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Abstract. For an economy with compact consumption and production sets and some goods

that can be freely disposed, an efficient disposal equilibrium specifies prices, consumptions,

and production plans such that: a) each agent maximizes utility among bundles costing

no more than her income and minimizes expenditure among bundles providing the same

utility; b) an unsated agent consumes a bundle that is at least as valuable as her income; c)

each producer maximizes profits; d) the aggregate endowment plus aggregate production

minus aggregate consumption is a nonnegative bundle of disposable goods; e) disposable

goods that are not completely consumed have the minimal price of disposable goods. We

prove an existence of equilibrium result that nests those of Hylland and Zeckhauser (1979a),

Mas-Colell (1992), and Budish, Che, Kojima, and Milgrom (2013). It significantly improves

the latter by increasing flexibility and relaxing assumptions that are not satisfied by appli-

cations such as course allocation. Open problems concerning generic finiteness of the set

of equilibria and efficient algorithms for computing equilibria are described.
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1 Introduction

This paper establishes an existence of general competitive equilibrium result that subsumes

the existence results provided by Hylland and Zeckhauser (1979a), Mas-Colell (1992), and

Budish, Che, Kojima, and Milgrom (2013). It also subsumes the quite general classical

results concerning existence of equilibrium that are special cases of Mas-Colell’s result. A

common theme of these papers is the use of so-called pseudomarkets to achieve efficient

and equitable division of a collectively owned endowment, so we begin with an overview of

this line of research.

It has long been recognized (Varian (1974)) that for a given bundle of goods owned

collectively by a group of agents, a competitive allocation of the exchange economy in which

the agents have equal incomes (or equivalently, each agent is endowed with her pro rata

share of the common endowment) gives an allocation that is both efficient and envy free.

When there are finitely many divisible goods and finitely many agents, existence of such an

allocation is a special case of standard existence results. (Weller (1985) establishes existence

for a cake cutting problem in which the collective endowment is a measurable space and

each agent’s utility function is an atomless measure.) The study of such allocations goes

back at least to Eisenberg and Gale (1959) who noted that the equilibrium of a pari-

mutuel betting system has this form when the bettors have equal stakes. Generalizing

this work, Eisenberg (1961) showed that when the agents’ utility functions are concave

and homogeneous of degree 1, the unique equilibrium-from-equal-incomes allocation gives

the Nash (1950) bargaining solution, which is to say that it maximizes the sum of the

logarithms of the agents’ utilities, and is thus the solution of a convex program.

It is natural to try to apply this general idea to other types of fair division problems, and

explorations of this sort have led to novel settings and challenges. Bogomolnaia, Moulin,

Sandomirskiy, and Yanovskaya (2016b) study the allocation of bads, finding that it is not

the simple mirror image of the allocation of goods. Bogomolnaia, Moulin, Sandomirskiy,

and Yanovskaya (2017, 2016a) provide generalizations of Eisenberg’s characterization re-

sults for allocation problems in which there are both goods and bads, and commodities

which are good for some agents and bad for others.

Hylland and Zeckhauser (1979a) (henceforth HZ) pioneered the application of competitive-

equilibrium-from-equal-incomes to the allocation of indivisible objects. They consider a

model in which each element of a set of agents is to be matched with exactly one element
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of a finite set of objects. Each object has an integral capacity, and the sum of the capaci-

ties is at least as large as the number of agents. (One of the objects may represent being

unassigned.) There is a profile of vNM utility functions assigning a utility of each object

for each agent. HZ propose endowing all agents with positive incomes, and then allowing

the agents to trade in a market in which the goods are probabilities of being assigned to

the various objects. They show that an equilibrium exists for any assignment of incomes.

An easy generalization of the Birkhoff-von Neumann theorem implies that if a profile of

probability distributions for the agents does not assign more probability to any object than

its capacity, then it can be implemented by a probability distribution over pure assign-

ments. As of July 2018, HZ has been cited over 460 times, and it is often described as a

seminal touchstone of the market design literature, but there has been very little technical

follow up, so their existence results have not been well understood in relation to some larger

framework.

Budish, Che, Kojima, and Milgrom (2013) (henceforth BCKM) study a course allocation

problem in which each of finitely many students must receive a package of seats in various

courses. Each student’s allocation is constrained by a system of linear inequalities, each of

which requires that the number of courses in a certain set not lie above a quota (ceiling

constraint) or not lie below a quota (floor constraint). They provide a deep analysis of the

conditions that the various constraints must satisfy in order to insure that an assignment

of probabilities satisfying them can be implemented as a probability distribution over pure

assignments. They also prove existence of a competitive equilibrium for a market in which

probabilities of receiving seats are traded. In the Online Appendices (pp. 23–24) they point

out that such an equilibrium need not be efficient if the agents are not required to minimize

expenditure among the bundles providing the equilibrium utility, and they show how to

modify their argument to attain this condition.

Their existence result requires that each agent’s consumption set is the portion of the

positive orthant satisfying a system of ceiling constraints (that is, there are no floor con-

straints) and that the set of bundles of seats that the school can provide is a singleton.

It can be used to prove the HZ existence result in the following manner. Instead of re-

quiring agents to consume a probability distribution, allow them to consume anywhere in

the portion of the positive orthant lying below the probability simplex, but rescale utilities

so that each good has a positive utility for each agent. In equilibrium all agents consume
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probability distributions because otherwise some good is incompletely consumed and has

price zero.

A number of recent papers (Le (2018), He, Miralles, Pycia, and Yan (2018), Echenique,

Miralles, and Zhang (2018)) study models similar to the one in BCKM.

There is a strand of general equilibrium literature (Bergstrom (1976), Polemarchakis

and Siconolfi (1993), Mas-Colell (1992)) (henceforth M-C) that considers possibly sated

consumers, but without free disposal. M-C attains the most general result, which asserts the

existence of an equilibrium in which the unspent income of sated consumers is redistributed

to unsated consumers. (The results in M-C imply the existence claims in Bogomolnaia,

Moulin, Sandomirskiy, and Yanovskaya (2017), which are proved in that paper in a more

constructive manner.)

We provide an existence of equilibrium result that subsumes the results described above.

In comparison with HZ and BCKM our result is more general in several ways such as more

general consumption sets and nonlinear utilities, and because the consumers are endowed

with commodity bundles in addition to artificial currency. (In Section 2 we explain that

although our model requires the aggregate endowment to be the sum of individual com-

modity endowments, the case of pure currency endowment is a special case.) In comparison

with M-C our result is more general because we allow some goods to be freely disposable.

These generalizations significantly enhance the applicability of the model. As Echenique,

Miralles, and Zhang (2018) stress, commodity endowments can be used to guarantee cer-

tain types of entitlements and fairness. In the context of school choice, they can insure

that a student has the option of going to a school in her walk zone, or the school a sibling

is attending. In the course allocation problem, commodity endowments can insure that a

student has access to at least one program of study that fulfills the requirements of her

degree program. In most practical applications of matching the total capacity will exceed

the number of agents, and since the sum of the agents’ initial endowment must be society’s

endowment, free disposal is required in order to satisfy the constraint that each agent’s

total assignment probability is one. In the context of the BCKM result we are able to

dispense with the assumption that there are no floor constraints, and that the school can

offer only one bundle of seats. As we explain in more detail in Section 3, our result pro-

vides many dimensions of flexibility that seem natural, and potentially quite useful, in the

course allocation application. Thus we provide a powerful unified framework that easily
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encompasses existing results and presents many new possibilities for market design.

