. Since Ry
is Artinian, Corollary A14.9 implies that each element of C has finite length.
Of course the length of an Ry-module M is zero if and only if M = 0, so
Proposition A13.6 implies that the length is an additive function on C.

From Theorem A14.7 Ry is Noetherian, so Proposition E4.1 implies that R
is generated as an Rg-algebra by finitely many generators, and is a Noetherian
Rp-module. Each generator is a sum of homogeneous elements, and can be
replaced by these, so the generators may be assumed to be homogeneous.
Replacing any generators in Ry by 1, we find that R is generated by 1 € Ry
and homogeneous generators x1, ..., x5 of positive degrees, say kq,..., ks.

Let M = ®y,>0 M,, be a finitely generated graded R-module. Fix a finite
system of generators, which may be assumed to be homogeneous, as above.
Each R; is a submodule of the Noetherian Rg-module R, so it is finitely
generated. For any specification of a finite system of generators for each
R;, we may think of an element of M, as an Ry-linear combination of the
products of the generators of M and the generators of the R; for ¢ < n, so
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M,, is a finitely generated Ryp-module. The Hilbert-Poincaré series of M (with
respect to A) is the formal power series

PM(t) = i )\(Mn)tn
n=1

Theorem F2.2 (Hilbert, Serre). Pp(t) = f(t)/ ;= (1 — tk) for some poly-
nomial f € Z][t].

Proof. We argue by induction on s. If s = 0, then R = Ry, and since M is
finitely generated we have M,, = 0 for large n, so Py (t) € Z[t]. Therefore we
may assume the claim holds when R has s — 1 generators.

Multiplication by zg is an Rp-module homomorphism from M,, to M. .
Letting K and L, 4k, be the kernel and cokernel of this map gives an exact
sequence

0— Kp — My — My, — Ly, — 0,
and the last result gives
AKn) = A(Mp) + MMnik,) = AMLntk,) = 0.

Let K = @,>0 K, and L = M/xsM. Then L = &,,>0 Ly, where L; = M;
fori=0,...,ks— 1. Since K is a submodule of M while L is a quotient of M,
both are finitely generated R-modules, so Pk (t) and Pr(t) are well defined.

Multiplying the equation above by t"T*s  summing over n, then adding the
equation Z?;BI(A(MZ-) — ML)t = 0, we find that

ths Pre(t) + (1 — t*) Py (t) — Pp(t) = 0.

Since K and L are annihilated by x4, any system of generators for one of these

R-modules also generates it as a Ry[z1,...,xs—1]-module. Therefore both are
finitely generated Ry[x1,...,xs—1]-modules, and the claim follows from the
induction hypothesis. O

We now extract some information from this construction. Let d(M) be the
order of the pole of Pys(t) at t = 1. (Although Pys(t) began life as a purely
formal power series, and remained so in the result above and its proof if we
regard 1/(1—t*s) as a shorthand for 1+t +¢2*s ... this result implies that
it converges absolutely and uniformly on compact subdomains of C\ {1}, so it
is legitimate to treat it analytically.) Insofar as 1 —t¥ = (1—#)(1+4---+tFi—1),
d(M) is s less the order of 1 as a root of f. Therefore d(M) < s.

We would like to show that d(M) > 0 when M # 0. Indeed, all the A\(M,,)
are nonnegative, so from the defining formula for Py (t) we see that Pys(1) is
defined only when all but finitely many of them vanish, and Pj;(1) = 0 occurs
only when they are all zero, which is the case if and only if M = 0. Thus:
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Lemma F2.3. If M #0, then 0 < d(M) < s.
In the case of greatest interest we can say more:

Proposition F2.4. If M #0 and ky = --- = ks = 1, then there is a g € Q[t]
of degree d(M) — 1 such that A(M,,) = g(n) for sufficiently large n.

Proof. The last result implies that A(M,,) is the coefficient of ¢" in the power
series expansion of f(t)/(1—t)*. We have f(t)/(1—1)* = fo(t)/(1 —t)? where
d=d(M) and fy € Z[t] is not divisible by 1 —¢. Let fo(t) = Zszo apth.

We are done if d = 0, and for d > 0 there is the formula

(1—t)_d:(1+t+t2+...)d:i<d—5ﬁzl>th. ()
h=0

To see this observe that for each h
(il,...,id) <~ {il—i—l,il+i2+2,...,i1—i—---—i—id,l—i-d—l}

is a bijection between the set of d-tuples of nonnegative integers that sum to
h and the set of (d — 1)-element subsets of {1,...,h+d — 1}.
For n > N we have

A(Mn)zg(n)zkiak<d+3:]1€_l>'

0

Finally observe that each binomial coefficient

d+n—-k—-1\ (d+n—k—-1)(d+n—-k—-2)---(n—k+1)
( d—1 >_ (d—1)!

is a polynomial of degree d — 1 as a function of n. Therefore ¢ is a poly-
nomial function of n, and its degree is d — 1 because its leading term is

(>, ax)n®1/(d — 1)!. (Since 1 is not a root of fo, > ay # 0.) O

The next result will support the induction step in one of the arguments
later on. Its proof applies the techniques developed above in a slightly different
direction.

Proposition F2.5. If M # 0, © € R is homogeneous of degree k > 1, and x
is a nonzerodivisor of M, then d(M/xM) = d(M) — 1.

Proof. If d(M) = 0 then M,, # 0 for only finitely many n. For the largest such
n we have xM,, = 0 because k > 0, and of course this is impossible. Therefore
d(M) > 0.

We proceed as in the proof of Theorem F2.2: for each n > 0 there is an
exact sequence

0— M, L Myt — Lptyr — 0.
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(That is, K,, = 0 because z is a nonzerodivisor.) Continuing with the logic of
that argument, we arrive at the equation

(1= t")Par(t) = Parjana(t) + 9(2)

where g € Z[t]. Since 1 —t* = (1 — t)(1 + --- 4+ t*~1), the order of the pole of
Py (t) at t =1 is one more than the order of the pole of Py;/s(t). O

F3 The Hilbert Polynomial

Throughout this section R is Noetherian and [ is an m-primary ideal for some
maximal ideal m. It will be important that for each n, R/I"™ is Artinian
(Lemmas A14.10 and A14.11). Of course it is also Noetherian.

In this section A(IV) denotes the length of an R-module N of finite length.
Let M be a finitely generated R-module, and let (M,,) be a stable I-filtration.
We will study the lengths of the modules M /M,,.

First of all we must check that each M /M, has finite length. Since M is
finitely generated, so is M /M, and consequently (Proposition A4.6) M /M,
is Noetherian. Since I"™ C Ann(M/M,,), M /M, is in effect an R/I™-module.
Since M /M, is finitely generated and R/I™ is Artinian, Proposition A4.6 im-
plies that M /M, is an Artinian R/I™-module. Since M /M, is both Noethe-
rian and Artinian, Proposition A13.3 implies that it has finite length as an
R/I"-module, hence also as an R-module.

With finite length established, Lemma A13.5 implies that that the length
of M /M,, is the sum of the lengths of the M;_1/M;.

Proposition F3.1. Suppose R is Noetherian, I is m-primary for some mazx-
imal ideal m, M 1is a finitely generated R-module, and (M,) is a stable I-
filtration of M. Fiz a system of generators x1,...,xs for I. Then there is a
polynomial g € Q[t] of degree at most s — 1, the so-called Hilbert polynomial,
such that A\(M,,/Mp+1) = g(n) for large n.

Much of our earlier work was in preparation for the following argument.

Proof. Since (M,) is an I-filtration, the length of each M;_1/M; as an R-
module is the same as its length as an R/I-module (Lemma A13.4). We work
with the graded ring G(R) = @,>0I"/I""! and the graded G(R)-module
G(M) = &p>0 My /Mp11. Lemma E4.2 implies that G(R) is Noetherian, and
Lemma E5.7 implies that G(M) is finitely generated. Let Zy,...,Ts be the
images of z1,...,x, in I/I?. Then

G(R) = (R/D)[Ts, . .., Ts).

Since R/I is Artinian, Proposition F2.4 (applied to G(M)) implies the claim.
O
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For large n the length of M/M,, is a polynomial function whose degree is
the degree of g plus one.

Proposition F3.2. Under the hypotheses of the last result, \(M /M) is finite
for all n, and for sufficiently large n, N(M/M,,) is given by a polynomial f(n)
of degree < s. The degree and leading coefficient of f depend only on M and
1, and not on the particular filtration.

Proof. For g(t) = t?, and thus for any g € Z[t] of degree d, Ym0 g(m) is a
polynomial function of degree d + 1, so only the final assertion remains to be
verified. Let (M,,) be a second stable I-filtration of M, with length(M/M,,) =
f(n) for large n. Lemma E5.2 implies that (M,) and (M,,) have bounded
difference, which is to say that there is an r such that M, , C M,, and
My, C M, for all n. Therefore f(n +r) > f(n) and f(n +r) > f(n) for
large n. Because f and f are polynomials,

T f(n)/f(n+7)= lim f(n)/f(n+r)=1,

so it follows that lim,_,e f(n)/f(n) = 1. Therefore f and f have the same
degree and leading coefficient. O

Let )dw be the polynomial given by the last result for the particular I-
filtration (I"™M). We are mainly interested in the case M = R, and we write
x7 in place of X?- This is the characteristic polynomial of the m-primary ideal
1.

Proposition F3.3. For any m-primary ideal I, x5 has the same degree as
Xm-

Proof. Since m D I D m" for some 7, xm(n) < x1(n) < xmr(n) = xm(rn) for
large n, which is impossible if x; and x, have different degrees. O

Let d(R) be the degree of xy. Combining the results to this point, d(R)
is the order of the pole at ¢ = 1 of the Hilbert function

Pr(t) = i A(m™ /m™
n=0

of Gm(R) = @y, Gmn(R) where G n(R) = m™/m" L,

Partly to illustrate these ideas, but also because it is important in itself, we
consider the particular case of R = Ry[X1, ..., X;,], where Ry is an Artinian
ring. Here m”/m"*! is the free Rp-module generated by the monomials of
degree n, of which there are ("Jrinfl). (Recall the argument in the proof of

n—1
Proposition F2.4.) Applying () gives

<n+m—1

Pr(t) =) length(Ry) .

n=1

‘We conclude that:

)t" = length(Rp)(1 —¢)™™.
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Proposition ¥3.4. If Ry is Artinian, then d(Ro[X1,...,Xy]) =m.

F4 The Dimension of a Local Ring

We now assume that R is local. Our main goal in this section is to show that
d(R) = 0(R) = dim R.

From Proposition F1.2 we know that dim R > §(R). In addition, Propositions
F3.2 and F3.3 imply that:

Proposition F4.1. §(R) > d(R).

The next result provides the technical basis of the comparison of d(R) and

dim R.

Proposition F4.2. If M is a finitely generated R-module and x is a nonze-
rodivisor of M, then deg X?/[/JCM < deg X?d —1.

Proof. Let N =xM and M’ = M/N, and for each n let N, = NNI"M. The
Artin-Rees lemma (Theorem E5.3) implies that (N,) is a stable I-filtration of
N. Therefore Proposition F3.2 gives a Xé\]fvn) € Q[t] such that the length of
N/N, is Xé\]fvn)(n) for sufficiently large n.

We claim that there is an exact sequence

0— N/N, - M/I"M — M'/T"M' — 0.

To see this first observe that N/N,, = N/(NNI"M) = (N + I"M)/I"M by
Lemma Al1.2. Now we compute that
M/I"M MM M M/N M

N/N,  (N+I"M)/I"M N+I"M (N +I"M)/N I"M"

(Here the second and third equalities are applications of Lemma A1l.1.)
Applied to the exact sequence above, Lemma A13.6 yields

Xt () = X7 () + x3" (n) = 0

for large n. As the image of an injective homomorphism with domain M,
N = M. Therefore Proposition F3.2 implies that Xé\]fvn) and X?/I have the
same leading term, and the claim follows from this. U

Proposition F4.3. d(R) > dim R.
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Proof. We argue by induction on d = d(R). If d = 0, then xy, is a constant,
which is equal to length(R/m") for large n. Consequently m™/m"™! = 0 for
large n. That is, m - m"™ = m”, so Nakayama’s lemma implies that m"™ = 0.
Therefore (0) is m-primary, so R is Artinian (Lemma A14.11) and consequently
dim R = 0 by Theorem A14.7. Thus we may suppose that d > 0, and that
the result has been established for smaller d.

Let Py C P, C -+ C P, be a chain of prime ideals in R. Let R’ = R/ Py,
choose = € P\ Py, and let 2’ be the image of z in R’. Let m’ be the maximal
ideal of R’. For each n the map R — R’ induces a surjective homomorphism
R/m™ — R'/m'™, so the length of R’/m’" is not greater than the length R/m™.
It follows that d(R') < d(R).

Since R’ an integral domain, x is not a zerodivisor, and R’ is local, so
the last result gives d(R'/(z')) < d(R') — 1. In particular, d(R'/(z')) < d, so
the induction hypothesis implies that the dim R'/(2’) < d — 1. However, the
images of P C --- C P, in R'/(2') (which are distinct, because their images
in R/P, are distinct) constitute a chain of length r — 1, so < d. Since this
is true for any chain Pp C P, C --- C P in R, dim R < d. O

We summarize the main conclusions of the last several sections, which
follow from Propositions F1.2, F4.1, and F4.3.

Theorem F4.4. If R is Noetherian and local, then dim R = d(R) = 6(R),
where these integers are, respectively:

(a) the mazimum length of a chain of prime ideals in R;
(b) the degree of the characteristic polynomial Xm;
(¢) the minimal number of elements of a system of parameters.

The analysis above has several easily derived consequences that are worth
noting. Putting M = R in Proposition F4.2 yields:

Corollary F4.5. If x is a nonzerodivisor of R, then d(R/(z)) < d(R) — 1.

In its proof we took some care to avoid assuming the following consequence
of Proposition F4.3.

Corollary F4.6. dim R < cc.