We can briefly describe the main technical ideas. When consumers have compact con-

sumption sets and preferences are only assumed to be continuous and convex, there are no

restrictions on the equilibrium price vector. In particular, it is possible that all prices are

zero, and indeed when it is possible for all agents to simultaneously consume bliss points,

this is an equilibrium. However, the budget sets of consumers are not lower hemicontinuous

at this price vector. A second difficulty is that when some goods can be freely disposed, the

value of aggregate consumption may not be equal to the sum of the values of the aggregate

endowment and the aggregate production. In particular, in order to maximize utility of

net consumption a consumer may need to purchase a gross (prior to disposal) bundle that

is less valuable than her income. Each of these problems invalidates standard methods of

proof. To overcome both of them we introduce an additional artificial good that is always

desirable. In an equilibrium of the expanded economy the price of this good is necessar-

ily positive, even if the prices of the given goods are all zero. In the expanded economy

consumers spend all income because any income that is not used to improve the bundle of

given goods can be used to increase consumption of the artificial good. We take a sequence

of expanded economies along which the aggregate endowment of the artificial good goes

to zero, finding that the limiting (along a suitable subsequence) prices, consumptions, and

productions have all desired properties.

This approach seems quite novel for the general equilibrium literature. Hart and Kuhn

(1975) is in a sense similar insofar as the topological basis of their proof is unusual, but

they study economies with unbounded consumption sets and no free disposal. M-C uses a

construction originated by Bergstrom (1976) in which the space of prices is the unit ball

and the budget constraint is relaxed as the price vector approaches the origin.

Other Related Literature

Recently it has been increasingly recognized that the general notion of using pseu-

domarkets to resolve allocation problems for which monetary transfers are infeasible or

undesirable, is in many ways quite appealing. Most obviously, one expects Pareto optimal

outcomes. If all agents have the same income, pseudomarket equilibria yield envy free

outcomes and are fair in an ex ante sense, although a symmetric endowment may admit

asymmetric equilibria, so certain kinds of ex post fairness are not guaranteed. HZ produce

examples showing that their mechanism is not strategy proof, insofar as an agent may
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obtain a more favorable price by misreporting her vNM utility over objects, but one may

expect that pseudomarkets become asymptotically strategy proof in the sense of Roberts

and Postlewaite (1976) as the economy becomes large. (Cf. Theorem 2 of He, Miralles,

Pycia, and Yan (2018).)

If cardinal utilities are part of the input to a pseudomarket, it may provide efficiency

gains over mechanisms such as random priority and the probabilistic serial rule (Bogo-

molnaia and Moulin (2001)) that have ordinal preferences as their input. In fact Liu and

Pycia (2008) show that all ordinal mechanisms satisfying certain conditions are asymptoti-

cally equivalent, and Pycia (2014) shows that the loss in comparison with efficient cardinal

mechanisms may be arbitrarily large. (Featherstone and Niederle (2008), Miralles (2009),

Abdulkadiroğlu, Che, and Yasuda (2011), Troyan (2012), Abdulkadiroğlu, Che, and Yasuda

(2015), and Ashlagi and Shi (2016) discuss this issue in the context of school choice.)

Pratt and Zeckhauser (1990) is a concrete application of HZ, and He, Miralles, Pycia,

and Yan (2018), Le (2018), and Echenique, Miralles, and Zhang (2018) (which is further

described in Section 2) are recent papers proposing variations or extensions of the HZ

mechanism. Pratt (2007) and Budish (2011) (see also Budish and Kessler (2016)) are

other papers describing pseudomarkets, and of course a wide variety of mechanisms for

allocating objects without monetary payments (e.g., Sönmez and Ünver (2010) and Budish

and Cantillon (2012)) have market-like features. In particular, Immorlica, Lucier, Mollner,

and Weyl (2017) study a “tricky tray” raffle mechanism that has incentives resembling

those of the HZ mechanism.

Contents

The next section defines efficient disposal equilibrium and states Theorem 1, which is

our main result. Section 3 explains in detail how Theorem 1 implies the various existence

results mentioned above, and it explains the additional generality of our result beyond

that of BCKM, and how this may be useful in the context of course allocation. Section 4

presents the proof of Theorem 1.

Almost all of the traditional concerns of mathematical economics are applicable to

the EDE concept, so there are many new problems and possible conjectures. Section 5

highlights two of these, which already arise in the HZ model with each object having

capacity one, the number of agents equal to the number of objects, and each agent endowed

with an equal share of all objects. First, is the set of equilibria finite for generic utility
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profiles? Second, is the problem of computing an EDE a PPAD complete computational

problem?

Appendix A provides a brief review of the theory of the vector field index and the

Poincaré-Hopf theorem. Appendix B contains proofs omitted from the body of the paper.

2 Efficient Disposal Equilibrium

We work in a classical general equilibrium setting with ℓ commodities indexed by h, m

consumers indexed by i, and n producers indexed by j. For nonnegative integers ℓc and

ℓd such that ℓc + ℓd = ℓ, the goods indexed by 1, . . . , ℓc are not disposable and the goods

indexed by ℓc + 1, . . . , ℓ are freely disposable. The disposal cone is

C = { x ∈ R
ℓ
+ : x1 = · · · = xℓc = 0 }.

Consumer i has an endowment ωi ∈ R
ℓ, a nonempty compact convex consumption set

Xi ⊂ R
ℓ, and a continuous utility function ui : Xi → R that is semi-strictly quasiconcave1:

that is, for all x0
i , x

1
i ∈ Xi and t ∈ (0, 1), if ui(x

1
i ) > ui(x

0
i ), then ui

(

(1−t)x0
i +tx1

i

)

> ui(x
0
i ).

If xi ∈ Xi and ui(xi) = maxx′

i∈Xi
ui(x

′
i), then we say that consumer i is sated at xi, and

that xi is a bliss point for i, and otherwise we say that i is unsated at xi.

Producer j has a compact convex production set Yj ⊂ R
ℓ that contains the origin. For

each j and p ∈ R
ℓ let maximal profits and the set of optimal production plans be

πj(p) = max
yj∈Yj

〈p, yj〉 and Mj(p) = argmaxyj∈Yj
〈p, yj〉.

There is an m× n matrix θ of ownership shares with θij ≥ 0 for all i and j and
∑

i θij = 1

for all j. For each i and p ∈ R
ℓ, i’s income is

µi(p) = 〈p, ωi〉+
∑

j

θijπj(p).

Berge’s theorem gives:

Lemma 1 For each j, πj : Rℓ → R+ is a continuous function and Mj : Rℓ → Yj is an

upper hemicontinuous convex valued correspondence. Consequently each µi : R
ℓ → R is

continuous.
1A simple argument applying the intermediate value theorem shows that a continuous and semi-strictly

quasiconcave ui is quasiconcave: for all x0
i , x

1
i ∈ Xi and t ∈ [0, 1], if ui(x

1
i ) ≥ ui(x

0
i ), then ui

(

(1 − t)x0
i +

tx1
i

)

≥ ui(x
0
i ).
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Let ω =
∑

i ωi, and letX =
∏

i Xi and Y =
∏

j Yj. A triple (p, x, y) ∈ (Rℓc×R
ℓd
+ )×X×Y

is an efficient disposal equilibrium (EDE) if:

(a) For each i there is no x′
i ∈ Xi such that either 〈p, x′

i〉 ≤ 〈p, xi〉 and ui(x
′
i) > ui(xi) or

〈p, x′
i〉 < 〈p, xi〉 and ui(x

′
i) ≥ ui(xi).

(b) For each i, if i is unsated at xi, then 〈p, xi〉 ≥ µi(p).

(c) For each j, yj ∈ Mj(p).

(d) ω +
∑

j yj −
∑

i xi ∈ C.

(e) For each h = ℓc + 1, . . . , ℓ, if
∑

i xih < ωh +
∑

j yjh, then ph = 0.

The less common elements of this definition are that consumers minimize expenditure, sub-

ject to attaining the equilibrium utility, and that the price of a good that is disposed of is

not greater than the price of another disposable good. Of course for many general equi-

librium models these are consequences of the model’s assumptions and other equilibrium

conditions.

In an EDE (p, x, y) the excess income of sated consumers is redistributed to unsated

consumers. Let S (U) be the set of i that are sated (unsated) at xi. For α ∈ R
m
++ we say

that (p, x, y) is an α-EDE if there is a Π ≥ 0 such that 〈p, xi〉 − µi(p) = Παi for all i ∈ U .