If R is any ring and P is a prime ideal, then Rp is local, of course, and if
R is Noetherian, then so is Rp. Therefore:

Corollary F4.7. If R is Noetherian and P is a prime, then dim Rp < oo.
Consequently the primes in a Noetherian ring satisfy the descending chain
condition.
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Corollary F4.8. If R is Noetherian and local, and R is the m-adic completion
of R, then dim R = dim R.

Proof. Proposition E6.3(c) implies that m™/m"*! 22 m™ /m"*+! for each n. The
length of @™ /@1 as an R-module is the same as its length as a R/m-module,
the length of m”/m"*! as an R-module is the same as its length as a R/m-
module, and ]:Z/ﬁl = k =~ R/m by Proposition E6.3. Therefore x5 = xm. O

Corollary F4.9. If R is Noetherian and local, and I is an m-primary ideal,
then dim G7(R) = dim R.

Proof. Lemma E4.2 implies that G7(R) is Noetherian, and
mr=wm/IoI/Pel?/I’s .-

is its unique maximal ideal (it is an ideal, and all elements outside of it are
units) so Gy(R) is local. In view of Theorem F4.4 it suffices to prove that
6(G1(R)) = 6(R).

Fix x1,...,2s € R, and for each ¢ = 1,...,s let &; be the image of x;
in I™ /I"*! where n; is the largest integer such that x; € I™. Then the
ideal J generated by x1,...,xs is m-primary if and only if I"™ C J for all large
n, which is true if and only if the ideal J; generated by Zi,...,Z, contains
I™ /1" for all large n, which is the case if and only if J; is m;-primary. [

Corollary F4.10. If R is Noetherian and local, then dim R < dimj m/m?.

Proof. If the images of x1,...,2s € m in m/m? are a basis of this vector space
over k, then z1,...,xs generate m, by Proposition A2.15, and consequently
s > 6(R). O
Corollary F4.11. If R is Noetherian, z1,...,z. € R, and P is a prime that
is minimal over (x1,...,x,), then codim P < r.

Proof. The image of (z1,...,z,) in Rp is Pp-primary, so r > dimRp =
codim P. U

Corollary F4.12. If R is Noetherian and local, and © € m is not a zerodivi-
sor, then dim R/(z) = dim R — 1.

Proof. Let d = dim R/(z). Combining Corollary F4.5 and the main result
above gives d < d(R) — 1 = dim R — 1. On the other hand, let z1,...,z4 be
elements of m whose images in R/(x) generate an m/(z)-primary ideal. Then
(1,...,xq, ) is an m-primary ideal, so d + 1 > dim R. O
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F5 Regular Local Rings

As we mentioned earlier, if R is Noetherian and local, it is regular if the
minimal number of generators of m is the minimal number §(R) of elements of a
system of parameters. A major event in the history of algebraic geometry was
the recognition by Zariski (1947) that regularity of the local ring of an algebraic
variety at a point is, in general, the correct measure of whether the point is
“smooth” or “simple.” Intuitively this means that a neighborhood of the
point is the set of simultaneous solutions of a number of polynomial equations
equal to the codimension of the variety at the point, with the derivatives of
these equations being linearly independent at the point, as per the implicit
function theorem. Since Zariski’s paper regular local rings have been critically
important in algebraic geometry and commutative algebra. They have many
nice properties; here we will see that a regular local ring is an integral domain,
and eventually we will establish the famous theorem of Nagata and Auslander-
Buchsbaum asserting that a regular local ring is a UFD.

The main result below gives conditions that are equivalent to regularity.
Its proof depends on a technical result, which in turn depends on the following
fact.

Lemma F5.1. If a polynomial f € R[X,...,X,] is a zerodivisor, then it is
annihilated by some a € R.

Proof. Using exponent vector notation, let f = > a.X*®, and suppose that
fg =0 where g=73"_b.X° Let the supportsof f and g be Sy ={e:a.#0}
and Sg = {e:b. # 0}. The claim follows if we can show that S, has a single
element, so we may assume that it has more than one, and that there is no ¢’
with fg’ = 0 that has a smaller support.

Let 8% ={e € Sf:acg#0}. If Sy =0, then acbe = 0 for all e € Sy and
¢ € Sy, so that for any ¢’ € Sy, b annihilates f, as desired. Therefore we
may assume that S} is nonempty. Let f' =" . s, a.X¢.

Let p € R™ be a vector such that (p,e) # 0 for all nonzero e € Z".
(Unfortunately the obvious proof that such a p exists—observe that J, 7éo{ D
(p,e) = 0} has Lesbesque measure zero—is out of line with the character of
our material.) Let ey = ArgmaXee s (p,e) and e, = argmax.cg, (p,€). Then

the coefficient of X%/ ¢ in fg = f'g is ae;be,, SO this product is zero. Now
frae,9 =0, ac,g# 0, and the support of ae,g is a proper subset of S;. This

contradiction completes the proof. O
Proposition F5.2. Suppose that R is Noetherian and local, x1,...,24 is a
system of parameters for R, where d = dim R, and I = (x1,...,2q). If f
is a homogeneous polynomial of degree n in the variables Xq,..., Xy with

coefficients in R, and f(x1,...,24) € "L, then the coefficients of f lie in m.
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Proof. There is an surjective homomorphism
a: (R/I)[X1,..., X4 = Gi(R)

that takes each monomial (r+I)X{" --- X" to the image of ra" --- 2)'¢ in
I™/I™* where m = mi+- - -+mg. Let f be the element of (R/I)[X1, ..., X ]
obtained by replacing each coefficient of f with its image in R/I. Then the
hypothesis on f is that f is in the kernel of a.

Aiming at a contradiction, suppose that f has a coefficient that is not in
m and is consequently a unit. In view of Lemma F5.1, it follows that f is not
a zerodivisor. Now we have

d(G1(R)) < d((R/D)[X1,...,Xd)/(f)) =d((R/])[X1,...,X4]) —1=d— 1.

Here the inequality follows from the fact that f is in the kernel of the surjec-
tion «, the first equality is from Proposition F2.5, and the second equality is
from Proposition F3.4, which can be applied because R/I is Artinian (Lemma
A14.11). But Corollary F4.9 gives d(G(R)) = d, so we have the desired con-
tradiction. O

Theorem F5.3. If R is Noetherian and local, and d(R) = d, then the follow-
ing are equivalent:

(a) R is reqular;
(b) Gu(R) = k[Xy,...,Xy4] as graded rings;
(c) dimy(m/m?) = d.

Proof. That (b) implies (c) follows from a comparison of the homogeneous
components m/m? and k;[X1,...,X,] of degree one. Nakayama’s lemma
(specifically, Proposition A2.15) implies that (a) follows from (c). To show
that (a) implies (b) we suppose that m is generated by z1,...,z4 and con-
sider the homomorphism « : k[Xi,...,X;] — Gun(R) that takes each f €
kn[X1,...,X4] to the image of f(x1,...,74) in m”/m"*!. This is obviously
surjective, and any nonzero element of its kernel could be lifted to a coun-
terexample to the last result, so it is also injective. ]

Corollary F5.4. If R is a regular local ring, then it is an integral domain.

Proof. Since it is isomorphic to some k[X1,...,X4], Gn(R) is an integral
domain, so Corollary E5.6 implies the claim. U
If R is a regular local ring, a minimal set of generators z1,...,z4 for m
is called a regular system of parameters. A sequence of elements zi,...,xzy4
in an arbitrary ring R is called an R-sequence, or a reqular sequence of R, if
(21,...,xq) is a proper ideal and, for each i = 1,...,d,
((.%'1, e ,1‘2‘_1) : 1‘2) = (1‘1, ce ,.%'Z'_l).

That is, the image of x; in R/(z1,...,z;—1) is a nonzerodivisor.
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Corollary F5.5. If R is a regular local ring, a reqular system of parameters
Z1,...,2Tq 1S an R-sequence.

Proof. Since R is an integral domain, ((0) : z1) = (0). Now R/(x;) is a
Noetherian local ring with maximal ideal m/(z;). Corollary F4.12 implies
that dim R/(x1) = dim R — 1, and since m/(x1) is generated by the images

Zo,...,Tq of xa,... x4, R/(x1) is regular and Zo,...,Z4 is a regular system
of parameters. By induction on d, Zo,...,Z4 is an R/(z1)-sequence, so for
each i = 2,...,d we have ((Z2,...,%—1) : &;) = (Z2,...,%;—1), which means
precisely that ((z1,...,zi-1) : z;) = (x1,...,Ti-1). O

F6 The Principal Ideal Theorem

This section’s main result is due to Krull. It is in a sense a partner of
Proposition F1.2, which asserts in effect that if R is Noetherian and local,
and ¢ < dim R, then there are x1,...,z. such that any prime containing
(x1,...,zc) has codimension at least c.

Theorem F6.1 (Principal Ideal Theorem). If R is Noetherian, x1,...,x. €
R, and P is minimal among the primes that contain these elements, then
codimP < c.

Proof. The hypotheses are satisfied with z1/1,...,2./1 € Rp and Pp in place
of z1,...,z. and P, and, in view of the bijection between prime ideals con-
tained in P and prime ideals of Pp, the codimension of P is < ¢ if and only
if the codimension of Pp is < ¢. Thus it suffices to prove the result for z/1
and Pp, which means that we may assume that R is a local ring, m = P is its
unique maximal ideal, and x1,...,x. is a system of parameters.

The nilradical of R/(x1,...,z.) is m (Corollary A2.9) which is nilpotent
because it is finitely generated (Lemma A14.3). Now let P be a prime that is
maximal among those other than m; it will suffice to show that codimP < ¢—1.
By hypothesis P does not contain some x;, S0 we may suppose that x; ¢ P.
Let (P, z1) be the smallest ideal containing P and z.

The image of m is the only prime in R/(P,z1), so, as above, m is the
nilradical of this quotient. In particular, for each ¢ = 2, ..., c there are a; € R,
y; € P, and an integer k;, such that xfl = y; + a;x1. The image of m is
nilpotent in R/(x1,¥2,...,Yc), so Corollary F4.11 implies that the image of m
in R/(y2,...,yc) has codimension is at most one. Therefore the image of P
in R/(ya,...,Yc) is minimal, which is to say that P is minimal among primes
containing yo, ..., y.. By induction (with the case ¢ = 1 given by Corollary
F4.11) the codimension of P is < ¢ — 1, as desired. O

A somewhat stronger assumption delivers a stronger conclusion.
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Corollary F6.2 (Krull’s Principal Ideal Theorem). If R is Noetherian and x
1s an element that is neither a zerodivisor nor a unit, and P is a prime that
is minimal over (z), then codim P = 1.

Proof. Corollary F4.11 gives codim P < 1. If codim P = 0, then P is minimal
over (0), and consequently it is an associated prime of (0). But Proposition
A12.6 would then imply that each element of P is a zerodivisor, contrary to
assumption. ]

What it means for z1,...,x. to be an R-sequence is precisely that each x;
is neither a zero divisor nor a unit in R/(x1,...,z;—1). When this is the case,
for any prime P, that contains (z1,...,x.), repeated application of this result
gives a sequence of distinct prime ideals Py C --- C P, with (z1,...,2,-1) C P,
for all . Thus:

Proposition F6.3. If x1,...,z. is an R-sequence, then the codimension of
(T1,...,2p) is c.

The principal ideal theorem has a useful converse.

Proposition F6.4. Any prime P of codimension ¢ is minimal over an ideal
generated by ¢ elements.

Proof. We use induction, supposing that for some 0 < r < ¢ we already have
Z1,...,%, such that the codimension of any prime containing (z1,...,z,) is at
least . Proposition A4.10 implies that there are finitely many primes () that
are minimal over (z1,...,z,). For each such ) we have codim ) > r, and the
principal ideal theorem implies that codim ) < r. Therefore P is not one of
these minimal primes, so prime avoidance implies that P is not contained in
their union. Choose z,4+1; € P that is not in any of the minimal primes. If

a prime @ is minimal over (x1,...,Zy41), then codim@ > r + 1 because Q
is not minimal over (z1,...,z,), and the principal ideal theorem implies that
codim@Q <r+1. O

We now give two applications of Krull’s principal ideal theorem.

Proposition F6.5. If R is a Noetherian integral domain, then R is factorial
if and only if every codimension 1 prime is principal.

Proof. First suppose that R is factorial, and let P be a codimension 1 prime
ideal. Any nonzero a € P is a product of primes, and at least one such prime,
say p, is in P. Then (p) is a nonzero prime ideal contained in P, and the
codimension of P is 1, so P = (p).

Now suppose that every codimension 1 prime is principal. That R is
factorial will follow from Proposition A7.5 if we show that any prime that is
minimal over a principal ideal is itself principal. Since R is a domain, the
unique prime minimal over (0) is (0) itself. Krull’s principal ideal theorem
implies that codim P = 1 whenever P is minimal over (a) # (0). O
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The following is applied by Serre in no. 76.

Theorem F6.6. If R is a normal Noetherian integral domain, then for every
prime P associated to a principal ideal (a), P is principal and minimal over

(a).

Proof. In the first part of the proof we will work in Rp, which is of course
a local integral domain with maximal ideal Pp. In addition it is Noetherian
(Corollary A5.7) and Proposition A7.18 implies that it is normal.

Suppose that P = ((a) : b) for some b ¢ (a). Then Pp = ((£) : 2). (One
containment is clear, and if % - % = L.¢ then (ru)b € (a) andu ¢ P,sor € P
and £ € Pp.) Thus the hypotheses are satisfied with Rp, Pp, and { in place
of R, P, and a, and in addition Rp is local with maximal ideal Pp.

If the result has been proven with the additional hypotheses that R is
local and P is its maximal ideal, then Pp is principal and minimal over ({).
Because elements of Rp of the form 1 for s ¢ P are units, Pp = (%) for some
r € P. Of course a € (r) because otherwise we would have ¢ ¢ Pp. To see
that (r) is prime, observe that if st € (r) and s,¢ ¢ (r), then - % € (), but
T % (f), contradicting the primality of Pp. If () was contained in a prime
@ that was a proper subset of P, then ($) C Qp C Pp gives a violation of the
minimality of Pp. Therefore (r) = P and P is minimal over (a).

The upshot of this discussion is that we may assume that R is local and
m = P is its maximal ideal. Let K be the field of fractions of R, and let
m !t ={a€ K:am C R}. Let m 'm be the set of sums of products of
an element of m~! with an element of m. This is a (not necessarily proper)
ideal of R, and m C m~'m C R, so, since m is maximal, either m~'m = m or
m~lm = R.

If m™'m = m, then Proposition A7.8 implies that the elements of m~! are
integral over R, so m~! = R because R is normal. We have mb C (a) and thus
b/a € m~! = R, which is to say that b € (a), contradicting our assumption
that the image of b in R/(a) is nonzero.

Therefore m~!'m = R. For each z € m~!, xm is a (not necessarily proper)
ideal of R, and it cannot be the case that xm C m for all such z, so zm = R
for some . Thus m = 27! R is principal. Since ™! is neither a zerodivisor (R
is a domain) nor a unit (z=! € m) Krull’s principal ideal theorem (Corollary
F6.2) implies that the codimension of m is one, so it is minimal over (a). O

1



Chapter G

The Koszul Complex

The Koszul complex is a rather large scale piece of machinery that can dras-
tically simplify certain otherwise forbidding computations. Historically it was
originated around 1950 by Koszul, who used it in the study of the cohomology
of Lie groups, but its utility is much more general. It pervades the applica-
tions of homology to commutative algebra. This chapter presents the basic
background material and some preliminary applications.

By way of introduction we now give a direct definition of the Koszul com-
plex, even though the actual analysis will be based on a different definition
that builds up the complex in a step-by-step manner. Let symbols eq,...,e,
be given. For each k = 0,...,n let A*R be the free module with generators
e, N...Ne; where 1 <ij <...<i <n. (Here A’R is simply R.) For any
i1, dk € {1,...,n}, let €;, A...Ae;, =0 € AFR if these indices are not
distinct, and if they are distinct let

e, N...N\Ne;, = (—1)Sgn(7)ei7(1) VANPIRWAN €i, € /\kR

k

where 7 € S, is the permutation such that i,y <... <.
Let x = (x1,...,2,) € R™ be given. The Koszul complex K (x) is the
cochain complex
0 d 1 d d n—1 d n
0— K’(z) — K'(z) — -+ — K" () — K"(z) —» 0
where K¥(z) = AFR and d : K*(x) — K¥T!(z) is the R-linear function that
takes the generator e;; A... Ae; to

n
dlej, N...Ne;) = ineil A...Nej Ne;.
i=1

(To see that d?> = 0 one may write out the formula for d?(e;; A ... A e;, ),
then observe that the “diagonal” terms are zero while the “off diagonal” terms
cancel in pairs.) Roughly, we will be interested in the cohomology of complexes
M ®pr K(x) where M is an R-module, especially when x1,..., 2, is a regular
sequence on M.

G1 Tensor Products of Cochain Complexes

The Koszul complex can be constructed by repeatedly taking tensor products
of simple cochain complexes, and analysis of it often reduces to the elementary

181
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properties of this construction. If X and Y are the cochain complexes
e XX x50 and oY iyl oyl
we define X ® Y to be the cochain complex
o @ik XY = @ g1 X R YT
where the coboundary operator is given by
d(z; ® y;) = d; @ y; + (—1)'z; @ dy;.

The reader may easily check that the composition of this coboundary operator
with itself is zero.
Ifn: X — X" and +: Y — Y’ are cochain maps, there is a cochain map

NR: XY - X' oY’

given by (n ® t)g(z; ® y;) = ni(z;) ® ¢j(y;) when ¢ + 5 = k. In this sense
the tensor product is a functor from pairs of cochain complexes to cochain
complexes.

We establish the basic properties of this tensor product.

Lemma G1.1. The tensor product of complexes commutes up to natural iso-
morphism: the map h : x; @ y; — (—1)ijyj ® x; 1s a natural isomorphism
between X @Y and Y ® X.

Proof. This map commutes with the coboundary operator:
d(h(z; ®y;)) = (=1)(dy; @ 2; + (=1)y; @ dx;)
while
h(d(z; @ y;)) = (=1) Vg @ da; + (-1)'UTD (=1)'dy; @ ;.

Naturality is evident without computation: if (n,¢) : (X,Y) = (X',Y’) is a
map of pairs of complexes, then ho (n® ) = (1t ®n) o h. ]

Lemma G1.2. The tensor product of complexes is associative up to natural
isomorphism: the map (x; ®y;) @ 21, — ;@ (y; ® 21) is a natural isomorphism
between (X @Y)® Z and X @ (Y @ Z).

Proof. We compute the boundary operator in the two cases:
d((z; ® yj) ® 2k)) = d(z; ® y;) @ 2 + (—1) (2; @ y;) ® dz
= (dz; ® yj) ® 21, + (—=1)" (2 @ dy) ® 2, + (=1)F (2 @ ;) @ dz,
while
d(z; @ (y; @ 2)) = d; @ (y; ® 21,) + (=1)'z; @ d(y; @ 23)
=dz; @ (y; @ 21,) + (—1)'2; ® (dy; ® z) + (= 1) ® (y; ® day).

As in the last proof, naturality is obvious. O
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Lemma G1.3. If X is a cochain complezx, then X ® — and —® X are right
exact functors.

Proof. This follows from right exactness of the ordinary tensor product be-
cause, as an R-module, X ®Y is the ordinary tensor product of the R-modules
@®;X; and @]Y} U

G2 The Koszul Complex in General

We develop the Koszul complex in two stages. This section studies a general
construction, and in the next section we pass to a special case of this.

Fix an R-module N. Let A°N = R, and for each k =1,2,... let A*N be
the set of finite sums of products of the form y; A- - -Ayg, where y1,...,yx € N,
modulo the relations

YAy A Ay Yy Aya A Ay = (1 F Y1) Aya A Ay

and
Yo(1) N A Yo(m) = 580(0)Y1 A -+ A Y

for permutations o of 1,...,k. This is an abelian group, and it becomes an
R-module if we define scalar multiplication by setting

rlyt Aya A Ayg) = (ry1) Aya A+ A yg.

Let AN = &%, AP N. If
a=yi1 N---Nyg € AN and b=z A--- Az € A'N,

let

aANb=1y1 A Ayg Az A--- A zg € NFHN,

This product is extended to arbitrary elements of AN by means of the dis-
tributive law. It makes AN into a graded R-algebra that is skew commutative:
if a € A*N and b € A'N, then

bAa=(—1)*anb.

In particular, x Az = 0 for all z € ALN = N. We call AN the exterior algebra
derived from N.

If ¢ : N — N’ is a homomorphism, there is a derived homomorphism
New i AEN — AFN' given by

Ny A Ay) = (1) A+ A ().

It is evident that we may regard A* as a covariant functor from the category
of R-modules to itself. Similarly, there is an R-module homomorphism Ay :
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AN — AN’ whose restriction to each A*N is A*p. If a € AFN, and b € A‘N,
then
pland) = p(a) A p(b).

Thus we may regard A as a covariant functor from the category of R-modules
to the category of graded skew-commutative R-algebras.

In the construction of the Koszul complex there is a distinguished x € N.
For each i = 0,1,2,... let KN (x) = A'N. The Koszul complexr K~ (x) is the
cochain complex

EN@): = 0— K (2) = Ki'(z) = KJ(z) — -+

where the coboundary map K{¥(x) — K (z) is 7 + ra, and for i > 1 the
coboundary map A'N — AN isa— zAa. If p: N = N is a homo-
morphism and ¢(z) = 2/, then the maps A*y evidently constitute a cochain
homomorphism from K (z) to KN'(2). This construction is functorial in
the following sense.

Lemma G2.1. The Koszul complex is a covariant functor from the category
of pairs (N,z) where N is an R-module and x € N (with morphisms ¢ :
(N,z) — (N',2') that are homomorphisms ¢ : N — N’ with ¢(x) = 2’) to
the category of cochain complexes.

There is a nice relationship between Koszul complexes, direct sums, and
tensor products.

Proposition G2.2. If N = N' & N” and x = (2/,2") € N, then
KN (z) = KN (') @ KN ().
Proof. There is a homomorphism from KN (2') @ KN (2") to KN (z) that is
defined by specifying that an element y3 A--- Ay; @yj A+ Ayj is mapped to
(U1, 0) A=+ A (i, 0) A (0,) A=+ A(0,575).

This is well defined because every element of KN (2') @ KN"(2”) is a sum
of elements of this form, and because it “respects” the relations that are
required by the definition of an exterior algebra. It is surjective because every
element of KV (z) is a sum of elements of this form. It is injective because the
operations that might reduce a sum of elements of the indicated forms (that
is, the relations in the definition of an exterior algebra) operate in the same
way in the domain and the range.
In KV (x) the coboundary operator is

d((y1,0) A= A (g7, 0) A (0,57) A=+ A(0,57))
= ((2",0) +(0,2")) A (41,0) A=+ A (95, 0) A (0,97) A== A (0, 575)
= (2",0) A (y1,0) A=+ A (y;,0) A (0,57) A= A (0,97)
+ (=1 (1,0) A=+ A (y5,0) A (0,2") A (0,5) A+ A (0,57)
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while in KV'(2') @ KN (2") we have
Ay A ANy @yl A Ay =dyr A Ay @Y A Ay
+ (=D A Ay d A AyY)
=AY A Ay QYT A AYf
F (=D A Ay Ayl A Ay

Thus the coboundary operators commute with our isomorphism. O

G3 The Koszul Complex

We will be exclusively interested in the specialization of the complex studied
in the last section that is obtained by letting N be the free R-module R™. This
is what is generally understood as the Koszul complex, although the term is
also applied to the more general construction above.

Let R™ be the free module on the generators eq,...,e,. Thenfor1 <k <n
the R-module A¥R" is the free R-module whose generators are those symbols
e, N---Ne;, with i <--- <. Also, AFR™ = 0 if k > n. For the most part
we will be working with a given

r=mz1e1+4 - +ane, € AN'R,
and we usually write K () or K(x1,...,,) in place of K" (z).
The Koszul complex when n =1 is simply

Y

Ky : ---—0 - R - R -0 — -

We may understand this as a fundamental building block because Proposition
G2.2 and the commutativity and associativity of the tensor product give

K(z) 2 K1) @ @ K(r,) 2 K(251)) @ -+ @ K(Tg(n))

for any permutation o of 1,...,n.

For an arbitrary cochain complex X and an integer ¢, let X[¢] be X shifted
¢ steps to the left, so that X[¢]* = X", with the coboundary operator given
by the appropriate shift of the coboundary operator of X multiplied by (—1)*.
We identify R with the complex --- - 0 — R — 0 — ---, where R is the
module in position 0. Note that X[¢(] = R[¢] ® X. There is a short exact
sequence

0—R[-1]—-K(y) = R—0

of complexes given by the diagram

0——0 R 0
.
0—-R-Z+R 0
b
0 R 0 0
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We now study the cohomology of K(y) ® X for an arbitrary complex X.
We can tensor the short exact sequence above on the right by X, obtaining
0> X[-1]-Ky)@X - X —0.
Here
(Ky)eX)' =K' (yeoX)e (K (yeoXx =X ax}
so X[-1] > K(y)®@ X isx;—1 — (0,2,_1) and K(y) @ X — X is (x,zi—1) —

x;. Evidently this sequence is exact. Applying the definition of the boundary
operator of the tensor product gives

diro®@x;) =yro@x; + ro @ dz; and d(ri @xi—1) = —1r1 Q@ dr;_1,

which boils down to d(z;, z;—1) = (dz;, yx; —dz;—1). The associated long exact
cohomology sequence is

L= H(X[-1)) » H(K(y)©X) - H(X) = H*Y(X[-1]) — -+
Here a diagram chase shows that the connecting homomorphism is multipli-
cation by y: if [z;] € H(X), then (z;,0) is a preimage of z;, and yx; is the
preimage of d(x;,0) = (dx;, yx;) = (0, yx;).

Proposition G3.1. For a cochain complex X and y € R, there is a long
exact sequence

e BNX) e HUE(y) © X) —— HY(X) e H(X) — -

where the indicated maps are multiplication by y. In addition y annihilates
H'(K(y) ® X).

Proof. Of course H(X[—1]) = H*"1(X), so we obtain the sequence shown
from the one above. If (x;,z;_1) is a cocycle, then y(x;, z;—1) is a coboundary
because 0 = d(x;, x;—1) = (dz;,yx; — dx;—1), so that dz;—1 = yx;, whence

d(xi-1,0) = (dri—1,yzi—1) = y(@i, Ti-1).
O

In view of the formula K(z) = K(z1) ® --- ® K(x,) and the associativity
and commutativity of the tensor product, this has the following consequence.

Corollary G3.2. If z = (x1,...,xy,), then the ideal (z1,...,x,) annihilates
H*(K(z)® X).
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G4 Regular Sequences and de Rham’s Theorem

The notion of a regular sequence will be a central concept going forward. This
section presents definitions, establishes elementary properties, and proves one
of the early results applying the Koszul sequence due to de Rham (1954),
which is cited by Serre.

Fix an R-module M and a sequence x1,..., T, of points in R. Let Iy =
(0), and for i = 1,...,n let I; = (z1,...,2;). We say that x1,...,x, is a
semiregular sequence (on M) if, for each ¢ = 1,...,n, z; is not a zerodivisor
of M/I;—1 M. (This terminology is not standard, but it is useful here because
some of the results require only this hypothesis.) We say that z1,...,z, is
a reqular sequence on M, or simply an M -sequence, if it is semiregular and
I,M # M. An important example is R = M = K[X3,...,X,] where K is a
field, with =1 = X4,...,z, = X,,. Clearly z1,...,x, is semiregular: if f € R
and X;f is in the ideal generated by Xi,...,X;_1, then so is f. In addition
M/I,M = K.

There is useful piece of related notation. If NV is a submodule of M and I
is an ideal, then

N:I={meM:ImCN}.