As in Le (2018) (the correct interpretation of the α in Echenique, Miralles, and Zhang

(2018) is somewhat different) we may interpret α as a vector of endowments of currency,

so that Π is the purchasing power of this currency relative to p. Combining (d) and (e)

gives 〈p,∑i xi〉 = 〈p, ω +
∑

j yj〉, so
∑

i〈p, xi〉 = 〈p,∑i(ωi +
∑

j θijyj)〉 =
∑

i µi(p). For

each i′ ∈ U , αi′/
∑

i∈U αi is i
′’s share of the unspent income of sated consumers because

Π ·
∑

i∈U

αi =
∑

i∈U

〈p, xi〉 − µi(p) =
∑

i∈S

µi(p)− 〈p, xi〉.

We now state the main result. Let e = (0, . . . , 0, 1, . . . , 1) ∈ R
ℓ be the vector such that

eh = 1 if ℓc + 1 ≤ h ≤ ℓ and eh = 0 otherwise. Let V0 = { x ∈ R
ℓ : 〈e, x〉 = 0 } be the

orthogonal complement of e.

Theorem 1 Suppose that:

(a) For each i there is an x0
i ∈ Xi such that Xi ⊂ x0

i + V0, x
0
i is in the interior (relative

to xi + V0) of Xi, and ωi − x0
i ∈ C.
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(b) For each j, Yj ⊂ V0.

Then for any α ∈ R
m
++ there is an α-EDE.

Several remarks are in order:

• The requirement that each consumption set is contained in a translate of V0 arises

naturally in HZ, where the consumption set is the set of probability distributions

over a finite set of objects. In many settings it is natural to introduce an additional

disposable good that may be thought of as the negation of the sum of the other

disposable goods, in which case it is natural to have each production set contained

in V0 and each consumption set contained in a translate of V0. As we will see in the

next section, one can pass from the model of BCKM to our framework using this

technique.

• Note that we do not assume that the endowments and consumption sets stand in any

particular relationship to the positive orthant. The critical assumption is that each

consumer can reach a point in the interior of the consumption set using only free

disposal.

• The existence proofs of HZ and BCKM endow the consumers with positive incomes.

A setting in which the expenditure of each unsated consumer i is proportional to

αi can be realized in our framework by setting ωi = αiω and θij = αi for all j.

In this sense our framework is more general and flexible. (But note that when the

commodities are bads, a larger αi may be a burden rather than a blessing, and when

the endowment includes both goods and bads, the sign of the value of the aggregate

endowment may not be known a priori, or may be different in different equilibria.)

• HZ and BCKM are unable to work with commodity bundle endowments because the

budget set fails to be lower hemicontinuous at the zero price vector. (See pp. 23-24

of BCKM’s Online Appendices for a more complete description of the mathematical

difficulties.) A simple example due to HZ (footnote 14, pp. 301–2) illustrates these

issues. Let ℓ = 2, ω = (1, 2), m = 3, and Xi = { xi ∈ R
2
+ : xi1 + xi2 = 1 } for all

i, and suppose that each consumer’s utility function is affine. (This is the problem

of probabilistically allocating two objects with capacities 1 and 2.) Assume that

consumers 1 and 2 prefer good 1 to good 2 and consumer 3 prefers good 2 to good 1.
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As HZ point out, if each consumer is endowed with (1
3
, 2
3
) and has no other source of

income, then there is no equilibrium: if good 1 is more expensive than good 2, then

consumers 1 and 2 consume their endowments while consumer 3 consumes (0, 1), and

otherwise good 1 is overdemanded.

• Following Gale and Mas-Colell (1975, 1979), M-C allows each consumer’s income to

be a continuous function of the price vector p, and also the production vector y,

that is more general than the sum of the value of the consumer’s endowment and

her shares of the firms’ profits. In addition, consumers’ preferences may be affected

by quite general externalities. These possibilities may be realistic or conceptually

interesting, and in those papers pointing them out clarifies the foundations of the

results without introducing burdensome complications. Such additional generality

seems to be possible here as well, but for the sake of avoiding distractions we have

not done this formally.

• Echenique, Miralles, and Zhang (2018) study a pseudomarket model in which, for

some α ∈ (0, 1], each consumer’s budget constraint is 〈p, xi〉 ≤ α + (1 − α)〈p, ωi〉.
(There is no production.) Superficially this seems quite similar, but in fact it is a

distinct model with its own features. To see this let ℓ = 2, m = 2, Xi = { xi ∈ R
2
+ :

xi1 + xi2 = 1 } for both i, ω1 = (1
3
, 2
3
), and ω2 = (2

3
, 1
3
), and suppose that both utility

functions are affine, with both consumers preferring good 1 to good 2. For the model

of this paper the only equilibrium allocation is the initial endowment, but as α goes

from 0 to 1 the equilibrium allocation of their model goes from the initial endowment

to equal division. Whereas the vector α of our model is used to redistribute excess

income of sated consumers, the parameter α of their model traces a path from the

endowment economy to equal incomes.

• The usual argument proves the first fundamental theorem for EDE’s: in a Pareto

improving allocation each consumer would necessarily be spending at least as much,

and some consumer would be spending more, but since incompletely consumed goods

have price zero, the value of the equilibrium allocation is equal to the value of the ini-

tial endowment plus aggregate profits, which were already maximal. (The connection

between expenditure minimization and efficiency has been noted by many authors,

including Eisenberg (1961), Bogomolnaia, Moulin, Sandomirskiy, and Yanovskaya
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(2017), the technical appendices of HZ (Hylland and Zeckhauser (1979b), henceforth

HZA), M-C, BCKM (p. 24 of the Online Appendices), Le (2018), and Echenique,

Miralles, and Zhang (2018).)

3 Comparison with Other Existence Results

In this section we explain, in some detail, how Theorem 1 implies the equilibrium existence

results of M-C, HZ, and BCKM, emphasizing how the additional flexibility we provide is

applicable to the course allocation application. The next section proves Theorem 1. These

two sections can be read in either order.

There are several papers in the general equilibrium literature in which consumers have

compact consumption sets Xi ⊂ R
ℓ, each ωi is a point in R

ℓ that is typically contained

in the interior of Xi, and the production sets Yj are compact subsets of Rℓ containing the

origin. This is the special case of our framework in which there are no disposable goods.

Bergstrom (1976) attains a competitive equilibrium existence result by assuming that at

any feasible allocation all consumers are locally nonsatiated. Note that this result sub-

sumes various classical existence results for consumers with monotonic preferences who are

necessarily unsated at equilibrium if the consumption sets are sufficiently large compact

subsets of Rℓ
+. Polemarchakis and Siconolfi (1993) prove existence of a weak (insofar as

consumers are not allowed to consume bundles costing less than their incomes) competitive

equilibrium, and give conditions somewhat more general than Bergstrom’s under which

a competitive equilibrium exists. M-C weakens the notion of competitive equilibrium by

allowing the excess income of sated consumers to be redistributed to the other consumers.

(His definition of slack corresponds to setting α = (1, . . . , 1), but he notes (p. 204) that his

framework allows much more general forms of redistribution.) His notion of strong Wal-

rasian equilibrium requires expenditure minimization in addition to utility maximization,

as per (a) of the definition of an EDE. Roughly, his Theorem 3 corresponds to the special

case of our Theorem 1 given by ℓc = ℓ, so that no goods are disposable and each ωi is an

element of the interior of Xi. As we have already noted, his framework incorporates more

general income functions and consumption externalities that can, to at least some extent,

be included in our framework.

In the HZ model the commodities are the probabilities of being assigned to each of the
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ℓ objects, so each Xi is the unit simplex { x ∈ R
ℓ
+ :

∑

h xh = 1 }. There is no production.

For each h and i, uih is consumer i’s utility if assigned to object h, and ui(xi) =
∑

h uihxih

is consumer i’s expected utility. There is a collectively owned endowment ω of capacities

where each ωh is a positive integer, and
∑

h ωh ≥ m, so that feasible allocations exist.

HZ propose endowing the consumers with positive amounts B1, . . . , Bm of some artificial

currency, and in the discussion in Appendix D of HZA they demonstrate existence of an

EDE in which the expenditures of the unsated consumers are proportional to their incomes.