Of course this is a submodule of M that contains N, and N:J C N: [ if
I C J. Usually we will write N:r rather than N:(r). Then z1,...,x, is an
M-sequence if:

(a) Li_aM:x;=1; 1M for alli=1,...,n;
(b) I,M # M.

We are interested in the cohomology of the cochain complex M ® K (x).
In the present context the long exact sequence of Proposition G3.1 is:

Proposition G4.1. If z = (2/,y) where 2’ = (x1,...,2n—1) and y = x,, then
there is a long exact sequence

L HTNM @ K () — H'(M @ K(2) — H'(M ® K(2'))

— H'(M ® K(a')) — -+

where the indicated maps are multiplication by y, and H' (M ® K (x)) is anni-
hilated by y.

Lemma G4.2. H"(M ® K(x)) = M/I,M.

Proof. The final nonzero terms of the Koszul complex are in effect --- —
R* "+ R - 0, and the image of M ® R* —"« M is I, M. 0

Most of the analytic substance of our work here is contained in the proof
of the following result.
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Proposition G4.3. Fori=0,...,n, if x1,...,x; is a semireqular sequence
on M, then
H'(M ® K(z)) = (I;M : I,,)/I; M.

Proof. The initial terms of the Koszul complex are 0 — R AT (N e

and the kernel of M —2+ M ® R™ = M™ is precisely the set of m that are
annihilated by all x;, so

H'(M ® K(z)) = (0)M : I, = (0)M : I,,)/(0) M.

Thus the claim holds when ¢ = 0. We may assume that ¢ > 0, and that the
claim holds for all smaller i. For the given ¢ we argue by induction on n. Since
I, M : I, = M, the result above is the claim when n = i, so we may assume
that n > ¢, and that the claim holds with n replaced by n — 1.

As above let 2’ = (z1,...,2,-1). Since (z;) C I,—1 and z; is a nonzerodi-
visor of M/I;_1 M, the induction hypothesis for i gives

H Y M@ K(2') = (Ii_1M : I,_1)/I;_1M C (I _1M : 2;)/I;_1M = 0.
The induction hypothesis on n implies that
H'(M ® K(x')) = (I;M : I,_1)/I;M.
Therefore the long exact sequence of the last result becomes
0— H(M ® K(x)) = (M : I,_1)/I;M N (LM : 1,1)/ ;M — - .

To finish up note that I,,m C I;M if and only if I,,_ym C I;M and x,m € I; M,
so (I;M : 1,)/I; M is the kernel of this multiplication by . O

To be precise, the specific result established by de Rham consists of the
first assertion and the case j = n of the second assertion of the following
result.

Theorem G4.4 (de Rham). H"(M @ K(z)) = M/I,M. For alli=0,...,n,
if x1,...,7; is a semiregular sequence on M, then H/(M ® K(x)) = 0 for
0<j<i.

Proof. The first assertion is Lemma G4.2 above. For the second we apply the
last result, observing that I;M : I, = I; M because x;,1 is not a zerodivisor

of M/I;M. O

If J is an ideal, an M-sequence yq, ..., ¥y, is mazimal in J if y1,...,y, € J
and there is no y € J such that yi,...,y,,y is an M-sequence. In the next
section we will consider situations in which ¢ < n and (z1,..., ;) is a maximal

M-sequence in I,.
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Proposition G4.5. If R is Noetherian, M 1is finitely generated, and x1,. .., x;
is a mazimal M-sequence in I, then H'(M ® K(z)) # 0.

Proof. In view of Proposition G4.3 we need to show that (I;M : I,)/I; M # 0,
which amounts to I; M : I,, being a proper superset of I;M. If I, = I,,, then
I;M : I, = M, which is a proper superset of I;M because z1,...,x; is an M-
sequence. Therefore suppose that I; is a proper subset of I,,. Since z1,...,x;
is an M-sequence, I; M # M, and since it is maximal in I,,, every element of
I, \ I; is a zerodivisor of M/I;M. The set of zerodivisors of M/I;M is the
union of the ideals Ann(m) for 0 # m € M/IL;M. Since R is Noetherian,
each such ideal is contained in a maximal such ideal. (This need not be
a maximal ideal in the usual sense.) Lemma A10.2 implies that each such
maximal ideal is an associated prime of M /I, M. From Theorem A10.16
there are finitely many associated primes, and since I,, is contained in their
union, prime avoidance (Lemma A10.10) implies that [,, is contained in one
of them, say ). As an associated prime, @ is the annihilator of some nonzero
m=m+ LM e M/I;M, so that 0 #m € (;M : I,,) \ I; M. O

We come now to a key result.

Theorem G4.6. Suppose R is Noetherian, M is finitely generated, H (M ®
K(x))=0 forallj=0,...,7—1, and H"(M ® K(x)) # 0. Then all mazximal
M -sequences drawn from I, have length r.

An immediate consequence, of great interest, is that all maximal M-
sequences drawn from [, have the same length. In addition, if I, M # M,
then de Rham’s theorem gives H"(M ® K(x)) = M/I,M # 0, so there is
necessarily some r satisfying the hypotheses. That is, H*(M ® K(x)) always
detects the maximal length of M-sequences in I,,.

Two preliminary results prepare the proof of Theorem G4.6.

Proposition G4.7. If y1,...,y, € I,, then
K(xi,...,2n,y1,...,9r) = K(z) @ K(0,...,0).

Proof. Suppose that y; = Zj a;;x;; let A be the r x n matrix with entries a;;.
Let N =R"® R", and let a : N — N be the homomorphism with matrix

I 0 .. . . o . .
<_ A I). This is an isomorphism because its inverse is the homomorphism

with matrix <1{1 ?) Since

a1y s Ty Y1y Yr) = (21,0, Zp, 0,...,0)
the functorial nature of the Koszul complex (Lemma G2.1) implies that
K(xi,...,%n, Y1, yr) = K(z1,...,20,0,...,0),

after which the claim follows from Proposition G2.2. U
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The Koszul complex of (0,...,0) € R"is 0 - R — R" — A2R" — ---
with zero coboundary operator. For any cochain complex and integer n there
is the computation H*(X ®p R") = H*(X") = (H*(X))" = H*(X) ®r R",
so:

Proposition G4.8. If y1,...,y, € I,, then
H*(M ® K(x1,...,Zn,Y1,---,Yr)) = H' (M @ K(x)) ® AR".

In particular,
H%M@K(%ﬂ,---7$n7y17--'7y7")) =0

if and only if H*(M @ K (x1,...,x,)) = 0 for all k such that i —r < k < i.

Proof of Theorem G4.6. Let yi,...,y, be a maximal M-sequence in I, and
let s be the smallest integer such that H*(M ® K (z)) # 0. In view of the last
result,

HMoK@E)=0 (i=0,...,5—1)
if and only if
H(M®K(Z1,...,Zn,Y1s---,9) =0 (i=0,...,5—1).
Therefore s is the smallest integer such that
H*(M ® K(x1,...,Zn,Y1,---,Yr)) # 0.
Proposition G2.2 and the commutativity of the tensor product imply that
K(z1,...ixn, Y1, yr) S K1, Yry T1, oo, Tp).

Now Theorem G4.4 and Proposition G4.5 imply that r = s. U

G5 Regular Sequences in Local Rings

As in the last section we fix an R-module M and a sequence x1, ..., Ty, setting
Iy =(0) and I; = (z1,...,2;) for 1 <+i <mn. The most important applications
of the results above are to local rings, for which stronger results hold.

Proposition G5.1. Suppose that R is Noetherian and local, x1,...,x, € m,
and M 1is finitely generated. Let x = (x1,...,2,) and @’ = (x1,...,2p-1). If
HM(M @ K(x)) =0 for some k <n, then

H(M®Kx)=0 and HMKE@')=0 (j=0,...,k—1).
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Proof. We argue by induction on n; the case n = 0 is trivial, so we may
suppose that n > 0. Since H*(M ® K(x)) = 0 the long exact sequence of
Proposition G4.1 contains

s HMYY M @ K(2) 2 HMY(M @ K(2) — 0.
Since z,, € m this surjectivity implies that
mH N M @ K(2')) = H" (M @ K(2')).

Since M is finitely generated, H* '(M ® K(z')) is finitely generated, so
Nakayama’s lemma gives H*~1(M ® K(2')) = 0. The induction hypothe-
sis implies that H/(M ® K (2')) = 0 for all j < k — 1. For j < k we now have
HI(M ® K(z)) = 0 because in the long exact sequence of Proposition G4.1
the terms on either side of it vanish. O

Theorem G5.2. Suppose that R is Noetherian and local, x1,...,T, € m, and
M # 0 is finitely generated. If H" " Y(M @ K (21, ...,2,)) =0, then x1,..., 2,
1s an M -sequence.

Proof. First of all, I,M is a proper submodule because I,M = M would
imply mM = M, after which Nakayama’s lemma would give M = 0, contrary
to hypothesis.

Let x = (1,...,2,) and 2’ = (21,...,2,-1). We argue by induction on
n, beginning with n = 1. In this case M ® K(x1) is 0 - M LM =0,
and H°(M ® K (z1)) = 0 means precisely that x1 is a not a zerodivisor of M.
Suppose that n > 1. Above we showed that H" 2(M ® K(z')) = 0, so the
induction hypothesis implies that x1,...,x,_1 is an M-sequence. Proposition
G4.3 gives

0=H"'M®K(x)) = (I 1M : 1)/ I, 1M = (I,_1M : x,)/I,_1 M,
i.e., x,, is not a zerodivisor of M /I, 1 M. O

Corollary G5.3. If R is Noetherian and local, M # 0 is finitely generated,
and I, is proper and contains an M -sequence of length n, then x1,...,x, s
itself an M -sequence.

Proof. In view of the last result it suffices to show that H"~}(M ® K (x)) = 0.
If this was not the case Theorem G4.6 would imply that the length of all
maximal M-sequences was less than n, contrary to hypothesis. U

Proposition G5.4. If R is Noetherian, M is finitely generated, x1,...,Tn

1s an M-sequence, and ti1,...,t, are positive integers, then xﬁl, .., xin s an

r'n
M -sequence.
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Proof. We first establish the result when R is local and z1, ..., z, € m. Since a
power of a nonzerodivisor is a nonzerodivisor, 1, . .., Z,_1, zt" is a semiregular
sequence. In addition (x1,... ,xn,l,xff)M CI,M#M,sox1,...,Tp_1,%
is an M-sequence. The ideal generated by xi» xq,...,x,_1 contains an M-
sequence of length n, so the last result implies that it is an M-sequence.
Similarly, z," ', zlr, 21,...,2,_2 is an M-sequence, and so forth.

We now take up the general case. Of course (m?, coxtYM C I,M # M,
so it suffices to show that xﬁl, ..., xln is a semiregular sequence. We argue by

induction on n. When n = 1 the claim follows from the fact that a power of
a nonzerodivisor is a nonzerodivisor. Therefore we may suppose that n > 1,

and that xil, . ,xi":ll is a semiregular sequence. Let
tn b
o: M)zt . x I)M%M/(xl,...,xn_f)M

be multiplication by x,. Since a power of a nonzerodivisor is a nonzerodivisor,
it suffices to show that Ker ¢ = 0.
In view of Lemma A5.9, showing that Ker ¢y, = 0 for a given maximal
ideal m is enough. For i = 1,...,n let &; = 2;/1 € Ry. By definition
tn_ tn—
(M/(ml,...,x —11)M) (M/(xlv"'vx —11)M)m

n n

is multiplication by Z,. Corollary A5.2 implies that

(M/(aft )M ) = M /(@ 2 ) M),

and ((z%,... 2" YM),, = (Z,...,&""})M,,, so our goal is to show that
i, is a nonzerodivisor of My /(Z%, ... :Ei”_ll)Mm

We may assume that Mg/ (2%, . .. :Et” 1 )My # 0 (otherwise Z,, is auto-
matically a nonzerodivisor) so zy,...,x,—1 € m. Also, we may assume that
T, € m because otherwise Z,, is a unit, and thus a nonzerodivisor. There-
fore #1,...,Z, € my. We may assume that (Z1,...,2,) My # My because
otherwise myu My, = My, when Nakayama’s lemma would give M, = 0, in
which case Z, is automatically a nonzerodivisor. For each ¢ = 1,...,n, x;

is a nonzerodivisor of M/I;_1 M, so (Lemma A5.9) Z; is a nonzerodivisor of
Mw/(Z1,...,%i—1)My. Thus Z1,...,%, is an My-sequence, and the hypothe-
ses hold with R, M, and z1,...,x, replaced by Ry, My, and Z1,...,Z,. The

special case established at the begmnlng now implies that %' /1,... zf /1 is
an My-sequence. In particular, zf» /1 is a nonzerodivisor of M,/ (wl . ,xi"_‘f )M,
SO I, is also a nonzerodivisor, as desired. O

G6 A Variant of the Koszul Complex

This section develops one of the results cited by Serre. In addition to present-
ing a relatively sophisticated application of the Koszul complex, it has another
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point of interest, namely that the Koszul complex can appear in a different
guise.

As was the case earlier, we are given z = (21,...,7,) € R". For0 <k <n
let Kj(x) = A*R™, and define 6, : Kj(z) — Kj_;(x) by R-linearly extending
the formula

Mw

5k(e“ /\elk miheil /\"'/\éih/\"'/\eik'

h:l
It is straightforward to verify that dx_1 o 6 = 0. In the literature one will

sometimes see R 3 3
K(z):0— Kp(x) = -+ — Ko(z) = 0

described as the Koszul complex. We first show that this is not really a
different concept because K (z) and K () are effectively isomorphic.

Let (-,-) be the inner product on A*R™ that has the e;, A ... Ae;, as
an orthonormal basis. The Hodge star operator is the function % : AFR" —
A"k R™ defined by requiring that

AN = (s, p)e;r A+ ANey

for all A € AFR™ and all u € A" *R". Let o € S, be the permutation j — ij.
If weset \=e;; A---Ne;, and pp = €, N\ - Ae;,, then clearly xA is some
scalar multiple of p, and the formula above gives *A = sgn(o)u. That is,

xe;, N\--- Aej, =sgn(o) Ao Ne,.

Cipi1

Combining this with the definition of the differential gives:

*(dk(eil A /\el-k)) = *((xlel +- - Fzpe,) Aey A /\eik)

n
k
Z Ti; €4 N Neg, /\eij)
=kt

n

= (=% > sgn(o) (1Y M aje A Al A Ny,
j=k-+1

because sgn(o)(—1)77F*1 is the sign of the permutation
T T PR TR % R ORI I T
On the other hand
Ok (*(€iy A Nejp)) =k (sgn(o)es, , A+ Nej,)

n

=sgn(o) > (1) " luje AN A Ae,.
j=k-+1
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Thus 6, _p* = (—1)F xdy.
We can say a bit more. For any permuation ¢ there is a function 7% :
NER™ — AFR™ that is the R-linear extension of the formula

k
To(€p A--- /\eik) = €q(i;) N N €y

The formula above becomes

wtF(er N Neg) = sgn(o) T F(epp1 A Aeyp) = sgn(o) 7% F el A - Aey_i),

oo},

where o}, is addition of k£ mod n, i.e., j — j+ k or j — j + k — n according
to whether j < n — k. We have sgn(ooy) = sgn(o)sgn(oy) and sgn(oy) =
(—1)k("_k), so applying this formula again with k and n — k swapped gives

wx7F(er Ao Nep) = (DR 2R (e A Aey).

This holds for every o, so *x = (—1)k("_k). Composing the formula from the
last paragraph with x, both on the left and on the right, gives

dy, = (_1)k(n—k—1) %0, r* and O, p = (_1)k(n—k—1) wdy % .

(Of course for most purposes the signs of the boundary operators are unim-
portant.)

There are the ideals Iy = (0) and I; = (z1,...,2¢) for £ = 1,...,n. Let
K () be the sequence of homomorphisms

0= Kn(z) e Ko1(z) = - — Ki(z) —2+ Ko(z) —— R/I, — 0

where € : B — R/I, is the natural map. This is a chain complex because
K (z) is a chain complex and the image of §; is contained in I,,.
Now let M be an R-module. For each £ =0,...,nand k=0,...,/ let

X,g) — Mo AR’

and if kK > 1 let §j, : X,gg) — X,gz_)l be the homomorphism
k
Sp(m @ e, A Ney) =Y (=) (aym)@ej Ao A&y, Ao Nejy.

h=1
Under the natural identification of M ® f(o(xl, ...,x¢) with M, the image
of sz) — Xéz) is contained in Iy M, so if we let € be the natural map from
Xég) =M to M/I;M, it is easy to see that

£) 1

AR 0 6 14
0—x0 2 x19 &5 x0 2 x (0

—=» M/I;M — 0,

is a chain complex, which we denote by X®). The image of sz) — Xéz) is
contained in Iy M, so there is another chain complex

O / 0 6 0 0

that we denote by Y.
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Proposition G6.1. If z1,...,x, is a semireqular sequence, then X0 gnd
YO are acyclic for all £ =0,...,n.

Proof. Since X is 0 » M — M — 0 and Y©) = 0, by induction we may
assume that X1 and Y1 are acyclic. Clearly X is exact at M/I,M.
It is exact at Xég) if and only if the image of d; is all of I, M, so X is acyclic
if and only if Y is acyclic. Therefore it suffices to prove that Y is acyclic.
If we can show that Y(© /Y (“~1) is acyclic, then two out of three terms in the
long exact homology sequence of the short exact sequence of complexes

0—-YED 5 y® 5 y@ )yl g

will be zero, so the terms related to Y also vanish.
There is a chain map

/-1 (-1
e X )
S T e

x Y — MM

|

xO/xEY M/ M ——— 0

0

from X1 to Y /Y1) in which M/I,_M — I;M/I,_{M is induced by
m — xym and the other vertical maps are induced by Azge,. Consideration of
the defining formula for §; shows that the difference between the compositions

Xi(ﬁ—l) 10 ®6; Xi(f—ll) AT o€q Xi(é) and Xi(ﬁ—l) AT p€p Xz(i)l 10 @041 Xi(ﬁ)

(-1

lies in X; , and similarly for the final box, so this diagram commutes. It is
easy to see that the maps Axe, are all isomorphisms. The map M/l 1M —
I;M /1,1 M is surjective because (z7)+1,—1 = Iy and injective because Ip_1 M :
xp = Ip_1 M. Since the top row is exact, so is the bottom row. O

Since M @ R/I, = M/I,M (Lemma A6.3) we have X" = M @5 K(z),
which leads to the most important case of the last result.

Theorem G6.2. If x1,...,x, is a semireqular sequence, then M Qg I@(w) 18
acyclic.

An important special case is M = R with I;, a proper subset of R. Let
Q = R/I,. We have R®g K(z) = K(x), so the result above asserts that IC(z)
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is acyclic. In addition K; = R ®z Ej(ey,...,e,) is a free R-module, so K(z)
is a free resolution of Q).
Let N be an R-module. Then

Hompg(é,, N) : Homp(K,—1(x), N) — Homp (K, (z), N)

is the map g +— S_7_, (= 1)1 zygy if we identify g € Homp(K,_1(z), N) with
g=1(91,--.,9n) € N™ where each g, is the image of e A--- A&, A\---Ae,, and
we identify an element of Homp (K, (), N) with the image of e} A --- A ey,.
The image of Hompg(8,, N) is contained in Hompg(K, (z),I,N), so when
N = @ we find that Hompg(d,,Q) = 0. Combining all this with the definition

of Ext, we have

Ext(Q, Q) = H"(Homp(K(z), Q)) = Ker(Hompg (4, Q))

= Hompg(K,_1(z),Q) = Homg(R", Q) = Q™ # 0.

The projective dimension pdr M of M is, by definition, the smallest n
such that there is a projective resolution

=2 02X 2 Xy =2 =2 X1 =2 Xg 2 M =0

with X,,+1 = 0. The free dimension is defined in the same way, using free res-
olutions instead of projective resolutions. Because free modules are projective,
the free dimension is never less than the projective dimension.

Theorem G6.3. If x1,...,x, is a reqular sequence and Q = R/(x1,...,xy),
then pdp Q = n.

Proof. Theorem G6.2 with M = R gives K(x), a resolution

0= Kn(z) - Kp1(z) = - — Ki(z) —2 Ko(z) —— Q — 0

of Q, in which each K;j(z) = R®z Ei(y1,...,yn) is free and RogrK(z) = K(z)
is acyclic. Thus the free dimension of @) is not greater than n. On the
other hand we showed above that Ext'’s(Q,Q) # 0. Since Extr(Q, Q) can be
computed using a projective resolution of @) in the first variable, it follows
that the projective dimension of @) is at least n. Since the free dimension is
at least as large as the projective dimension, the result follows. U



Chapter H

Depth and Cohen-Macaulay Rings

We have seen that the local ring at a smooth point of an algebraic variety is
regular. While there are some special properties that distinguish some smooth
points from others, the corresponding algebraic analysis has not been the
central focus of commutative algebra since FAC. Instead, a main concern has
been to study points of varieties that are not smooth, but which nonetheless
enjoy properties that make them well behaved, at least relative to the wealth
of unpleasant things that can happen at singular points. The corresponding
algebraic endeavor has been to study local rings that are not regular, but which
still enjoy attractive properties. In some cases we study rings which are not
themselves local, but whose localizations at maximal ideals have the desirable
features. Thus a regular ring is one whose localization at each maximal ideal
is a regular local ring.

Suppose that R is Noetherian and local, and let d be its Krull dimension.
Proposition H1.7 below implies that there are no R-sequences with more than
d elements. If R is regular, then m is generated by d elements x1,...,zq, and
in this circumstance (Corollary F5.5) x1, ..., x4 is an R-sequence. The notion
of a local Cohen-Macaulay ring generalizes this by requiring that there is an
R-sequence with d elements, without requiring that m is generated by such a
sequence. If R is not local, it is a Cohen-Macaulay ring if, for each maximal
ideal m, Ry, is a local Cohen-Macaulay ring.

Even though they will not be studied here, we should also mention Goren-
stein rings, which are more general than regular rings and less general than
Cohen-Macaulay rings. (Daniel Gorenstein was fond of saying that he didn’t
understand the definition of a Gorenstein ring, and we won’t bother with it.)
These have also been studied extensively, and encompass a large percentage
of the rings that arise in nature.

H1 Depth

Throughout this section we work with a given R-module M and a given ideal
I, which may be improper. The depth of I on M, denoted by depth(I, M),
is the maximal length of a regular sequence on M whose elements lie in [.
The depth of I is depth(I) = depth(Z, R), and the depth of R is depth(R) =
depth(R, R). It is common to define the depth of M to be depth(R, M), but
when M is an ideal this terminology becomes ambiguous, so we will not use

197
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the term in this sense. Note that if R is local (the most important case) then
depth(R) = depth(m, R) = depth(m).

Earlier we defined the codimension of a prime P to be the Krull dimension
of Rp, which is the maximal length of chains of prime ideals descending from
P. The codimension of I is the minimum of the codimensions of the primes
containing I. In much of the literature this is called the height of I. Our
primary aim in this section is to demonstrate a relationship between depth
and codimension.

Our first result shows that the depth of I on M is a geometric concept in
contexts in which there is a bijection between varieties and radical ideals.

Proposition H1.1. If R is Noetherian and M is finitely generated, then
depth(rad(I), M) = depth(I, M).

Proof. If @1,..., 2, is an M-sequence in rad(I), then z!,... ! is an M-
sequence for any positive integer ¢ (Proposition G5.4) and for some ¢ it is
contained in . O

Depth can only be increased by localization. The following result has a
basic character, and does not require a Noetherian hypotheses.

Lemma H1.2. If M is finitely generated, P is a prime in its support, and
X1,..., Ty 1 an M-sequence in P, then (z1,...,x,) is an Mp-sequence. Con-
sequently if I C P, then depth(I, M) < depth(Ip, Mp).

Proof. Since P is in the support of M, PpM, is a proper subset of Mp:

otherwise Nakayama’s lemma would imply that Mp = 0. Consequently
(1’1, s 7$n)MP - PPMP 7é MP-
It remains to show that for a given i = 1,...,n, z; is not a zerodivisor of

Mp/(x1,...,2i—1)Mp. Suppose that m/s € (z1,...,2;—1)Mp : z;, so that
xzi(m/s) = xi(myi/s1) + -+ zi—1(mi—1/si—1).
Multiplying this by st where ¢t = s1 ---s;_1 gives a relationship
zi(tm) =z (tymy) + - + 21 (Ei—1my—1)
in M. Since z1,...,x; is regular on M there are nq,...,n;_1 € M such that
tm=xing + -+ x—11_1.
Now dividing by st shows that m/s € (x1,...,2,-1)Mp. O

Depth is a local property, in the sense that it agrees with the maximum
depth of its various localizations.

Lemma H1.3. If R is Noetherian and M is finitely generated, there is some
mazximal ideal m in the support of M such that I C m and depth(I, M) =
depth(Iy, My).
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Proof. Let I = (x1,...,x,) and let 7 = depth(Z, M). Theorem G4.6 implies
that H"(M ® K(x1,...,z,)) # 0. Lemma A5.8 implies that the support
of H'(M ® K(x1,...,zy)) contains maximal ideals. Any such maximal m
contains I because I annihilates H*(M ® K (z1,...,z,)) (Corollary G3.2) and
for such a m we have

0#H (M@ K(x1,...,2p))m = H' (M ® K(x1,...,%n))m)

= H" (Myn ®g, K(z1,...,%n)m)

because localization commutes with homology (Proposition A5.5) and tensor
products (Proposition A6.5). This implies both that m is in the support of
M and (by Theorem G4.6) that depth(ly, My) < r. The last result gives the
opposite inequality. O

Taking the ideal I to be maximal, we obtain:

Corollary H1.4. If R is Noetherian, M is finitely generated, and m is a
mazximal ideal, then depth(m, M) = depth(mpy, My).

For y € R let (I,y) denote the ideal generated by y and the elements of
I, which is of course the smallest ideal containing both I and y. When R is
local, adjoining an element y € m in this way cannot increase depth by more
than one.

Lemma H1.5. If R is Noetherian and local, M is finitely generated, and
y € m, then
depth((Z,y), M) < depth(I, M) + 1.

Proof. Suppose I = (x1,...,x,), and set r = depth((I,y), M). Theorem
G4.6 implies that H'(M ® K (z1,...,Zs,y)) = 0 for all i < r. The long exact
sequence given by Proposition G4.1 becomes

0— H'(M ® K(z)) = H'(M ® K(z)) = 0

for i < r—1. Since y € m, Nakayama’s lemma implies that H (M ® K (x)) = 0
for i < r — 1, so Theorem G4.6 implies that depth(l, M) > r — 1. O

Applying the last result, we obtain a relationship between depth and the
length of chains of prime ideals.

Proposition H1.6. Suppose R is Noetherian, M is finitely generated, I con-
tains the annihilator of M, and P = Py D Py D --- D Py is a maximal chain
of prime ideals descending from a prime P that is minimal over I to a prime
Py € Ass(M). Then depth(I, M) < ¢.
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Proof. We use induction on ¢. The case ¢ = 0 is trivial: since P is associated
to M, each of its nonzero elements is a zerodivisor, so there is no M-sequence
of positive length contained in I. Suppose that ¢ > 1.

Now (Py)p D -+ D (Py)p is a chain of prime ideals of Rp and Pp is
a minimal prime over Ip (Proposition A5.6). Proposition A10.6 implies that
(Py)p is an associated prime of Mp. In addition Lemma H1.2 implies that any
M-sequence in P goes to a Mp-sequence in Pp. Therefore it suffices to prove
the claim when R is local and I = m, as we now assume. Choose an x € m\ P;.
Since m is the only prime containing (Pp, ), its image in R/(P;,z) is the
nilradical and consequently nilpotent, because R is Noetherian. Proposition
H1.1 implies that depth(m, M) = depth((Py, z), M), Lemma H1.5 implies that
depth((Py,z), M) < depth(P;, M) + 1, and the induction hypothesis gives
depth(P, M) < ¢ —1. O

Recall that the codimension of an arbitrary ideal I is the minimum codi-
mension of the primes containing I. The following inequality displays the
depth of I as a variant of codimension.