This result follows from Theorem 1 if we let ωi = (Bi/
∑

i′ Bi′)ω and α = (B1, . . . , Bm).

In the setup of Theorem 6 of BCKM each consumer’s consumption set X̂i is a compact

subset of Rℓ−1
+ given by a finite number of inequalities of the form

∑

h chx̂ih ≤ C where

c1, . . . , cℓ−1 ∈ {0, 1} and C is a positive integer. (That is, there are ceiling constraints but

no floor constraints.) Note that the origin is an element of X̂i. There is a collectively

owned endowment ω̂ ∈ R
ℓ−1
++ of capacities, and there is no production. As in the HZ model

they assume linear utility. The statement of Theorem 6 asserts that there is a competitive

equilibrium from equal wealths in which goods that are not fully demanded have price zero,

and on p. 24 of their Online Appendix they explain how to prove existence of an equilibrium

in which sated consumers minimize expenditure.

To understand this strengthened version of their result as a consequence of Theorem 1

we introduce an additional good ℓ, thought of in the context of course allocation as “not

taking any course,” whose consumption gives no utility. Let ℓc = 0 and ℓd = ℓ, so all goods

are disposable. For each i let bi = maxx̂i∈X̂i

∑

h x̂ih, and let Xi = { (x̂i1, . . . , x̂i,ℓ−1, bi −
∑

h x̂ih) : x̂i ∈ X̂i }. Let B be a positive number greater than
∑

i bi, and for each i let

ωi = (ω̂1/m, . . . , ω̂ℓ−1/m,B). Let V0 = { x ∈ R
ℓ :

∑

h xh = 0 }. Since the origin is an

element of Xi and B > bi, an x0
i in the interior of Xi near (bi, 0, . . . , 0) satisfies x

0
i ≪ ωi, so

the hypotheses of Theorem 1 are satisfied, and applying it with k = ℓ and α = (1, . . . , 1)

gives an EDE of the economy we have constructed. Since the supply of good 0 exceeds any

possible demand, its price is zero, and the projection of this EDE onto the space of the

given economy is easily seen to be an EDE for it.

As mentioned previously, Echenique, Miralles, and Zhang (2018) prove existence of an

α-slack equilibrium where α ∈ (0, 1] is the parameter of a homotopy between an initial

endowment and equal endowments of currency (α = 1). This does not seem to follow

directly from Theorem 1. However, it seems likely that the argument presented in Section
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4 can be adapted to give a rather heavy handed proof. The key point is that for each

value of α and each price vector, each consumer can afford a point in her consumption set,

leading to a well defined excess demand correspondence.

In the HZ framework with an equal number of consumers and objects, Le (2018) consid-

ers commodity endowments that gives each consumer a positive probability of each object,

and shows that if each consumer has a unique favorite object, then there is an equilibrium

without any redistribution of income. This does not seem to be an easy consequence of

Theorem 1: in Le’s setting our result only proves the existence of an equilibrium with redis-

tribution. It also seems unlikely that our methods could be adapted to prove the existence

result of He, Miralles, Pycia, and Yan (2018), which uses a different sort of machinery to

handle priorities.

Our framework allows the BCKM result to be generalized in several ways. First of all,

by allowing a nontrivial production set, we can incorporate some flexibility concerning the

package of seats offered by the school.

The pseudomarket mechanisms currently used to allocate course seats at some business

schools generally provide each student with a budget of some artificial currency. This will

not be guaranteed to be feasible unless each student is sure to be able to afford some feasible

package of courses. In fact the use of such mechanisms currently seems to be restricted to

settings in which the students are quite homogeneous, e.g., MBA students at the beginning

of the program.

We can endow students with commodities in addition to artificial currency. In more

complex settings it is quite unnatural for all students to have the same endowment, since

they differ in seniority, program, and the courses that they have already taken. Our re-

quirement that each student’s endowment is greater than or equal to some element of her

consumption set (instead of the origin as in BCKM) is quite natural, corresponding to

each student’s entitlement to some schedule of courses that fulfills the requirements of her

program. Consumption sets that satisfy both floor and ceiling constraints are possible.

Our framework has additional flexibility that is potentially useful in course allocation.

The share of excess purchasing power of sated consumers going to an unsated consumer

is a parameter that can be chosen. Since a high share prioritizes the consumer’s interests

when many consumers are achieving satiation, it may (for example) be desirable to give

recipients of academic merit scholarships higher shares, thereby making it less likely that

13



one of them will be unsated in this circumstance. The ownership shares can also be chosen

with various objectives in mind, and their significance may be altered by subtracting a

vector from the production set while adding the same vector to the aggregate endowment.

From the point of view of course allocation, perhaps the most unfortunate assumption

of Theorem 1 is that each Xi has a nonempty interior in x0
i + V0, since it requires that

any student is potentially capable of taking any course. In computational practice one

may attempt to overcome this by passing from the actual consumption sets, which do not

satisfy this condition, to larger consumption sets with nonempty interiors that have the

given consumption sets as faces, but imposing a severe disutility of moving away from the

given consumption sets.

There are a number of other problems with the application of pseudomarkets to course

allocation that can be foreseen. While the various dimensions of flexibility described above

are in one sense potentially useful, they lack the sorts of symmetry that make current

business school course allocation mechanisms “obviously” fair. Perhaps they will come to

be accepted because they produce good results that are not obviously unfair, but guidance

concerning how best to tune their parameters, how to choose among multiple equilibria,

and how to convince people that such choices are not unjust, is likely to come from practical

experience rather than a priori reasoning.

Another potential problem is computational tractability. The proof of existence given

here exploits a fixed point theorem. While algorithms for computing fixed points have

achieved considerable practical success, there are theoretical results (e.g., Hirsch, Papadim-

itriou, and Vavasis (1989)) that suggest that such algorithms cannot provide any guarantee

of rapid convergence. The limits of practical computation are unclear, and evolving.

4 The Proof of Theorem 1

We work in the setting laid out in Section 2. Let V denote a linear subspace of Rℓ that does

not contain e. In the analysis prior to the proof of Theorem 1 this space will contain net

trades prior to disposal, and it will also be the space of possible price vectors. (The reader

should be warned that although our continuity and hemicontinuity results are expressed in

terms of the given economy, in the proof of Theorem 1 they will be applied to an expanded

economy with V = R × V0.) From this point to the end of the proof of Proposition 3 we
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assume that each consumption set Xi is contained in a translate of V , and that V contains

all of the production sets.

For the time being we consider a fixed consumer i. Let AV
i = (ωi+V )∩ (Xi+C) be the

set of points in ωi + V that are feasible predisposal consumptions for i, in the sense that

free disposal can reach a point in Xi. Of course AV
i is closed, the minimum value of each

component is given by Xi and the maximal value is not greater than the maximal value in

Xi plus 〈ωi − x0
i , e〉, so AV

i is compact.

Let UV
i be the set of p ∈ V \ {0} such that there is a point wi in the interior (relative

to ωi + V ) of AV
i such that 〈p, wi〉 = µi(p) and w′

i 7→ 〈p, w′
i〉 is not constant on AV

i . It is

easy to show that UV
i is an open subset of V \ {0}.

Define correspondences BV
i : UV

i → AV
i , F

V
i : UV

i → Xi, G
V
i : UV

i → Xi, and DV
i :

UV
i → AV

i by setting

BV
i (p) = {wi ∈ AV

i : 〈p, wi〉 = µi(p) }, F V
i (p) = Xi ∩ (BV

i (p)− C),

GV
i (p) = argmaxxi∈F

V
i (p)ui(xi), DV

i (p) = {wi ∈ BV
i (p) : G

V
i (p) ∩ (wi − C) 6= ∅ }.

In words, BV
i (p) is i’s budget set in ωi + V when she is compelled to spend all her income,

F V
i (p) is the set of points in Xi that can be reached from points in BV

i (p) by disposal,

GV
i (p) is the set of optimal points in F V

i (p), and DV
i (p) is the set of points in ωi + V that

can pass to points in GV
i (p) by disposal.