Proposition H1.7. If R is Noetherian, then depth I < codim 1.

Proof. Let P be a prime containing I of minimal codimension; of course P is
minimal over I. The annihilator of R is (0), which is contained in I, and R
itself is a finitely generated R-module, so the hypotheses of Proposition H1.6
hold with M = R. The claim follows from that result because the maximal
length of a chain of prime ideals descending from P to an associated prime of R
is not greater than the maximal length of any chain of prime ideals descending
from P. O

H2 Cohen-Macaulay Rings

It seems quite natural to consider the possibility that the inequality in the last
result holds with equality. This thought leads to one of the major definitions
of commutative algebra. The ring R is Cohen-Macaulay if it is Noetherian
and, for every maximal ideal m, the depth of m is equal to the codimension
of m. A regular local ring is Cohen-Macaulay because its unique maximal
ideal satisfies this condition, by virtue of the definition of regularity. The
importance of Cohen-Macaulay rings results from their many nice properties,
which this sections explores a bit, and the fact that they are common in
practice.

Proposition H2.1. If R is Cohen-Macaulay, then depthl = codim I for
every ideal I.

Proof. Lemma H1.2 gives a maximal ideal m containing I such that depth [ =
I, and of course codim I = codim I,. Thus it suffices to prove the claim
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under the hypothesis that R is local and depthm = codimm. Proposition
H1.7 gives depth I < codim I.

When [ is m-primary codim/ = codimm, and Proposition H1.1 gives
depth I = depthm, so we may assume that this is not the case. Therefore
prime avoidance gives an x € m that is not contained in any prime that is
minimal over I. Lemma H1.5 gives depth I + 1 > depth I + (z). Since R is
Noetherian, we may assume that I is a maximal element of the set of ideals
for which the result fails, so depth I + (z) = codim I + (z).

If the image Z of x in R/rad(I) was a zerodivisor, say £y = 0 where g # 0,
then ¢ would be the image of some y € R\ rad(I), and Corollary A2.9 would
imply that y was outside some prime P that is minimal over I, so that zy €
rad(I) C P, which is impossible. Krull’s principal ideal theorem (Corollary
F6.2) applied to R/rad(I) now gives codim I + (x) = codim I + 1. O

Proposition H2.2. The ring R is Cohen-Macaulay if and only if Ry is
Cohen-Macaulay for every maximal ideal m, in which case Rp is Cohen-
Macaulay for every prime ideal P.

Proof. If R is Cohen-Macualay and P is a prime, then
codim Pp = codim P = depth P < depth Pp < codim Pp

where the second equality is from the last result, the first inequality is from
Proposition H1.2, and the second is from Proposition H1.6. Since the in-
equality is an equality and Pp is the unique maximal ideal of Rp, Rp is
Cohen-Macaulay.

If Ry is Cohen-Macaulay for every maximal ideal m, then for any such
m we have depth(m, R) = depth(my,, Rm) by Lemma H1.3. Since codimm =
codim my,, it follows that R is Cohen-Macaulay. O

Proposition H2.3. If R is Cohen-Macaulay then so is R[X].

Proof. From the last result it suffices to prove that R[X|n, is Cohen-Macaulay
for a given maximal ideal my of R[X]. The complement of P = mxNR in R is
contained in the complement of mx in R[X], so R[X|my = Rp[X|r\p)-1my-
(Very concretely, the set of quotients f/g with f € R[X] and g € R[X]\ mx
is the same as the set of quotients f/g with f € (R\ P)"'Rp[X] and g €
(R\ P)"Y(R[X]\mx).) In addition (R\ P)"'my is a maximal ideal of Rp[X],
and Pp[X] C (R\ P) 'my because P[X] C mx.

Therefore we may assume that R is local with maximal ideal m, and that
m[X] C mx. Let k and kx be the corresponding residue fields. Our goal
is to show that depthmy = codimmy. Proposition H1.7 gives depthmy <
codimmy.

Now R[X]/m[X]| = k[X] is a principal ideal domain, so mx/m[X] is gen-
erated by a single polynomial f € R[X], which is to say that mx = m + (f).
We may take f such that the image of f in k[X] in monic.
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If x1,...,2, is an R-sequence in m, then it is also a R[X]-sequence be-
cause R[X] is a free R-module. (This is a direct consequence of the defini-
tion of a regular sequence.) For any nonzero g € R[X]/(z1,...,2,)R[X] =
(R/(x1,...,25))[X], the product of the leading coefficient of f (which is the
sum of 1 and an element of m) and the leading coefficient of g cannot vanish
in R/(x1,...,%n), S0 (z1,...,%n, ) is an R[X]-sequence in mx.

Thus depthm, + 1 > depthm + 1. Since R is Cohen-Macaulay, depthm =
codimm. The principal ideal theorem (Theorem F6.1) implies that codim m+
1 > codimmy. Combining these gives depthmy > codimmy, as desired. [J

A ring R is catenary if, for any prime ideals P C @, all maximal chains
of prime ideals between P and ) have the same length. If [ is an ideal of
R, the primes of R/I are in inclusion preserving bijection with the primes of
R that include I, so two maximal chains between given prime ideals in R/
are, in effect, maximal chains between prime ideals in R. If P is a prime, the
primes of Rp are in bijection with the primes of R that are contained in P,
so a maximal chain in Rp is, in effect, a maximal chain in R. Thus:

Lemma H2.4. If R is catenary, then any quotient of R is catenary, and any
localization of R is catenary.

Proposition H2.5. If R is Cohen-Macaulay and local, then any two maximal
chains of prime ideals have the same length, and every associated prime of R
s manimal.

Proof. We claim that all maximal chains of prime ideals descended from the
maximal ideal m to an associated prime of R have length equal to the Krull
dimension of R. By Proposition H1.6 the length of any such chain is at least
the depth of m, and by hypothesis the depth of m is the codimension of m. [J

Proposition H2.6. If R is Cohen-Macaulay, then it is caternary.

Proof. If P and @ are primes with () C P, then any chain of primes descending
from P to @) can be extended to a maximal chain of primes descended from P,
so it suffices to show that any two such maximal chains have the same length.
This is true in R if and only if it is true in Rp, which Proposition H2.2 and
the last result show to be the case. O

A full proof would take us too far afield, but it is worth mentioning that the
converse of Proposition H2.3 also holds: if R[X] is Cohen-Macaulay, then so
is R. Suppose R[X] is Cohen-Macaulay. Then R is Noetherian because R[X]
is. Let m be a maximal ideal of R. Then m + (X) is a maximal ideal of R[X].
If 21,...,2, is an R-sequence in m, then it is an R[X]-sequence in m + (X).
Clearly, X is not a zerodivisor in R[X]|/(z1,...,zn)R[X], so z1,...,Tp, X
is an R[X]-sequence in m + (X). Thus depthm + 1 < depthm + (X), and
Lemma H1.5 gives the opposite inequality. The last result implies that any
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two maximal chains of prime ideals in R[X] have the same length. Therefore
codimm + (X) = dimR[X]. If ' D P, D -+ D Py is a maximal chain of
prime ideals of R, then m’+ (X) D m/[X] D P [X] D -+ D P,[X] is a maximal
chain of prime ideals in R[X]. (Since it is bulky and suitably challenging, the
verification of this is left as an exercise.) Therefore any two maximal chains
of prime ideals in R have the same length, and codimm = dim R. Exercise 7
on p. 126 of Atiyah and McDonald (1969) gives dim R[X] 4+ 1 = dim R + 1.
Since R[X] is Cohen-Macaulay we have

codimm + 1 = codimm + (X) = depthm + (X) = depthm + 1.

The ring R is universally catenary if every finitely generated R-algebra is
catenary. Any such algebra is the homomorphic image of R[X;,...,X,] for
some n, so in view of Lemma H2.4, R is universally catenary if and only if
each R[X1,...,X,] is catenary. Proposition H2.3 implies that this is the case
if R is Cohen-Macaulay, so:

Proposition H2.7. If R is Cohen-Macaulay, then it is universally caternary.

Proposition H2.8. If R is Cohen-Macaulay and the codimension of I =
(x1,...,xy) is n, then R/I is Cohen-Macaulay.

Proof. Any maximal ideal of R/I is m/I for some maximal ideal m of R
that contains I. By Proposition H2.2 it suffices to show that for any such
m, (R/I)y/r is Cohen-Macaulay. We have (R/I)y/; = Rn/IRn, and IRy
is generated by z1,...,z,. The codimension of IR, in R, agrees with the
codimension of [ in R, so it is n. Proposition H2.2 implies that Ry, is Cohen-
Macaulay. Thus the hypotheses are satisfied with Ry, and IRy in place of R
and I, so it suffices to prove the claim with the additional hypothesis that R
is local.

Since R is Noetherian, so is R/I. Corollary G5.3 implies that x1,...,z, is
a regular sequence. Extending this to a maximal regular sequence in m shows
that the depthm/I = depthm — n. Since R is Cohen-Macaulay, depthm =
codimm. Since R is local, codimm = dim R. We have dim R/I < dimR —n
because for each i, x; is not contained in any prime that is minimal over
(x1,...,mi—1). Since R/I is local, codimm/I = dim R/I. Thus

depthm/I = depthm—n = codimm—n = dim R—n > dim R/I = codimm/I,
and Proposition H1.7 gives the reverse inequality. O

Given the intuitive resemblance between the associated primes of an ideal
and the minimal primes over that ideal, it is desirable to have results that give
precise relationships. Consequently the theorem below is quite prominent. We
separate out one part that holds quite generally.
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Lemma H2.9. If I = (x1,...,z,) and the codimension of I is n, then all
minimal primes over I have codimension n.

Proof. The codimension of I is by definition the minimum of the codimensions
of the primes containing [, so the codimension of any such prime is at least n.
On the other hand the principal ideal theorem implies that the codimension
of any prime that is minimal over [ is at most n. U

An ideal I is said to be unmized if all of its associated primes have the same
codimension. Of course this implies that there are no embedded associated
primes, so, in view of Theorem A10.9, the associated primes are precisely the
primes that are minimal over I.

Theorem H2.10 (Unmixedness Theorem). If R is Noetherian, then it is
Cohen-Macaulay if and only if every ideal that is generated by a number of
generators equal to its codimension is unmized.

Proof. Suppose that R is Cohen-Macaulay and I = (x1,...,x,) has codimen-
sion r. Then R/I is Cohen-Macaulay by Proposition H2.8, and Proposition
H2.5 implies that every associated prime of I is minimal over I. The lemma
above implies that the the codimension of every such prime is r.

Now suppose that for each r, each ideal of codimension r generated by
r elements is unmixed. We will show that for a given prime P, depth P =
codim P. Proposition H1.7 implies that depth P < codim P. Let r = codim P.
Proposition F6.4 implies that there are z1, ..., z, such that P is minimal over
(x1,...,2,). Foreach i = 1,...,r the principal ideal theorem (Theorem F6.1)
implies that codim (z1,...,z;) < i, and also that the codimension of the ideal
in R/(z1,...,x;) generated by z;t1,...,x, is not greater than r — 4, but this
codimension is r — codim (z1,...,x;), so codim (z1,...,x;) = i. Therefore
x;+1 is not contained in any prime that is minimal over (z1,...,z;), so the
hypothesis implies that it is not contained in any prime that is associated
to (x1,...,x;), and is consequently (Corollary A10.3) not a zerodivisor of
R/(x1,...,x;). We have shown that z,...,z, is an R-sequence in P, so
depthP > r. O

We can now comment on Serre’s application of these ideas in no. 78. Let
K be a (not necessarily algebraically complete) field, and let m be a maximal
ideal of K[Xi,...,X4]. The images of X1,..., Xy in m/m? generate it, and
there is no system of generators with fewer elements, so they are a basis of
this vector space. Proposition A2.15 (Nakayama’s lemma) implies that m is
generated by the images of X1,..., Xy, so K[X1,..., X4]m is a regular local
ring. Since m was arbitrary, K[Xy,...,X ] is a regular ring, hence Cohen-
Macaulay.

The ring R is a complete intersection if R = K[X1,...,X4]/(z1,...,x,) for
some regular sequence z1,...,z, € K[Xi,...,Xy4|. Proposition F6.3 implies
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that the codimension of (z1,...,x,) is n, so Proposition H2.8 implies that R
is Cohen-Macaulay. The unmixedness theorem implies that (0) is unmixed,
which is to say that all the primes associated to (0) have the same codimension.
In general all minimal primes are associated, so the minimal primes are the
only associated primes.






Chapter I

Global Dimension

The global dimension of R, denoted by gldim R, is defined to be the maximal
projective dimension of any R-module. This concept is central in the applica-
tions of homological algebra to commutative algebra that were developed in
the 1950’s, largely as a result of the efforts of Auslander, Buchsbaum, Car-
tan, Eilenberg, and Serre himself. = We will see several famous results. The
Hilbert syzygy theorem can be understood as asserting that if R is Noetherian
and local, then its global dimension is pdg k. It will turn out that such an R
is regular if and only if these quantities are finite. These findings will be key
steps on our path to the book’s pinnacle result, which is that a regular local
ring is factorial.

11 Auslander’s Theorem

From a technical point of view, the analysis of global dimension revolves
around the following result.

Theorem I1.1 (Auslander). The following are equivalent:
(a) gldim R < n;
(b) pdr R/I <n for every ideal I C R;
(c¢) the injective dimension of every R-module M is < n;
(d) Extly(M,N) =0 for all R-modules M and N and all i > n.
The proof utilizes a result of independent interest.

Proposition I1.2. An R-module X is injective if Exth(R/I, X) = 0 for all
ideals I C R.

Proof. Let I be an ideal of R. The inductive construction in the proof of
Lemma C1.1 gives a free resolution

da

N L N Oy R/I — 0.

Since Exth(R/I,X) = 0, the image of Hompg(dy, X) is the entire kernel of
Hompg/(da, X), so whenever ¢ : F} — X is a map with ¢ o dy = 0, there is

207
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a1 : R — X such that ¢ = ¥ od;. More concretely, whenever the kernel
of ¢ contains Imds = Kerdy, so that ¢ may be thought of as a map from
Fy/Kerd; = I to X, there is an extension to R. This is Baer’s criterion. [

Proof of Theorem I1.1. Clearly (a) implies (b), and (c) implies (d) because
any injective resolution can be used to compute Extr(M,N). We will show
that (b) implies (c¢) and that (d) implies (a).

Suppose that (b) holds, and let

O>N—=Iy—= =1, 1—-X—=>0

be an exact sequence with Iy,...,I,_1 injective. For any ideal I the iter-
ated connecting homomorphism derived from Extr(R/I,—) (in particular the
discussion following Proposition D4.2) gives

Extp(R/I,X) = ExttH (R/I,N) =0

where the equality follows from the hypothesis. Since this is true for every
ideal I, the last result implies that X is injective, so the sequence is an injective
resolution of N.

Now suppose that (d) holds. Let M be any R-module, and let

0O=-X—-P_ 11— =R —->M=0

be an exact sequence in which Py, ..., F,_1 are projective. For any R-module
N dimension shifting (Proposition D4.2) gives an isomorphism Ext},(X, N) =
Ext’é“(M ,N) = 0, so Proposition D6.1 implies that X is projective. There-
fore pdp M < n. O

12 Minimal Free Resolutions

Insofar as the definition of free dimension asks for smallest ¢ for which there is
a free resolution with F;;1 = 0, it makes sense to study free resolutions that
do not have any excess baggage. An R-module homomorphism ¢ : A — B is
slender if there is a minimal set of generators of A that is mapped injectively
to a minimal set of generators of the image of ¢. Fix an R-module M and a
free resolution

Fiooo B2 2% By 2% M 0.
We say that F'is minimal if each ¢; is slender.

Lemma 12.1. If R is Noetherian and M 1is finitely generated, then M has a
minimal free resolution.
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Proof. We begin by choosing a minimal system of generators for M and letting
Fy be the free R-module on these generators. Because R is Noetherian, Fj is
Noetherian (Proposition A4.6) so the kernel of Fy — M is finitely generated.
We let F be the free R-module on a minimal set of generators for this kernel,
and we continue in this fashion. O

Lemma 12.2. If R is Noetherian, M is finitely generated, and F' is minimal,
then each F; is finitely generated.

Proof. This follows from induction on 4, taking F_1 = M: since ¢; maps a
minimal set of generators of F; injectively to a minimal set of generators of
F;_q,if F;_q is finitely generated, then so is F;. ]

Proposition 12.3. If R is local and M and each F; are finitely generated,
then F' is minimal if and only if pi+1(Fi41) C mF; for all 1 > 0.

Proof. Fixing a particular ¢, let v be the surjection
F;/mF; — (Coker ¢;41)/m(Coker ¢;11)

induced by F; — Coker ¢;+1. The image of v is F;/(mF; + Im(¢;y1)), so the
image of ;11 is contained in mF; if and only if v is an isomorphism. Recall
that for any R-module N, N/mN is a vector space over k, so v is a linear
transformation.

Let x1,...,x; be a minimal system of generators for F;. Let Z1,...,Tg
be the images of x1,...,z; in Coker p;11, and let v1,...,v; be the images in

First suppose the resolution is minimal. Since ; is slender we can choose
x1,...,rp that are mapped injectively to a minimal set of generators of the
image of ;. Since ¢; induces an isomorphism between Coker ¢;41 and the
image of @;, Z1,...,Z; is a minimal set of generators of Coker ¢;11. Now
Y(Z1),...,7(Zk) is a set of generators of the image of y that is minimal. (Oth-
erwise Nakayama’s lemma (Theorem A2.13) would imply that Z1,...,Z, was
not minimal for Coker ¢;11.) Since v maps each v; to v(Z;), it is a linear
isomorphism.

Conversely suppose < is an isomorphism. Nakayama’s lemma implies that

v1,. ..,V is minimal for F;/mF;, hence a basis of this space, so y(v1), ... ,v(vk)
is a basis. Applying Nakayama’s lemma once more, Z1,...,Z; iS a minimal
collection of generators for Coker ¢;+1. It follows that xq,...,z; map to a
minimal collection of generators of the image of ;. O

A trivial complex is a direct sum of complexes of the form --- — 0 —
R R 50— Evidently a free complex has no homology. When R is

local there is a converse.
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Lemma 12.4. If R is local and
H: - >H -2 H - > H-2-H—0

s a free resolution of the zero module with each H; finitely generated, then H
is trivial.

Proof. Let vy,...,v; be a basis of Hy/mHy. The map H;/mH, — Hy/mH,
is a linear surjection, so there is a preimage wy, ..., wy of vy,..., v, and this
can be extended to a basis wi,...,w, of Hi/mH;. By Nakayama’s lemma
a preimage r1,...,x, of this in H; is a minimal system of generators of H;.
Corollary A3.4 implies that these generators generate Hi freely. Another
application of Nakayama’s lemma implies that x1,...,x; map to a system
of generators of Hy. Again, these generators generate Hy freely, so inverting
this gives a map that splits p;. Therefore Hy = H| & H{, where p; maps H),
isomorphically and is zero on Hf, and H] is freely generated. We can apply
the same argument to --- — Hs — Hy — Hj — 0, and so forth. U

Proposition 12.5. If R is local, M is finitely generated, F' is a minimal free
resolution of M, and

G —)GZLszl%—)GlﬁGOLM—)O

is any free resolution of M with each G; finitely generated, then G is iso-
morphic to the direct sum of F' and a trivial complex. Any two minimal free
resolutions are isomorphic.

Proof. Lemma C3.1 gives chain maps o : F' — G and 8 : G — F that extend
the identity on M, and it implies that for any such « and 3, o« is homotopic
to 1p, so there are maps s; : F; — Fj;1 such that 15, — B0, = pir18i+Si—19i-
Proposition 12.3 implies that the images of ;11 and ¢; are contained in mF;
and mF;_; respectively, and s;_1(mF;_1) C mF;, so the image of 15, — B is
contained in mF;.

Relative to any system of generators of F;, §;c; is represented by a matrix
with entries in R. The image in k of the determinant of this matrix is 1, so
the determinant is a unit in R and consequently Cramer’s rule gives an inverse
~;. Of course the various ~; constitute a chain map ~ : ' — F, and 70 is a
splitting chain map for a.

Let H be the cokernel of @. Then G = F @ H and the homomology of
G is the direct sum of the homology of F' and the homology of H. Since «
induces an isomorphism between the homology of F' and the homology of G,
H has no homology, and is trivial by Lemma 12.4. O

If G is another minimal free resolution of M, this result gives an isomor-
phism between F' and G. In this sense we may speak of the minimal free



12. MINIMAL FREE RESOLUTIONS 211

resolution of M. One may suspect that the requirement that it have no ho-
mology makes the minimal free resolution large relative to chain complexes
that end at M and do not contain trivial complexes. The following is a result
of this sort.

Proposition 12.6. If R is Noetherian and local, and x1,...,xy, is a minimal
set of generators of m, then the extended Koszul complex

~ ~ on 1) ~ [

K(z):0 = Ky(z) — - —> Ko(z) —= k = 0
(where © = (x1,...,x,)) is isomorphic to a subcomplexr of the minimal free
resolution of k.

Proof. Let F: --- — Fy L Fi L Fy 0, k — 0 be the minimal free
resolution. Since this complex is exact and each K;(z) is free, Lemma C3.1
gives a chain map f : K () — F extending the identity function on k. We
will show that each f; : K;(x) — F; injective.

Observe that the image of d; is the kernel m of ¢y and (because z1, ..., z,
is minimal) K;(z) — Ko(z) — k — 0 could be extended to a minimal free
resolution. The method of proof of Lemma C3.1 is inductive, and could be
used to extend fy and f; to a chain map from this resolution to F', at which
point the last result would imply that this chain map was an isomorphism.
Consequently fo and f; are isomorphisms. By induction we may assume that
fi—1 is injective, and our goal is to show that f; injective. Since it is true of fj
and f1, we may assume that f;_1 splits, provided we can show that f; splits.

It will be enough to show that the quotient map f; : K;(z)/mK;(z) —
F;/mF; is injective. To see why, suppose that this is the case, 01,..., 7 is
a basis of the domain, and w; = fl(@]) Choose representatives vq,...,v; €
f(z(x), let w;j = fi(vj) , choose Wg41,...,w, such that @wy,..., W, is a basis,
and choose representatives wg.1,...,w, € F;. Nakayama’s lemma implies
that wy,...,w, is a system of generators of F;, and in fact (Corollary A3.4)
they generate it freely, so rywy + - - rpw, — rivy + - 1o is a well defined
splitting map for f;.

Since F' is minimal, the image of ; is contained in mF;_1, so there is an
induced map @; : F;/mF; — mF;_1/m?F;_1, and it suffices to show that (; of;
is injective. From the definition of &; we have 8;(K;(x)) C mK;_1(z), so there
is an induced map 6&; : K;(z)/mK;(z) — mK;_1(x)/m?K;_(x). There is also
an induced map ﬁ-,l : mf(l-,l(x)/me(i,l(x) — mF;_y/m?F;_;. Since f;_1
splits, the elements that it maps to m?>F;_; are precisely those in me(i_l(x),
SO ﬁ-,l is injective. Of course @; o fi = fi,l 0 0;, so it now suffices to show
that ¢; is injective.

Identifying (Lemma A6.3) K;(x)/mK;(z) and mK,;_(x)/m?K;_1(x) with
k®r A'R™ and m/m? @ g A*" L R™ respectively, 5; is

i
E Qg5 €51 /\---/\ejl. — E Qjyejp E xjs®ej1 /\---/\ejs /\"'/\eji
J1<-<Js J1<-<Ji s=1
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where Z1,...,&, are the images of z1,...,7, in m/m?. Since x1,...,2, is
minimal, Z1,...,Z, is a basis of this k-vector space, so the right hand side is
zero only when every aj;,...;, vanishes. O

I3 The Hilbert Syzygy Theorem

In this section we show that gldim K[Xy,...,X,] = n, which is a variant of
Hilbert’s syzygy theorem.

Proposition 13.1. If R is Noetherian and local, M is a finitely generated
R-module, and

F :0—>Fn—>---—>F0—E>M—>0

is a minimal free resolution of M, then n is the free dimension of M, which
agrees with the projective dimension of M. In addition, n < pdpk.

Proof. Of course the free dimension of M cannot be greater than n. By
definition Torf(k, M) is the homology of the complex

---—)k@RFQMk@)RFle@RFo—)O.

Proposition 12.3 gives ¢;11(F;+1) C mFE; for all ¢, which implies that each of
the maps in this complex is zero: for example, an image of 1 ®pg ; lies in
k@rmF,_ = mk®g F;_1, and mk = m(R/m) = 0. Therefore TorZ(k, M) =
k ®p F,, # 0. Since any projective resolution of M could be used to compute
Torf(k, M), it follows that pdp M > n.

On the other hand a projective resolution of k£ can be used to compute
Tor®(k, M), so Tor, | (k, M) = 0 implies that n < pdp k. O

Suppose that R is Noetherian and local. For any ideal I, R/I is finitely
generated (14 I is a generator) so Lemma 12.2 implies that R/I has a mini-
mal free resolution, and the last result implies that pdp R/I < pdpk. Con-
sequently Auslander’s theorem implies that gldim R < pdp k. The opposite
inequality holds by definition, so:

Proposition 13.2. If R is a Noetherian local ring, then gldim R = pdp k.

Corollary 13.3. If R is reqular, then its dimension is equal to its global
dimension.

Proof. If x1,...,x, generate m, then the Koszul complex K(x1,...,z,) is a
minimal free resolution of k. Thus the dimension n of R agrees with pdpy k&,
which is the global dimension of R. U

If k is a field, then k[X,...,X,] is Noetherian (Hilbert basis theorem)
and local with maximal ideal (X7,...,X,) and residue field k. In addition,
Xi,...,X, is a regular sequence on k[X7,...,X,] that lies in (X1,...,X,).
Combining the last result with Theorem G6.3 yields:
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Theorem 13.4 (Hilbert Syzygy Theorem). For any field k and any integer
n >0,
gldlm ]’C[Xl, e ,Xn] = pdk[Xl,,Xn}k =n.

I4  The Auslander-Buchsbaum Formula

Theorem I4.1 (Auslander-Buchsbaum Formula). If R is Noetherian and lo-
cal, and M # 0 is a finitely generated R-module of finite projective dimension,
then

pdp M = depth(m, R) — depth(m, M).

Proof. We argue by induction on pdg M. This is zero if and only if M is
free, in which case the M-sequences in m are precisely the R-sequences in m.
Therefore suppose that pdp M > 0.

Lemma 12.2 gives a minimal free resolution of M, say

0—>F,— = F —=>F—>M-—=D0.
Let N be the image of F} — Fy. Then
0O0—=F,— - —=>F—>N=0

is a minimal free resolution of N. From Proposition 13.1 we have pdp M =
pdip N + 1, so it suffices to show that depth(m, M) = depth(m, N) — 1.

Let d = depth(m,N) and d" = depth(m,R). Let x = (x1,...,2,) be
a system of generators for m. By Theorem G4.6 it suffices to show that
HY (M ®r K(z)) =0 foralli <d—1 and H"Y(M ®r K(x)) # 0. There is
a short exact sequence 0 — N —~ Fy — M — 0 which gives rise to a long
exact sequence

- = H'(Fy ®p K (1)) - H' (M @ K(z)) » H*'(N ®g K(z))

— HY (Fyop K(z)) = -+ .