Our handling of the continuity properties of consumption depends on a technical trick,

which is based on the following geometric fact. Recall that a polyhedron in R
ℓ is an

intersection of finitely many closed half spaces, and a polytope is a bounded polyhedron.

Proposition 1 If P1 and P2 are polyhedra in R
ℓ, Q = { q ∈ R

ℓ = (P1 + q)∩ P2 6= ∅ }, and
I : Q → R

ℓ is the correspondence I(q) = (P1 + q) ∩ P2, then I is continuous.

Appendix B contains the proof of this and Proposition 2 below. (The arguments have a

prosaic point-set theoretic character.) The main point is:

Proposition 2 If Xi is a polytope, then DV
i is an upper hemicontinuous convex valued

correspondence.

In the course of proving this Appendix B shows that if Xi is a polytope, then BV
i , F

V
i ,

and GV
i are convex valued correspondences, BV

i and F V
i are continuous, and GV

i is upper

hemicontinuous.
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Let UV =
⋂

i U
V
i . The excess demand set for p ∈ UV is the Minkowski sum

ZV (p) = −ω −
∑

j

Mj(p) +
∑

i

DV
i (p).

We have DV
i (p) ⊂ ωi+V for all i and Mj(p) ⊂ Yj ⊂ V for all j, so ZV (p) ⊂ V . Fix a good

h∗ such that V is not contained in { p ∈ R
ℓ : ph∗ = 0 }. For ε ∈ (0, 1) let

Sε = { p ∈ V : ‖p‖ = 1 and ph∗ ≥ ε }.

As the intersection of a sphere with a half space, Sε is a smooth manifold with boundary.

The tangent space of Sε at p is TpSε = { z ∈ V : 〈p, z〉 = 0 }. As the proof below explains

more formally, Walras’ law is tantamount to ZV (p) ∈ TpSε.

Proposition 3 If each Xi is a polytope, ε > 0, Sε ⊂ UV , and zh∗ ≥ 0 for all p ∈ Sε such

that ph∗ = ε and all z ∈ ZV (p), then there is a p ∈ Sε such that 0 ∈ Z(p).

Appendix A explains the notion of a vector field correspondence, the Poincaré-Hopf

theorem, and related concepts that are employed in the following argument.

Proof. Lemma 1 and Proposition 2 imply that ZV is an upper hemicontinuous convex

valued correspondence. For p ∈ Sε and z ∈ ZV there are wi ∈ DV
i (p) and yj ∈ Mj(p) such

that z = −ω −∑

j yj +
∑

iwi, and

〈p, z〉 = −〈p, ω〉 −
∑

j

〈p, yj〉+
∑

i

〈p, wi〉 = 0

because 〈p, wi〉 = 〈p, ωi〉 +
∑

j θijπj(p) and πj(p) = 〈p, yj〉. Thus ZV is a vector field

correspondence. By assumption it is not outward pointing. Therefore the Poincaré-Hopf

theorem implies that the index of ZV is (−1)dimV−2 times the Euler characteristic of Sε.

Since Sε is contractible, its Euler characteristic is 1. Thus the index is not zero, so 0 ∈ ZV (p)

for some p.

Proof of Theorem 1. We first expand the economy by adding a new good 0 that is not

disposable, but which will be assumed to be universally desirable. For z̃ ∈ R
1+ℓ, z denotes

the projection that discards the first (good 0) component, so p̃ = (p̃0, p), w̃i = (w̃i0, wi),

x̃i = (x̃i0, xi), ỹj = (ỹj0, yj), etc. For i = 1, . . . , m let X̃i = [0, τi] × Xi where τi > 0 is a

number that is sufficiently large in a sense that will be specified later, and let ũi : X̃i → R
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be the function ũi(x̃i) = x̃i0 + ui(xi). For j = 1, . . . , n let Ỹj = {0} × Yj, and define π̃j and

M̃j in relation to Ỹj as we defined πj and Mj in relation to Yj.

We now define a sequence of economies. For each i let X i = argmaxxi∈Xi
ui(xi) be the

set of bliss points. Since ui is continuous and semi-strictly quasiconcave, X i is nonempty,

compact, and convex. Let {Xr
i } be a sequence of polytopes contained in Xi such that

Xr
i → Xi and Xr

i ∩X i → X i in the Hausdorff metric. After eliminating some of the initial

terms of the sequence, x0
i is an interior point of Xr

i for all r. Let {ω̃r
0} be a sequence in

(0, 1) that converges to 0. Consumer i’s endowment in the rth economy is ω̃r
i = (αiω̃

r
0, ωi).

For each i and r define µ̃r
i in relation to the production sets Ỹj, the ownership shares θij ,

and ω̃r
i , as we defined µi.

Let Ṽ = R×V0. Define ÃṼ ,r
i and Ũ Ṽ ,r

i in relation to Ṽ and the rth economy as we defined

AV
i and UV

i above. Let Ũ Ṽ ,r =
⋂

i Ũ
Ṽ ,r
i . For each i and r define F̃ Ṽ ,r

i , G̃Ṽ ,r
i , and D̃Ṽ ,r

i in

relation to the rth economy as we defined F V
i , GV

i , andDV
i above. For p̃ ∈ Ũ Ṽ ,r let Z̃ Ṽ ,r(p̃) =

−ω̃r − M̃(p̃) +
∑

i D̃
Ṽ ,r
i (p̃). For some ε > 0 let S̃ε = { p̃ ∈ Ṽ : ‖p̃‖ = 1 and p̃0 ≥ ε }.

We seek conditions on ε and the τi that imply that the hypotheses of Proposition 3 hold.

In particular, we want every p̃ ∈ S̃ε to be in Ũ Ṽ ,r because 0 < αiω̃
r
0 +

∑

j θij π̃j(p̃)/p̃0 < τi,

so that (αiω̃
r
0 +

∑

j θij π̃j(p̃)/p̃0, ωi) is in the interior of ÃṼ ,r
i . It is clear that, once ε has

been fixed, we can choose τi large enough that this will necessarily be the case. We also

need total demand for good 0 to exceed supply at all p̃ ∈ S̃ε such that p̃0 = ε. Here we

sketch the main ideas, omitting details. Consider a p̃ = (ε, p) in the boundary of Sε. For

each i there is a ball centered at x0
i that is contained in every Xr

i . It is possible to generate

income to spend on good 0 by moving final consumption away from x0
i in the direction −p,

and since ‖p‖ =
√
1− ε2 is close to 1, the amount of income that can be generated in this

way is approximately equal to the radius of this ball. If ε is sufficiently small, the utility

resulting from spending half of this income on good 0 exceeds maxxi,x
′

i∈Xi
ui(xi) − ui(x

′
i).

In this case any bundle that spends less than half this amount on good zero is dominated

by a bundle that spends this amount on good 0. Therefore, for large r, total demand for

good 0 exceeds ω̃r
0.

Thus, if ε and the τi are chosen suitably, Proposition 3 implies that for each r there is a

p̃r ∈ S̃ε such that 0 ∈ Z̃ Ṽ ,r(p̃r). For each r choose w̃r
i ∈ D̃Ṽ ,r

i (p̃r) for all i and ỹrj ∈ M̃j(p̃
r)

for all j such that
∑

i w̃
r
i = ω̃r +

∑

j ỹ
r
j . For each r and i let x̃r

i maximize ũi(x̃
r
i ) subject to

x̃r
i ∈ X̃i ∩ (w̃r

i −C). After passing to a subsequence we may assume that wr → w, xr → x,
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and yr → y.

For the usual reasons, multiplying all prices by a positive scalar does not change the

consumers’ budget sets or optimal consumptions. In addition, since each consumer i is

constrained to choose a predisposal consumption in R× ({ωi} + V0), and production sets

are contained in {0} × V0, adding a scalar multiple of (0, e) to the price vector also has

no effect. In more detail, suppose that p̂r = p̃r + βr(0, e) for some βr ∈ R. For each j,

Ỹj = {0} × Yj, so M̃j(p̂
r) = M̃j(p̃

r) and π̃j(p̂
r) = π̃j(p̃

r). It follows that B̃i(p̂
r) = B̃i(p̃

r),

F̃i(p̂
r) = F̃i(p̃

r), G̃i(p̂
r) = G̃i(p̃

r), and D̃i(p̂
r) = D̃i(p̃

r). We modify p̃r by adding the scalar

multiple of (0, e) that makes the minimum component of (prℓc+1, . . . , p
r
ℓ) zero. If, for the

new p̃r, pr = 0, then each i is sated at xr
i in Xr

i , and if this happens for arbitrarily large r,

then each xi is a bliss point in Xi, so (0, x, y) is an EDE, and in fact it is (vacuously) an

α-EDE for any α.

Therefore we may assume that for the new p̃r, pr 6= 0 for all r. We now multiply

p̃r by the positive scalar that makes the maximum absolute value of a component of pr

one. After passing to a subsequence we may assume that pr converges to a p such that

minℓc+1≤h≤ℓ ph = 0 and the maximum absolute value of any component is one. We will

show that (p, x, y) is an α-EDE.

We begin by showing that (a) holds. First suppose that for some i there is an x′
i ∈ Xi

such that 〈p, x′
i〉 < 〈p, xi〉 and ui(x

′
i) > ui(xi). For each r let w′

i = x′
i + (wi − xi). Then

w′
i ∈ AV

i , and for large r we have ui(x
′
i) > ui(x

r
i ) and 〈pr, w′

i〉 ≤ 〈pr, wr
i 〉, which contradicts

utility maximization for x̃r
i , so this is not possible.

Next suppose that for some i there is a x′
i ∈ Xi such that 〈p, x′

i〉 < 〈p, xi〉 and ui(x
′
i) =

ui(xi). If i is unsated at xi, then moving x′
i in the direction of a bliss point yields 〈p, x′

i〉 <
〈p, xi〉 and ui(x

′
i) > ui(xi), which we ruled out above. On the other hand if i is sated at

xi, then xi and x′
i are bliss points for i. For large r we have 〈pr, x′

i〉 < 〈pr, xr
i 〉, so we can

improve on xr
i by purchasing x′

i instead and spending more on good 0.

Finally suppose that for some i there is a x′
i ∈ Xi such that 〈p, x′

i〉 = 〈p, xi〉 and

ui(x
′
i) > ui(xi). If there was any x′′

i ∈ Xi with 〈p, x′′
i 〉 < 〈p, x′

i〉, then we could move x′
i

in the direction of x′′
i and achieve 〈p, x′

i〉 < 〈p, xi〉 and ui(x
′
i) > ui(xi), which we know

is impossible. Therefore 〈p, xi〉 ≤ 〈p, x′′
i 〉 for all x′′

i ∈ Xi. In the expanded economies it

is always possible to consume (0, x0
i ), so 〈pr, x0

i 〉 ≤ 〈pr, xr
i 〉 + p̃r0x̃

r
i0 for all r, and we are

assuming that i is unsated at xi, so p̃r0x̃
r
i0 → 0 and thus 〈p, x0

i 〉 ≤ 〈p, xi〉. Since x0
i is in the
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interior of Xi, this implies that 〈p, xi〉 is constant on Xi, and that p is a scalar multiple of

e, which we have been assuming is not the case. This completes the verification of (a).

Since ỹrj = (0, yrj ) ∈ M̃j(p̃
r) for all j and r, yrj ∈ Mj(p

r), and Lemma 1 gives yj ∈ Mj(p),

which is (c) of the definition of an EDE. Of course

ω +
∑

j

yj −
∑

i

xi = lim
r

(

ω +
∑

j

yrj −
∑

i

xr
i

)

∈ C

because C is closed, so (d) holds. If, for some h = ℓc+1, . . . , ℓ,
∑

i xih < ωh+
∑

j yjh, then
∑

i x
r
ih < ωh +

∑

j y
r
jh for large r, and for some i we have xr

ih < wr
ih. This is inconsistent

with utility maximization if there is an h′ = ℓc+1, . . . , ℓ such that prh′ < prh because i could

modify wr
i by purchasing more h′ and less h, thereby obtaining the same element of Xi and

a greater consumption of good 0. Thus prh = 0 for large r, so ph = 0, and (e) holds.

Since xi ≤ wi for all i and ph = 0 if
∑

i xih <
∑

i wih, we have ph = 0 whenever xih < wih,

so 〈p, xi〉 = 〈p, wi〉. For all i and r we have 〈pr, wr
i 〉+ p̃r0w̃

r
i0 = µ̃r

i (p̃
r) = αip̃

r
0ω̃

r
0+µi(p

r
i ). Let

S (U) is the set of i that are sated (unsated) at xi. The total benefit of consuming good

0 is bounded by ω̃r
0, so it goes to zero. If i ∈ U , then the amount spent on good 0 cannot

result in a reduction, in the limit, of utility from other goods, so p̃r0w̃
r
i0 → 0. Therefore

〈p, xi〉 − µi(pi) = 〈p, wi〉 − µi(pi) = αiΠ

for i ∈ U , where Π = limr p̃
r
0ω̃

r
0. Since Π ≥ 0, (b) holds, so (p, x, y) is an α-EDE.

5 Challenges

For the most part the traditional concerns of general equilibrium theory are meaningful and

conceptually pertinent in relation to pseudomarkets, perhaps taking on a somewhat differ-

ent flavor insofar as we expect these to be designed mechanisms rather than phenomena

occurring “in nature.” Thus one can easily produce a host of original and meaningful prob-

lems for further research. For example, extending the result to various infinite dimensional

commodity spaces is one obvious direction of possible generalization.

In the remainder we briefly describe two, possibly quite challenging, open problems that

have a fundamental character. Both can be stated in a particularly simple version of the

HZ model. (It will be evident that many variations are possible.) Assume that there are

the same number of consumers and objects, and each object has unit capacity. Thus m = ℓ,
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and for each i we have Xi = ∆ where ∆ = { x ∈ R
ℓ
+ :

∑

h xh = 1 } is the unit simplex.

The (expected) utilities are linear: ui(xi) =
∑

h uihxih. For each i let the endowment ωi

be the barycenter (1/ℓ, . . . , 1/ℓ) of ∆; equivalently, the consumers are endowed with equal

incomes. Let e = (1, . . . , 1) ∈ R
ℓ, and let V = { p ∈ R

ℓ : 〈p, e〉 = 0 } be its orthogonal

complement.

Experience with general equilibrium theory (Debreu (1970)) and strategic form (Harsanyi

(1973)) and extensive form (Kreps and Wilson (1982)) game theory, leads one to conjecture

that for generic utilities there are finitely many EDE. We analyze this, arriving at a sharper

characterization.

Generically each consumer has a unique favorite object, in which case any EDE de-

composes as an assignment of favorites to some consumers and an EDE for the remaining

economy in which all consumers are unsated and consequently spend all of their income.

Thus it suffices to show that for generic u there are finitely many EDE in which each

consumer is unsated and consequently consumes a bundle with the same value as the en-

dowment.

The aggregate endowment is ∇ =
∑

h δh where each δh is the element of ∆ whose h

coordinate is 1 and whose other coordinates are 0. As before let X =
∏

i Xi = ∆ℓ. The

space of possible equilibrium price-allocation pairs is

B = { (p, x) ∈ V ×X : 〈p, xi〉 = 0 for all i and
∑

i

xi = ∇}.

For p ∈ V let A(p) = { z ∈ ∆ : 〈p, z〉 ≤ 0 } be the common budget set. The graph of the

equilibrium correspondence is

E = { (u, (p, x)) ∈ B × (Rℓ)ℓ : xi ∈ argmaxx′

i∈A(p)ui(x
′
i) for all i }.

Let π : E → (Rℓ)ℓ be the projection (u, (p, x)) 7→ u. We would like to show that for a

generic set G ⊂ (Rℓ)ℓ, π−1(u) is finite for all u ∈ G, so that u ∈ G have finitely many EDE

in which each consumer’s consumption has value 0.

We partition E according to which consumers consume positive quantities of which

goods. For ∅ 6= σ ⊂ {1, . . . , ℓ} let the interior of the face of ∆ spanned by σ be

∆σ = { x ∈ ∆ : for each h, xh > 0 if and only if h ∈ σ }.