Theorem G4.6 implies that H (N @ K (z)) = 0 for all i < d and HY(N ®r
K(x)) # 0. By the induction hypothesis, depth(m, R) > depth(m, N). As we
argued at the outset, since Fy is free we have depth(m, Fy) = depth(m, R).
The result in this case has already been established, so H'(Fy ® K(x)) = 0
for all i < d’ and HY (Fy ®p K (z)) # 0.

For i < d — 1 the sequence above now gives H/(M ®p K(z)) = 0. In
addition, HY (M ®@p K (x)) # 0 will follow if we show that H4(N®@g K (x)) —
HYFy ®p K(x)) is zero. When d > d this is the case because H(Fy ®r
K(z)) = 0.
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Therefore we may suppose that d = d, so now the induction hypothesis
gives pdr N = 0. In the last section we saw that the projective dimension of
N is the free dimension, so IV is free. Therefore

HYN@rK(z)) = Nog H(K(z)) and HY (Fy®r K (z)) = Fy@r HY(K (z)).

(The calculation H*(R" @p X) = H*(X") = (H*(X))" = R" ®r H*(X) is
valid for any cochain complex and any n.) Now ¢ is the inclusion of N in Fp,
and since the resolution is minimal, N C mfFy. Corollary G3.2 implies that
H?(K(z)) is annihilated by elements of m, so N @ g H(K (x)) vanishes inside
Fy®p HY(K(x)). O

The following famous criterion for regularity of a Noetherian local ring is
due to Auslander-Buchsbaum and Serre.

Theorem 14.2. If R is Noetherian and local, then the following are equivalent:
(a) R has finite global dimension;
(b) pdgk < oo;
(c) R is regular.

Proof. When R is regular its global dimension is equal to its dimension (Corol-
lary I3.3) which is finite. Of course (a) implies (b) by definition. It remains to
show that (b) implies (c), so suppose pdp k < co. The Auslander-Buchsbaum
formula gives pdp k = depth(m, R).

Let x1, ..., 2, be a minimal set of generators of m; showing that dim R = n
will fulfill the definition of regularity. The principal ideal theorem (specifically
Corollary F4.10) gives dim R < n. In conjunction with de Rham’s theorem
(Theorem G4.4) Proposition H1.7 implies that depth(m,R) < codimm =
dim R, so it suffices to show that pdp k > n, but this follows from Proposi-
tion I3.1 (pdp k is the free dimension of k) and Proposition 12.6 (the Koszul

complex K(z1,...,2,) embeds in the minimal free resolution of k). ]
Corollary 14.3. If R is reqular and P is a prime, then Rp is reqular.

Proof. In view of the last result it suffices to show that Rp has finite global
dimension, and from Proposition 13.1 it suffices to prove that the residue field
Rp/Pp has finite projective dimension. Since R is a regular local ring, it has
finite global dimension, so R/P has a finite free resolution as an R-module.
Since localization at P is an exact functor (Proposition A5.1) and Fp is a
free Rp-module whenever F' is a free R-module (if R" — F — 0 is exact,
then so is R} — Fp — 0) localization of this gives a finite free resolution of

(R/P)p = Rp/Pp as an Rp-module. O
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I5 A Characterization of Projectivity

This section develops one of the results supporting the argument in the next
section. It is a simple and seemingly quite natural characterization of projec-
tive modules, but its proof is quite subtle.

Lemma I5.1. If S is an R-algebra, there is a natural transformation o from
the bifunctor S ® g Hompg(—, -) to the bifunctor Homg(S ®p —, S ®pr -) given
by the S-module homomorphisms

ap,nN S ®@r Homp (M, N) — Homg(S ®r M, S ®r N)
that take 1 ® ¢ in the domain to itself, regarded as an element of the range.

Proof. Clearly the homomorphisms ays y are well defined. If f : M — M’ is
a R-module homomorphism and ¢’ € Hompg(M’, N), then

ay,n o (S ®@g Hompg(f,N)) and Homg(S ®pg f, S ®@r N)oay n

both take 1@ ¢’ to (1@ ¢') o (1® f) =1® (¢' o f). The proof of naturality
with respect to the second argument is similar. U

Proposition 15.2. Under the hypotheses of the last result, if S is a flat R-
module and M 1is finitely presented, then oy N is an isomorphism.

Proof. If RY — RP — M — 0 is a finite presentation of M, the right exactness
of the tensor product gives an exact sequence

SQrRT - SRR - S®r M — 0,

and the left exactness of Homp(—, V) and Homg(—, S ®r N) give exact se-
quences

0 — Homp(M, N) — Homp(RP, N) — Homp(R?, N)

and
0— Homg(S®RM,S®R N) — HOIHS(S@RRP,S@RN)

— Homg(S ®r RY,S ®r N).

Since S is flat, tensoring with the first of these gives an exact sequence
0— S®g HOIIlR(M, N) — S Qg HomR(Rp,N) — S Qg HOHlR(Rq,N).

We now form the commutative diagram whose top row is the last exact se-
quence, whose bottom row is the immediately preceeding sequence, and whose
vertical maps are given by a.

It is easy to see that ag n is in effect the identity map on S®pg N. Insofar
as Hom commutes with direct sums, it follows that for any n, age y is an
isomorphism. Thus the two right hand vertical maps in this diagram are
isomorphisms, so the claim follows from the five lemma after we add a pair of
zeros on the left. O
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If S is a multiplicatively closed subset of R, then S~ R is flat (Proposition
A6.8) so the last result gives:

Corollary 15.3. If S is a multiplicatively closed subset of R and M and N
are R-modules with M finitely presented, then

Homg-17(S™'M,S™'N) = S~'Homp(M, N).

The following result was shown by Kaplansky to not require the hypothesis
of finite generation, but the proof becomes much harder.

Lemma 15.4. If R is a local ring and M is a finitely generated projective
R-module, then M is free.

Proof. Let 0 - K — F — M — 0 be an exact sequence with F a free
module with a minimal number of generators z1,...,x,. Nakayama’s lemma
(Theorem A2.13) implies that a minimal set of generators of M go to a basis
of M/m. It follows that F//mF — M/mM is a linear isomorphism, and in
particular, if >, a;x; maps to 0 € M, then a; € m for all <. That is, the
image of K is contained in mF. Since M is projective, (b) of Proposition
B7.2 implies that the sequence splits, so there is a map 1 : M — F such that
F = K®y(M). Thus K = mK, and there is a surjection F' — K, so K is
finitely generated. Consequently Nakayama’s lemma implies that K = 0. [

Theorem 15.5. If M is a finitely presented R-module, then M is projective
if and only if for all mazimal ideals m, My, is a free Ry-module.

Proof. First suppose that M is projective, and let m be a maximal ideal.
Then M is a direct factor of a free module, so there is a short exact sequence
O—>K—Z>F—p>M—>OWithFfreeandasplittingmapq:M—)F.
Since localization at m is an exact functor (Proposition A5.1) the sequence
0— Ky —» Fy 2 My — 0 is exact, and py 0 gm = 1az,. Of course Fy, is
free, so My, is a projective Ry-module, hence free by the last result.

Now suppose that for any maximal ideal m, My, is a free Ry-module. We
need to show that for any surjection N — N’ the cokernel C of Homp(M, N) —
Homp(M, N') is zero. There is an exact sequence

Hompg (M, N) — Homgr(M,N') — C — 0,

and since localization is an exact functor, for each maximal ideal m there is
an exact sequence

Hompg (M, N)y — Hompg(M, N')y — Cy — 0.

Corollary 15.3 gives a natural equivalence between the functors Hompg (M, —)ny
and Homp, (Mpm,—m), so the first map is surjective if and only if

Hompg, (My, Nm) — Homp, (M, N];)
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is surjective. But Ny, — N, is surjective because localization at m is an exact
functor, and M, is free and consequently projective, so this homomorphism is
surjective. Thus C}, = 0. Since this is true for every maximal ideal m, Lemma
A5.8 implies that C' = 0. O

I6  Factoriality of Regular Local Rings

An R-module is stably free if the direct sum with some free R-module is free.
The following observation is due to Serre.

Proposition 16.1. A projective R-module M 1is stably free if it has a finite
free resolution F' : 0 = F,, — -+ — Fy > M — 0.

Proof. For i =0,1,2,... let M; be the image of F;;1. Since M is projective,
Fy — M splits, so (up to isomorphism) Fy = M @& My, and My is projective.
By induction, for all ¢, M; is projective, F;11 = M; & M;,1, and thus M, is
projective. We now have

MOF®F3®---=M®(My®dM)®d(My® Ms3)d -

g(M@MO)@(Ml@MQ)@:FO@FQ@

In one case a stably free module is free.

Lemma 16.2. If R is an integral domain and M is an R-module such that,
for some n, M & R" 1= R" then M = R.

Proof. We have
R A"R" & /\n(M@Rn—l) ~ EB?:O(/\iM ®r /\n—iRn—l).

Since M @p A" 'R" ! = M ®zr R = M, we have R = M & N for some
R-module N, and it suffices to show that N = 0. Let K be the field of
fractions of R. Then K = R®r K = M ®r K ® N ®g K is a vector space
of rank 1, so either M = 0 or N = 0. To rule out M = 0 we observe that
K'=R'®@rK = (MOR" VYoprK =MepK® K" ! = K" !is impossible
by linear algebra. O

Corollary 16.3. If R is an integral domain and I # 0 is a stably free ideal,
then I is principal.

Proof. Let K be the field of fractions of R. Since I # 0, I ®p K =2 K. If
I @& R™ = R", then tensoring with K reveals that m = n — 1, and we may
apply the last result. O
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Lemma 16.4. If R is a Noetherian integral domain, x is a prime element, P
is a codimension 1 prime of R, and PR[x™!] is a (possibly improper) principal
ideal of R[x~!], then P is principal.

Proof. First suppose that PR[z~!] = R[z~!]. Then f(x~!) = 1 for some
polynomial f with coefficients in P, and multiplying by a suitable power of x
shows that z* € P for some positive k. Since P is prime, z € P, and since z
is prime, (x) is a prime ideal. Furthermore, P is minimal over (z) because its
codimension is one, whence P = (z).

Therefore we may suppose that PR[z™!] is a proper ideal. By assumption
PR[x7!] = aR[z7!] for some a, which may be taken in R because x is a unit
in R[z~!]. Among such a € R we can choose one such that aR is maximal.

First suppose that a = o’z for some o’ € R. Then a’ € P because P is
prime, whence (a') = (a), so @’ = ay for some y. This gives a = ayx and
xy = 1, but by assumption z is not a unit in R.

Therefore a ¢ (x). We will show that aR = P. Consider y € P. Since
y € PR[z™Y], 2"y = ra for some r € R and n > 0, which we may assume is
minimal. But z is prime and a ¢ (), so if n > 0, then r is divisible by z, say
r = gr. Then 2" 'y = qa, contrary to minimality. O

Proposition 16.5. If R is a Noetherian integral domain, x is a prime element,
and R[x~!] is factorial, then R is factorial.

Proof. In view of the ‘if’ part of Proposition F6.5, it suffices to show that
if a given prime P of R has codimension 1, then it is principal. If x € P,
then (z) C P, and (z) is not minimal, so its codimension is positive, and
consequently P = (z).

Now suppose that z ¢ P. Since P is prime, PN {1, z,22,...} = ). Insofar
as the primes of R[z~!] are the QR[z~!] for those primes @ of R that do not
intersect {1,z,z2,...} (Proposition A5.6) the codimension of PR[z~!] is 1.
Since R[z~!] is factorial, the ‘only if’ part of Proposition F6.5 implies that
PR[x~1] is principal, and the last result implies that P is principal. O

Theorem 16.6 (Nagata, Auslander-Buchsbaum). If R is a reqular local ring,
then it is factorial.

Proof. We argue by induction on the dimension of R. If the dimension is zero,
then R is a field, and automatically a UFD. By induction we may assume that
the claim has already been established for all regular local rings with dimension
less than dim R.

Let  be an member of a set of dim R elements of m that generate m. Then
R/(x) is local with maximal ideal m/(x). By the principal ideal theorem,
the codimension of (z) is at most one, so dimR/(z) > dim R — 1. Since
m/(z) can be generated by dim R — 1 elements, dim R/(z) < dim R — 1, so
dimR/(x) = dim R — 1, and R/(x) is regular. Therefore R/(z) is factorial.
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Since it is an integral domain, (x) is a prime ideal, i.e., x is a prime element.
By the last result it suffices to show that R[z~!] is factorial, or equivalently
(Proposition F6.5) that each of its codimension 1 primes is principal.

As we mentioned above, the primes of R[z~!] are the P'R[z~!] for those
primes P’ of R that do not intersect {1, z,22,...}. Suppose that P = P'R[z~!]
has codimension one. Below we will show that P is a projective R[z~!]-
module. To see that this suffices note that P’ has a finite free resolution
(Proposition I3.1 and Theorem 14.2) and localizing it gives a finite free reso-
lution of P. (This was explained at the end of the proof of Corollary 14.3.)
Then Proposition 16.1 implies that P is stably free, after which it is principal
by Corollary 16.3.

Of course P is a finitely presented R[z~!]-module (Proposition A4.7) so
Theorem 15.5 implies that P is projective if and only if, for each maximal
ideal @ = Q'R[z~!] of R[z7!], Py is a free R[z~!]g-module. Note that

R[x_l]Q = ((R \ Q,) ’ {17 €, '%27 o '})_1R

is a localization of R, and is consequently regular by Corollary 14.3. In view
of the characterization of the primes of R[z~!], its dimension is less than the
dimension of R, so it is factorial. If P’ C @', then Py is a codimension 1
prime of R[:U_l]Q, so it is principal, and if P’ is not contained in @', then

Po = Rz~ = (1). O

This argument is due to Kaplansky. Nagata (1958) had shown that if the
result held for rings of dimension three, then it held in all higher dimensions,
and Auslander and Buchsbaum (1959) then proved the low dimensional cases.
(One may suspect that the standard attribution of the result to Auslander and
Buchsbaum unfairly slights Nagata’s contribution.) In spite of its complexity
and sophistication, the argument presented here is nevertheless a considerable
improvement on that convoluted situation. Additional information can be
found on pp. 130-131 of Kaplansky (1974).
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