For a profile Σ = (σ1, . . . , σℓ) in which each σi is a nonempty subset of {1, . . . , ℓ}, let

BΣ = { (p, x) ∈ B : xi ∈ ∆σi
for all i } and EΣ = { (u, (p, x)) ∈ E : (p, x) ∈ Bσ }.
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For each (p, x) ∈ BΣ, the dimension of the set of ui ∈ R
ℓ such that xi ∈ argmaxp∈B(p)ui(x)

is a closed set whose interior is an open subset of an (min{ℓ, ℓ−|σi|+2})-dimensional linear

subspace. Thus the set of u ∈ (Rℓ)ℓ such that (u, (p, x)) ∈ E is a (
∑

imin{ℓ, ℓ− |σi|+ 2})-
dimensional linear subspace.

A semi-algebraic set S in a Euclidean space is a finite union of sets, each of which

is defined by a finite conjunction of polynomial equations and inequalities. A result first

proved by Whitney (1957) (cf. Bochnak, Coste, and Roy (1998) and Benedetti and Risler

(1990)) implies that such an S has a finite partition M1, . . . ,MK whose cells are C∞ man-

ifolds of various dimensions. The dimension of S is the maximal dimension of the Mj .

(This is the same for all partitions). It is easy to see that BΣ is a semi-algebraic set. Let

M1, . . . ,MK be a partition of BΣ into C∞ manifolds. If the dimension of BΣ is not greater

than
∑

imax{|σi| − 2, 0}, then the dimension of { (u, (p, x)) ∈ E : (p, x) ∈ Mj } is not

greater than ℓ2, and application of Sard’s theorem to the restriction of π to this set shows

that generic u have finitely many equilibria in Mk. Conversely, if the dimension of BΣ is

greater than
∑

imax{|σi|−2, 0}, then there is an open subset of (Rℓ)ℓ whose elements each

have a continuum of equilibria.

We now discuss some issues related to computation. For many applications of pseudo-

markets, decentralized trading processes will not yield equilibria of the desired sort because

they do not incentivize sated consumers to minimize expenditure. Thus implementation

must be done by computing an equilibrium using preferences submitted by the consumers,

so the complexity of this computation is a concern. (As many computer scientists have

pointed out, market equilibration cannot perform intractible computations, so complexity

concerns also give rise to potential doubts concerning the realism of general equilibrium as

a model of decentralized trading in complex economies.)

The Debreu-Mantel-Sonnenschein theorem implies that in its general form, the prob-

lem of computing an approximate competitive equilibrium is equivalent to the problem of

computing an approximate fixed point in the setting of Brouwer’s fixed point theorem, and

various algorithms (e.g., Ch. 3 of McLennan (2018)) for this problem are known, and may

be used to compute EDE’s of the expanded economies arising in the proof of Theorem 1.

Thus it is possible to compute at least an approximation of an EDE, but this is far from

ideal. A representation of an EDE as a fixed point would allow more direct computational

methods to be employed. I do not know of such a representation, nor do I know of any way
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to show that no such representation exists.

Computation of market equilibrium under restrictive hypotheses has been studied ex-

tensively in the computer science literature. (Codenotti, Pemmaraju, and Varadarajan

(2004) surveys less recent literature.) Of particular interest to us are Fisher markets with

linear utilities. In a Fisher market there are finitely many divisible goods in fixed supply

and finitely many consumers, each of whom has a utility function and a positive endowment

of money. An equilibrium is a vector of nonnegative prices and an allocation such that each

consumer is maximizing utility subject to her budget constraint. Gale (1960) showed that

when utilities are linear, the set of equilibria is the set of solutions of a convex program,

and Eisenberg (1961) generalized this result to homogeneous utility functions. Devanur,

Papadimitriou, Saberi, and Vazirani (2008) provide a polynomial time algorithm for find-

ing an equilibrium when utilities are linear. Jain and Vazarani (2010) define a class of

Eisenberg-Gale markets, and provide polynomial time algorithms for several other markets

in this class.

The difference between the linear Fisher market and our HZ market is that in the

HZ market each consumer has the additional constraint that the sum of the quantities

purchased (i.e., total probability) must be one. McLennan and Takayama (2018) present

examples with multiple isolated equilibria, so the problem is not equivalent to a convex

program, and they present calculations suggesting that even in the simple version of the

HZ model considered here, multiplicity of equilibria is not uncommon. This gives the

subjective impression that the problem of finding an EDE has the character of a fully

general fixed point problem, which suggests that the corresponding computational problem

has similar complexity.

The computational class PPAD is the class of computational problems with the following

description. A directed graph is a pair (V,E) consisting of a finite set V of nodes and a

finite set E ⊂ V × V of directed edges. If (v, w) ∈ E, then v is a predecessor of w and

w is a successor of v. The indegree (outdegree) of a node is the number of predecessors

(successors). A node is a source if its indegree is zero and a sink if its outdegree is zero.

An instance of PPAD has two inputs, the first of which is a Turing machine that defines a

directed graph of maximal indegree one and maximal outdegree one, because it takes a node

in V as input and computes the predecessor (if it exists) and the successor (if it exists).

The other input is a source, and the problem is to find a sink or some other source. The
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class PPAD abstracts the common features of the Lemke-Howson algorithm for 2-Nash,

which is the computational problem of finding a Nash equilibrium of a finite two person

strategic form game, as well as various algorithms for computing approximate fixed points.

(Cf. Chapter 3 of McLennan (2018).)

A major theoretical development was accomplished by Daskalakis, Goldberg, and Pa-

padimitriou (2006) and Chen and Deng (2006), who proved that 2-Nash is complete for

PPAD. Concretely, there is a polynomial time algorithm that takes any problem in PPAD

as input and outputs a two person game, and there is another polynomial time algorithm

that has the given problem and a Nash equilibrium of this two person game as input, and

outputs a solution of the given problem. Thus a polynomial time 2-Nash solver could be

turned into a polynomial time algorithm for arbitrary problems in PPAD. It is believed

(conjecturally, insofar as it requires at least that P 6= NP) that there is no polynomial

time algorithm for the general problem of computing an approximate fixed point, so this

result is compelling evidence that there is no polynomial time algorithm for 2-Nash.

This method of showing that a particular problem is hard because an algorithm for it

could be used to solve a problem that is known or believed to be hard is called reduction.

Subsequently many problems in theoretical economics have been shown to be complete

for PPAD, because any instance of 2-Nash, or some other problem that has already been

shown to be PPAD complete, can be reduced to an instance of the problem in question.

In particular, various seemingly quite elementary versions of general equilibrium have been

shown to be PPAD-complete. (E.g., Chen, Dai, Du, and Teng (2009).)

If the problem of finding an equilibrium of the HZ model is in fact PPAD complete,

application of general fixed point solvers (as is already outlined in Appendix B of HZA)

is likely be as efficient as any method for the general problem. The history of the com-

putational general equilibrium literature suggests looking for additional restrictions on the

problem that are practically relevant and allow more efficient algorithms to be employed.

Appendix A: The Vector Field Index

We briefly review the theory of the vector field index (Ch. 15 of McLennan (2018)). Let

M ⊂ R
k be a smooth n-dimensional manifold with boundary. (Concretely, M is covered

by open sets U that are C∞ diffeomorphic to open subsets of the half space H1 = { x ∈
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R
n : x1 ≥ 0 }.) If C ⊂ M is compact, a vector field correspondence Z with domain C is an

assignment of a nonempty set Z(p) ⊂ TpM of tangent vectors to each p ∈ C. We do not

make a formal distinction between a singleton valued correspondence and a function, and

if Z is a continuous function we say that Z is a vector field.

An equilibrium of Z is a p ∈ C such that 0 ∈ Z(p). We say that Z is index admissible

is it is upper hemicontinuous, contractible2 valued, and has no equilibria in the topological

boundary ∂C = C ∩ M \ C of C. The vector field index assigns an integer ind(Z) to

each index admissible vector field correspondence Z. It is completely characterized by the

following properties:

• (Normalization) If z is a smooth vector field on C that has a single equilibrium

p ∈ C\∂C, andDz(p) : TpM → TpM is nonsingular3, then ind(z) = +1 if |Dz(p)| > 0

and ind(z) = −1 if |Dz(p)| < 0, where |Dz(p)| is the determinant of Dz(p).

• (Additivity) If Z with domain C is an index admissible vector field correspondence,

C1, . . . , Cr are pairwise disjoint compact subsets of C, and Z has no equilibria in the

closure of C \ (C1 ∪ · · · ∪ Cr), then ind(Z) =
∑

k ind(Z|Ck
).

• (Continuity) If Z is an index admissible vector field correspondence with domain

C, then there is a neighborhood U of the graph of Z such that if Z ′ is an index

admissible vector field correspondence with domain C whose graph is contained in

U , then ind(Z ′) = ind(Z).

Note that Additivity implies that ind(Z) = 0 if Z has no equilibria, so that equilibria

necessarily exist if ind(Z) 6= 0. Additivity allows us to unambiguously define the index

of an isolated equilibrium of Z to be the index of the restriction of Z to any compact

neighborhood of the equilibrium that contains no other equilibria.

Consider a point p ∈ M and a C∞ coordinate chart ϕ : U → V where U is an open

subset ofM containing p and V ⊂ H1 is open. We say that v ∈ TpM is not outward pointing

(inward pointing) if v1 ≥ 0 (v1 > 0). We say that v is not inward pointing (outward pointing)

2A topological space X is contractible if there is a continuous function c : X × [0, 1] → X such that

c(·, 0) is the identity function on X and c(·, 1) is a constant function.
3One way to see that the image of Dz(p) is contained in TpM is to consider that if ε : (−ε, ε) → M

and ν : (−ε, ε) → R
k are smooth functions such that ν(t) ⊥ Tε(t)M for all t, then differentiating 0 =

〈z(ε(t)), ν(t)〉 gives 0 = 〈Dz(ε(t))ε′(t), ν(t)〉 + 〈z(ε(t)), ν′(t)〉 and thus 0 = 〈Dz(p)ε′(0), ν(0)〉.
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if −v is not outward pointing (inward pointing). A vector field correspondence Z on M

is not outward pointing (inward pointing, not inward pointing, outward pointing) if, for all

p ∈ M and z ∈ Z(p), z is not outward pointing (inward pointing, not inward pointing,

outward pointing). The Poincaré-Hopf theorem (e.g., Milnor (1965)) asserts that the index

of a continuous outward pointing vector field on a compact C∞ manifold with boundary is

the manifold’s Euler characteristic. Normalization and the fact that the properties above

characterize the index imply that the index of the negation of a vector field is the vector

field’s index multiplied by (−1)dim q. Theorem 15.11 of McLennan (2018) generalizes the

Poincaré-Hopf theorem to C∞ manifolds with corners, and to index admissible vector field

correspondences that are not outward pointing, but which need not be inward pointing.

Appendix B: Omitted Proofs

Proof of Proposition 1. By construction I is nonempty valued, and it is easy to see

that it is upper hemicontinuous. Since everything is translation invariant it suffices to prove

that I is lower hemicontinuous at the origin when the origin is an element of Q, and an

element of I(0), which is to say that 0 ∈ P1 ∩ P2. Concretely, for a given sequence {qr} in

Q converging to 0 we need to produce a sequence {xr} with xr ∈ I(qr) for all r and xr → 0.

Let C1 and C2 be the cones given by the inequalities defining P1 and P2 that hold with

equality at 0. If q ∈ Q, then (C1 + q) ∩ C2 6= ∅. Moreover, there is a constant A > 0

such that if q ∈ Q and x is the point in (C1 + q) ∩ C2 that is closest to the origin, then

‖x‖ ≤ A‖q‖. If q ∈ Q and ‖q‖ is sufficiently small, then the point in (C1 + q) ∩ C2 that is

closest to the origin is an element of (P1 + q) ∩ P2. For sufficiently large r we let xr be the

point in (C1 + qr) ∩ C2 that is closest to the origin.

In preparation for the proof of Proposition 2 we establish the relevant continuity prop-

erties of BV
i , F

V
i , and GV

i .

Lemma 2 BV
i is a continuous convex valued correspondence.

Proof. The definition of UV
i implies that BV

i (p) is nonempty whenever p ∈ UV
i , and it is

obviously convex. Evidently wi ∈ BV
i (p) whenever {pr} is a sequence in V converging to p 6=

0, wr
i ∈ BV

i (p
r) for each r, and wr

i → wi, so the correspondence is upper hemicontinuous.

It remains to demonstrate lower hemicontinuity. Suppose that {pr} is a sequence in UV
i

converging to p ∈ UV
i and wi ∈ BV

i (p). Fixing a convex neighborhood U ⊂ ωi + V of wi,
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it suffices to show that U has a nonempty intersection with BV
i (p

r) for sufficiently large r.

Since p ∈ UV
i , there is a point w′′

i ∈ BV
i (p) in the interior of AV

i . Let w
′
i be a point in the

interior of the line segment between wi and w′′
i that is contained in U . Then w′

i ∈ BV
i (p),

and, because AV
i is convex, W ′

i is in the interior of AV
i . Since 〈p, ·〉 is not constant on AV

i

there are w0
i , w

1
i in the interior of AV

i ∩U such that 〈p, w0
i 〉 < µi(p) < 〈p, w1

i 〉. By continuity

〈pr, w0
i 〉 < µi(p

r) < 〈pr, w1
i 〉 for large r, in which case some convex combination of w0

i and

w1
i is an element of BV

i (p
r) in AV

i ∩ U .

Lemma 3 If Xi is a polytope, then F V
i is a continuous convex valued correspondence.

Proof. The definition of UV
i implies that F V

i is nonempty valued. The proof of upper

hemicontinuity is as usual: the definition is a matter of weak inequalities of continuous

functions. To prove that F V
i is lower hemicontinuous fix p ∈ UV

i and xi ∈ Fi(p), and

suppose that {pr} is a sequence in UV
i converging to p. Choose wi ∈ BV

i (p) such that

xi ∈ wi −C. Since BV
i is lower hemicontinuous there is a sequence {wr

i } with wr
i ∈ BV

i (p
r)

and wr
i → wi. Proposition 1 implies that there is a sequence {xr

i } with xr
i ∈ Xi ∩ (wr

i −C)

and xr
i → xi, and the definition of F V

i implies that Xi ∩ (wr
i − C) ⊂ F V

i (pr).

Lemma 4 If Xi is a polytope, then GV
i is an upper hemicontinuous convex valued corre-

spondence.

Proof. In view of the last result this is a consequence of Berge’s theorem.

Proof of Proposition 2. By definition DV
i is nonempty valued. To show that DV

i is

convex valued fix p ∈ UV
i , and suppose that wi, w

′
i ∈ DV

i (p) and 0 ≤ t ≤ 1. There are

xi, x
′
i ∈ Xi with xi ≤ wi, x

′
i ≤ w′

i, and ui(xi) = ui(x
′
i). Of course (1 − t)wi + tw′

i ∈ BV
i (p),

(1− t)xi + tx′
i ≤ (1− t)wi+ tw′

i, and ui((1− t)xi + tx′
i) ≥ (1− t)ui(xi)+ tui(x

′
i), but xi and

x′
i are maximizers, so this inequality holds with equality. Thus (1− t)wi + tw′

i ∈ DV
i (p).

To prove upper hemicontinuity suppose that {pr} is a sequence in UV
i converging to

p ∈ UV
i , wr

i ∈ DV
i (p

r) for all r, and wr
i → wi. For each r choose xr

i ∈ Xi such that

wr
i − xr

i ∈ C and ui(x
r
i ) = maxxi∈F

V
i (pr) ui(xi). Passing to a subsequence, we may assume

that xr
i → xi. Then wi − xi ∈ C (since C is closed) and xi ∈ GV

i (p) because GV
i is upper

hemicontinuous, so wi ∈ DV
i (p).
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